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Abstract

This paper presents a new finite volume scheme for the incompressible

steady-state Navier-Stokes equations on a general 2D mesh. The

scheme is staggered, i.e. the discrete velocities are not located at

the same place as the discrete pressures. We prove the existence and

the uniqueness of a discrete solution for a centered scheme under a

condition on the data, and the unconditional existence of a discrete

solution for an upstream weighting scheme. In both cases (nonlinear

centered and upstream weighting schemes), we prove the convergence of

a penalized version of the scheme to a weak solution of the problem. Nu-

merical experiments show the efficiency of the schemes on various meshes.

Key words : Navier-Stokes equations, cell-centered finite volumes,

unstructured mesh.

1 Introduction

We study the following problems: find an approximation of u = (u(1), u(2))t ∈
H1

0 (Ω) × H1
0 (Ω) and p ∈ L2(Ω), weak solution to the generalized incompressible

steady–state Navier-Stokes equations, which write:

ηu − ν∆u + ∇p + (u · ∇)u = f in Ω,
divu = 0 in Ω,

(1)
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where η ≥ 0, u(1) and u(2) are the two components of the velocity, p denotes the
pressure, ν the viscosity of the fluid, under the following assumptions:

Ω is a polygonal open bounded connected subset of R
2, (2)

ν ∈ (0,+∞), η ∈ [0,+∞), (3)

f = (f (1), f (1))t ∈ (L2(Ω))2, for i = 1, 2, (4)

and where, by definition, (u · ∇)ui = u(1)∂1u
(i) + u(2)∂2u

(i).The terms ηu(i) ap-
pear when considering an implicit time discretization of the unsteady Navier-Stokes
equations (with η as the inverse of the time step). The case η = 0 yields the usual
steady-state equations.

For the simplicity of this presentation, we prescribe a homogeneous Dirichlet
boundary condition on the velocity (u(1), u(2)). In all this paper, we denote by
x = (x(1), x(2)) any point of Ω and by dx the 2-dimensional Lebesgue measure
dx = dx(1)dx(2).

Definition 1.1 (Weak solution) Under hypotheses (2)-(4), let

E(Ω) := {v = (v(1), v(2))t ∈ (H1
0 (Ω))2,divv = ∂1v

(1) + ∂2v
(2) = 0 a.e.}. (5)

Then u = (u(1), u(2))t is called a weak solution of (1) (see e.g. [24]) if and only if



















u = (u(1), u(2))t ∈ E(Ω),

η

∫

Ω
u(x)v(x)dx + ν

∫

Ω
∇u : ∇v(x)dx + b(u, u, v) =

∫

Ω
f(x) · v(x)dx, ∀v = (v(1), v(2))t ∈ E(Ω),

(6)

where, by definition, ∇u : ∇v(x) =
∑

i=1,2

∇u(i)(x) · ∇v(i)(x). and where the trilinear

form b is defined for all u, v,w ∈ (H1
0 (Ω))2 by

b(u, v,w) = (u · ∇v)w =
∑

k=1,2

∑

i=1,2

∫

Ω
u(i)(x)∂iv

(k)(x)w(k)(x)dx, (7)

which classically satisfies, for all u ∈ E(Ω),

b(u, v,w) =
∑

k=1,2

∑

i=1,2

∫

Ω
∂i(u

(i)v(k))(x)w(k)(x)dx.

Numerical schemes for Navier-Stokes equations (6)-(7) have been extensively
studied: see [12, 21, 22, 23, 14, 13] and references therein. As we noted in [4],
an advantage of the finite volume schemes is that the unknowns are approximated
by piecewise constant functions, and indeed, the classical finite volume scheme on
rectangular meshes has been the basis of many industrial applications. However,
the use of rectangular grids makes an important limitation to the type of domain
which can be gridded and more recently, finite volume schemes for the Navier-Stokes
equations on triangular grids have been presented: [15], [6].
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In this paper, we propose a method which uses the primitive variables and en-
forces the divergence condition directly, using quite general meshes such as mixed
rectangular-triangular or Voronöı meshes. The method used here is in fact a general-
ization to the nonlinear case of a staggered finite volume scheme which we introduced
in [4] and for which we proved convergence. In this scheme, the discrete unknowns
are the discrete velocities located at some point within the discretization cells (or
“control volumes” of the mesh (see [4]) whereas the discrete divergence–free con-
dition is imposed at the vertices of the mesh. The additional difficulty which is
addressed here, is the discretization of the trilinear form b(u, u, v), defined by (7),
in a way which enables us obtain estimates and prove convergence.

This paper is organized as follows. The finite volume scheme is presented in
Section 2, using the notations and definitions which were introduced in Section 2 of
[4]. We propose two means to discretize the nonlinear form b, namely a centered
scheme and an upstream weighting scheme. Although it is wellknown that the
upstream scheme is not as precise as the centered scheme, it is however often used
when the convection terms are dominant with respect to the grid size, in order to
prevent oscillations. For both cases we prove the existence of the discrete velocity;
note that this existence is unconditional for the upstream scheme, but that it only
holds under a small data (or minimal viscosity) condition for the centered scheme.
In the case of the centered scheme, we also prove (under a small data condition) the
uniqueness for both the penalized and the non penalized scheme.

We then prove the convergence of the solutions to the centered and the upstream
schemes, as the mesh size tends to 0, for penalized versions of the schemes, with the
same restriction on the data for the centered scheme. We give some numerical results
in Section 3, and finally conclude with some remarks on open problems (Section 4).

2 The finite volume scheme

We now turn to the study of the finite volume scheme for the steady Navier-Stokes
equations. Throughout the proofs of existence, uniqueness and convergence of both
the centered and upstream schemes, we shall need to compare the values of the
velocities at the vertices of the mesh and at the centers of the control volumes
because of the discretization of the trilinear form. We thus make use of the following
proposition, where a control of the difference between the discrete grid function and
its reconstruction on the dual grid is proven, in both the mesh-dependent discrete
H1 norm and the L2 norms.

Proposition 2.1 [Control of the reconstruction of velocities on the dual
grid] Under hypothesis (2), Let D be an admissible discretization of Ω in the sense
of Definition 2.1 of [4] and let α > 0 such that angle(D) ≥ α. Let u ∈ HD(Ω), and
let (cK,S)S∈V , K∈MS

be a family of nonnegative real values such that

∑

K∈MS

cK,S = 1, ∀S ∈ V,

International Journal on Finite Volumes 3
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and let ũ ∈ LD(Ω) be defined by

ũS =
∑

K∈MS

cK,S uK , ∀S ∈ V.

Then there exists C1 > 0 which only depends on α, such that

∑

S∈V

∑

K∈MS

(ũS − uK)2 ≤ C1 |u|
2
D, (8)

‖u − ũ‖2
L2(Ω) ≤ h2C1 |u|

2
D (9)

and
‖ũ‖2

L2(Ω) ≤ diam(Ω)2(C1 + 1)|u|2D (10)

Proof Let S ∈ V and K̄ ∈ MS . Let us write MS = {K1,K2, . . . ,Km}, assuming
that, for all i = 1, . . . ,m−1, EKi

∩EKi+1 6= ∅, and K̄ = K1. Thanks to the hypothesis
on the regularity on D, we can apply inequality (11) of given by Proposition 2.1 of
[4], which yields m ≤ C2 where C2 only depends on α. We have

ũS−uK̄ =
m

∑

i=1

cKi,S (uKi
−uK1) =

m
∑

i=2

cKi,S

i−1
∑

j=1

(uKj+1−uKj
) =

m−1
∑

j=1

(uKj+1−uKj
)

m
∑

i=j+1

cKi,S.

Since 0 ≤
m

∑

i=j+1

cKi,S ≤ 1, for all j = 1, . . . ,m−1, we get, using the Cauchy-Schwarz

inequality, that

(ũS − uK̄)2 ≤ C2

m−1
∑

j=1

(uKj+1 − uKj
)2.

We introduce the function χ(σ, S) such that χ(σ, S) = 1 if σ ∈ ES and χ(σ, S) = 0
otherwise. Since (uK − uL)2 ≤ (uK − uσ)2 + (uL − uσ)2 for K|L = σ, the above
inequality yields:

(ũS − uK̄)2 ≤ C2

∑

K∈MS

∑

σ∈EK

(uK − uσ)2χ(σ, S).

Thus we get

∑

S∈V

∑

K̄∈MS

(ũS − uK̄)2 ≤ C2

∑

S∈V

∑

K̄∈MS

∑

K∈MS

∑

σ∈EK

(uK − uσ)2χ(σ, S),

which yields

∑

S∈V

∑

K̄∈MS

(ũS − uK̄)2 ≤ C2

∑

K∈M

∑

σ∈EK

(uK − uσ)2
∑

S∈VK

χ(σ, S)
∑

K̄∈MS

1.

Since
∑

S∈VK
χ(σ, S) = 2 and since

∑

K̄∈MS
1 ≤ C2 , we get

∑

S∈V

∑

K∈MS

(ũS − uK)2 ≤ 2C2
2

∑

K∈M

∑

σ∈EK

(uK − uσ)2.

International Journal on Finite Volumes 4
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Thanks to the inequality (10) given in Proposition 2.1 of [4], we get the existence of
C1 , which only depends on α, such that

∑

K∈M

∑

S∈VK

(ũS − uK)2 ≤ C1 |u|
2
D, (11)

which proves (8). Since we have

‖u − ũ‖2
L2(Ω) =

∫

Ω
(u(x) − ũ(x))2dx =

∑

K∈M

∑

S∈VK

m(K ∩ S)(uK − ũS)2,

we get, using m(K ∩ S) ≤ diam(K)2 and (11),

‖u − ũ‖2
L2(Ω) ≤ h2C1 |u|

2
D.

This concludes the proof of (9). Using the discrete Poincaré inequality (see [8] or
(20) in [4]) and h ≤ diam(Ω), we get (10). 2

2.1 The centered scheme

Under hypotheses (2)-(4), let D be an admissible discretization of Ω in the sense of
Definition 2.1 of [4]. Let λ ∈ (0,+∞) be given. The finite volume scheme for the
approximation of the solution (1) is defined by the following set of equations: find
u such that

u ∈ ED(Ω),

η

∫

Ω
u(x) · v(x)dx + ν[u, v]D + bD(u, u, v) =

∫

Ω
f(x) · v(x)dx, ∀v ∈ ED(Ω),

(12)

where, for u, v and w ∈ HD(Ω), we define, in this section, the following centered
approximation bD of the trilinear form b defined by (7):

bD(u, v,w) =
∑

K∈M

∑

k=1,2

w
(k)
K

∑

S∈VK

v
(k)
S

∑

i=1,2

A
(i)
K,S u

(i)
K

v
(k)
S =

1

m(S)

∑

K∈MS

m(K ∩ S) v
(k)
K , ∀S ∈ V, k = 1, 2.

(13)

(Recall that

A
(1)
K,S = x(2)

σ1
− x(2)

σ2

A
(2)
K,S = x(1)

σ2
− x(1)

σ1
,

(14)

see [4] for the notations.
Let us first prove that the trilinear form bD(u, v,w) satisfies some continuity

properties in (HD(Ω))3.

Lemma 2.2 [Continuity of the trilinear form in discrete H1 space] Under
Hypothesis (2), let D be an admissible discretization in the sense of Definition 2.1
of [4], let α > 0 be such that angle(D) ≥ α, let HD(Ω) be the space of piecewise
constant functions defined in Definition 3.1 of [4], and let bD be the trilinear form
defined by (13).

Then there exists C3 > 0, only depending on α, such that:

|bD(u, v,w)| ≤ C3 |u|D|v|D|w|D. (15)

International Journal on Finite Volumes 5
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Proof Let u, v,w ∈ HD(Ω). Since the equalities
∑

i=1,2

∑

S∈VK

A
(i)
K,S = 0 hold for

any K ∈ M, for i = 1, 2, we have

bD(u, v,w) =
∑

k=1,2

∑

K∈M

∑

S∈VK

w
(k)
K (v

(k)
S − v

(k)
K )

∑

i=1,2

A
(i)
K,Su

(i)
K .

Applying the Cauchy-Schwarz inequality to the above equation and using Proposi-
tion 2.1 yields the existence of C4 depending on α such that

bD(u, v,w)2 ≤ C4 |uD|
2

∑

k=1,2

∑

K∈M

∑

S∈VK



w
(k)
K

∑

i=1,2

A
(i)
K,Su

(i)
K





2

. (16)

By Definition 14, we have |A
(i)
K,S| ≤ diam(K), for i = 1, 2. Thanks to Proposition

2.1 of [4], we thus get (A
(i)
K,S)2 ≤ C5 m(K) for i = 1, 2, where C5 depends only on α.

Using the Cauchy-Schwarz inequality on the right hand side of (16) and thanks
to (12) in Proposition 2.1 of [4], one obtains the following inequality:

bD(u, v,w)2 ≤ C6 |uD|
2

∑

k=1,2



‖w(k)‖L4(Ω)

∑

i=1,2

‖u(i)‖L4(Ω)





1
2

,

where C6 depends only on α. The discrete Sobolev inequalities [7, 8] then yield
(15). 2

As in the case of the linear problem, we use the following penalized approximation
of (12):

(u, p) ∈ (HD(Ω))2 × LD(Ω),

ν ([u, v]D) −

∫

Ω
p(x)divD(v)(x)dx + bD(u, u, v) =

∫

Ω
f(x) · v(x)dx, ∀v ∈ (HD(Ω))2,

divD(u) = −λ h p,
(17)

Remark 1 System (17) is a set of nonlinear equations with unknowns (u
(i)
K )K∈M,

i = 1, 2 and (pS)S∈V .

The following proposition gives a sufficient condition for the existence and unique-
ness of a solution to the scheme (with or without penalization), under the classical
assumption that the data are small, or the viscosity is large enough (see [24] Theo-
rem 1.3 page 167 for the continous case, see also [16]). Note that in the continuous
case, the “small data” assumption is only required to prove uniqueness, not exis-
tence. Here, however, this assumption is also required for the existence of a discrete
solution. Moreover, uniqueness is only proven for ”small enough” solutions.

Proposition 2.3 [Existence and uniqueness of small discrete solutions in
the small data case, with or without a penalization] Under hypotheses (2)-
(4), let D be an admissible discretization of Ω in the sense of Definition 2.1 of [4]

International Journal on Finite Volumes 6
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and let α > 0 with angle(D) ≥ α. Let C3 be the real value which only depends on
α, given by (15) of Lemma 2.2. Assume that the condition

1

ν2





∑

i=1,2

‖f (i)‖L2(Ω)



 < C7 :=
1

4diam(Ω)C3
(18)

is fulfilled. Then there exists one and only one function u ∈ (HD(Ω))2 such that

|u|D ≤ C8 :=
1

2C3






ν −



ν2 − 4





∑

i=1,2

‖f (i)‖L2(Ω)



 diam(Ω)C3





1/2





, (19)

and u is solution to (12) and (13) (no penalization), or u is such that there exists a
function p with (u, p) solution to (17) and (13) for a given λ ∈ (0,+∞). Furthermore,
in the latter case, the following inequality holds:

λ h ‖p‖2
L2(Ω) ≤ diam(Ω)





∑

i=1,2

‖f (i)‖L2(Ω)



 + C3 C8
2. (20)

and the function p is unique too.

Proof Let us first handle the nonpenalized case λ = 0. We consider the mapping

u ∈ (HD(Ω))2 7→ ũ ∈ (HD(Ω))2

such that

ũ ∈ ED(Ω)

ν[ũ, v]D + bD(u, u, v) =

∫

Ω
f(x) · v(x)dx, ∀v ∈ ED(Ω).

(21)

Indeed, the existence and uniqueness of ũ is a straightforward consequence of Propo-
sition 5.2 of [4]. We get, setting v = ũ in (21), using the discrete Poincaré inequality
(see [8] or (20) in [4]) and Lemma 2.2,

ν|ũ|D ≤ diam(Ω)





∑

i=1,2

‖f (i)‖L2(Ω)



 + C3 |u|
2
D. (22)

The assumption (18) is equivalent to

ν2 − 4C3 diam(Ω)





∑

i=1,2

‖f (i)‖L2(Ω)



 > 0.

Thus the value C8 > 0 defined in (19) is the smallest root of the second degree
polynomial

P (X) = C3 X2 − νX + diam(Ω)





∑

i=1,2

‖f (i)‖L2(Ω)



 . (23)

International Journal on Finite Volumes 7
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Note that C8 tends to 0 as ‖f‖(L2(Ω))2 tends to 0, with fixed other parameters.
Therefore, we get from (22) that, for |u|D ≤ C8 , |ũ|D ≤ C8 holds. We can therefore
apply Brouwer’s fixed point theorem, which yields the existence of u ∈ (HD(Ω))2

which satisfies (12). Let us now show that u is unique. Let us suppose that u and w
are two solutions to (12) such that (19) holds. Let û denote the difference between
the two solutions, that is û = u − w. Then û satisfies:

ν[û, v]D + bD(u, u, v) − bD(w,w, v) = 0, ∀v ∈ (HD(Ω))2. (24)

We then set v = û in the above equation. Thanks to the trilinearity property of bD,
we have

bD(u, u, û) − bD(w,w, û) = bD(û, u, û) + bD(w, û, û).

Therefore we have:

ν
(

|û|2D
)

≤ −(bD(û, u, û) + bD(w, û, û)),

which leads, using (15) and (19) for u and w, to

ν|û|2D ≤ 2C8 C3 |û|
2
D.

Let us assume |û|D 6= 0. On the one hand, the previous inequality produces

ν ≤ 2C8 C3 .

But on the other hand, we noticed that C8 is the smallest root of the polynomial P
defined by (23). It is therefore strictly smaller than the average value of both roots,
that is ν/(2C3 ). This contradiction with the above inequality implies that û = 0,
which proves the uniqueness of solutions satisfying (19).

Let us now handle the case of the penalized scheme, i.e. λ ∈ (0,+∞). We exactly
follow the same steps as above, replacing the definition (21) of ũ by

(ũ, p̃) ∈ (HD(Ω))2 × LD(Ω),

ν[ũ, v]D −

∫

Ω
p̃(x)divD(v)(x)dx + bD(u, u, v) =

∫

Ω
f(x) · v(x)dx, ∀v ∈ (HD(Ω))2,

divD(ũ) = −λ h p̃.
(25)

Indeed, the existence and uniqueness of (ũ, p̃) is then a straightforward consequence
of Corollary 5.1 of [4]. We then get (22), setting v = ũ in (25). The proof of existence
and uniqueness of the solution to (17) and (13) is then similar to that of the case
λ = 0, using

ν ([û, v]D) +
1

λ h

∫

Ω
divD(û)(x)divD(v)(x)dx + bD(u, u, v) − bD(w,w, v) = 0,

∀v ∈ (HD(Ω))2,

instead of (24). Then (20) and the uniqueness of p immediately result from (17).
2

As in the case of the linear problem, we may prove the convergence of the scheme
to the continuous solution for the scheme (17), (13). This is stated in the next
proposition.

International Journal on Finite Volumes 8
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Proposition 2.4 [Convergence of the centered penalized scheme in the
nonlinear case] Under Hypotheses (2)-(4), let α > 0 be given and let C7 > 0 be
given by Proposition 2.3. We assume that the property (18) holds. Let λ ∈ (0,+∞)
be given and let (D(n))n∈N be a sequence of admissible discretization of Ω in the
sense of Definition 2.1 of [4], such that lim

n→∞
size(D(n)) = 0 and angle(D(n)) ≥ α, for

all n ∈ N. Let (u(n), p(n)) ∈ (H
D(n)(Ω))2 ×L

D(n)(Ω) be a solution to (17), (13),(19).
Then there exists a subsequence of the sequence (u(n))n∈N which converges in L2(Ω)2

to u, weak solution of the Navier-Stokes problem in the sense of (6). If C7 is taken
small enough, the uniqueness property of the solution entails the convergence of the
whole sequence.

Proof We proceed in a similar way to that of the proof of convergence of the
velocities in the linear case, see Proposition 7.1 of [4]. Using the same notations, the
only additional property which must be proved is that

lim
n→∞

b
D(n)(u(n), u(n), ϕ(n)) = b(u, u, ϕ̃). (26)

Now
bD(u(n), u(n), ϕ(n)) =

∑

K∈M

∑

k=1,2

ϕ
(k)
K

∑

S∈VK

u
(k)
S

∑

i=1,2

A
(i)
K,S u

(i)
K , (27)

where u
(k)
S is defined in (13).

We easily get that ϕ(n,k)u(n) → ϕu in L2(Ω). Therefore, we can apply Proposi-
tion 2.1 to prove that the hypotheses of Proposition 7.3 of [4] are satisfied. We thus
obtain (26).

This concludes the proof of Proposition 2.4. 2

2.2 The upstream weighting scheme

We now define an upstream weighting scheme for the nonlinear problem. Under Hy-
potheses (2)-(4), let D be an admissible discretization of Ω in the sense of Definition
2.1 of [4]. We first define the method of upstream weighting of the velocity. Let
µ > 0 be given. Let us define

γ2
K,S =

∑

i=1,2

(A
(i)
K,S)2(> 0),

F
(v)
K,S =

∑

i=1,2

A
(i)
K,Sv

(i)
K ,

G
(v,+)
K,S = (F

(v)
K,S)+ + µ γK,S,

G
(v,−)
K,S = (F

(v)
K,S)− + µ γK,S,



































for S ∈ V,K ∈ MS and v ∈ HD(Ω), (28)

and the function ṽ ∈ (LD(Ω))2, depending on v and µ, by:

∑

K∈MS

G
(v,+)
K,S (v

(k)
K − ṽ

(k)
S ) = 0, for k = 1, 2,∀S ∈ V. (29)

International Journal on Finite Volumes 9
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We may then define the upstream finite volume scheme for the approximation of the
solution (1) through the following approximation bD of the trilinear form b.

bD(u, v,w) =
∑

K∈M

∑

S∈VK

∑

k=1,2

w
(k)
K

(

G
(u,+)
K,S v

(k)
K − G

(u,−)
K,S ṽ

(k)
S

)

, ∀(u, v,w) ∈ (HD(Ω))3.

(30)

Note that bD(u, v,w) depends on u through G
(u,+)
K,S and G

(u,−)
K,S .

The upstream weighting scheme is then defined as the set of equations (12),
(28), (29), (30); the existence of a solution to the scheme is stated in Proposition
2.8. Again, we obtain existence by studying a penalized version of the scheme, which
may be written as, for a given λ ∈ (0,+∞): find (u, p) such that

(u, p) ∈ (HD(Ω))2 × LD(Ω),

ν[u, v]D −

∫

Ω
p(x)divD(v)(x)dx + bD(u, u, v) =

∫

Ω
f(x) · v(x)dx, ∀v ∈ (HD(Ω))2,

divD(u) = −λ h



p −
1

2

∑

i=1,2

(ũ(i))2



 ,

(31)
We then have the following estimate.

Proposition 2.5 [Estimate on the solutions to the penalized upstream
scheme] Under Hypotheses (2)-(4), let D be an admissible discretization of Ω in
the sense of Definition 2.1 of [4]. Let λ and µ ∈ (0,+∞) be given. Let (u, ũ, p) ∈
(HD(Ω))2×(LD(Ω))2×LD(Ω) be a solution to the upstream weighting scheme ((28),
(29), (30), (31)). Then the following inequalities hold:

ν|u|D ≤ diam(Ω)‖f‖(L2(Ω))2 (32)

and

(ν λ h)1/2

∥

∥

∥

∥

∥

∥

p −
1

2

∑

i=1,2

(ũ(i))2)

∥

∥

∥

∥

∥

∥

L2(Ω)

≤ diam(Ω)‖f‖(L2(Ω))2 . (33)

Proof Taking v = u in (31), we obtain:

ν|u|2D −

∫

Ω
p(x)divD(u)(x)dx + bD(u, u, u) =

∫

Ω
f(x) · u(x)dx,

which may also be written:

ν|u|2D + λh

∫

Ω
p(x)(p(x) − û(x))dx + bD(u, u, u) =

∫

Ω
f(x) · u(x)dx, (34)

where û ∈ LD(Ω) is defined by ûS =
1

2

∑

i=1,2

(ũ
(i)
S )2.
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We show in Lemma 2.6 below that for any u ∈ (HD(Ω))2,

bD(u, u, u) ≥
∑

S∈V

∑

K∈MS

∑

k=1,2

F
(u)
K,SûS .

Replacing in (34) and noting that the second relation of (31) yields

∑

K∈MS

F
(u)
K,S = −λ h m(S) (pS − ûS) ,∀S ∈ V,

we get

ν|u|2D + λ h‖p − û‖2
L2(Ω) ≤

∫

Ω
f(x) · u(x)dx.

Applying the discrete Poincaré inequality (see [8] or (20) in [4]) concludes the proof
of Proposition 2.5. 2

Let us now state and prove the Lemma which we just used.

Lemma 2.6 Under Hypotheses (2)-(4), let D be an admissible discretization of Ω in

the sense of Definition 2.1 of [4]. Let u ∈ (HD(Ω))2 be given. Let (F
(u)
K,S)K∈M,S∈V

and ũ ∈ (LD(Ω))2 be defined by (28) and (29) (with v = u), let bD be defined in

(30), and let û ∈ LD(Ω) be given by ûS =
1

2

∑

i=1,2

(ũ
(i)
S )2, for all S ∈ V. Then

bD(u, u, u) ≥
∑

S∈V

∑

K∈MS

F
(u)
K,SûS .

Proof By definition of bD, one has:

bD(u, u, u) =
∑

k=1,2

∑

K∈M

∑

S∈VK

u
(k)
K

(

G
(u,+)
K,S u

(k)
K − G

(u,−)
K,S ũ

(k)
S

)

. (35)

Since
∑

K∈MS
G

(u,+)
K,S ũ

(k)
S (u

(k)
K − ũ

(k)
S ) = 0 for all S ∈ V, we get

∑

k=1,2

∑

S∈V

∑

K∈MS

ũ
(k)
S (G

(u,+)
K,S u

(k)
K − G

(u,−)
K,S ũ

(k)
S ) −

∑

k=1,2

∑

S∈V

∑

K∈MS

(ũ
(k)
S )2F

(u)
K,S = 0.

Substracting this equality off (35), one obtains:

bD(u, u, u) =
∑

k=1,2

∑

K∈M

∑

S∈VK

(

(u
(k)
K − ũ

(k)
S )X

(k)
K,S + (ũ

(k)
S )2F

(u)
K,S

)

.

with
X

(k)
K,S = G

(u,+)
K,S u

(k)
K − G

(u,−)
K,S ũ

(k)
S .

Writing that

X
(k)
K,S = G

(u,+)
K,S (u

(k)
K − ũ

(k)
S ) + ũ

(k)
S (G

(u,+)
K,S − G

(u,−)
K,S )

=
1

2

(

(G
(u,+)
K,S + G

(u,−)
K,S )(u

(k)
K − ũ

(k)
S ) + (G

(u,+)
K,S − G

(u,−)
K,S )(u

(k)
K − ũ

(k)
S )

)

+

ũ
(k)
S (G

(u,+)
K,S − G

(u,−)
K,S )
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using the fact that G
(u,+)
K,S − G

(u,−)
K,S = F

(u)
K,S and G

(u,+)
K,S + G

(u,−)
K,S = |F

(u)
K,S | + 2µγK,S,

one obtains:

bD(u, u, u) =
1

2

∑

k=1,2

∑

S∈V

∑

K∈MS





(u
(k)
K − ũ

(k)
S )2

(

|F
(u)
K,S| + 2µγK,S + F

(u)
K,S

)

+

F
(u)
K,S(ũ

(k)
S (u

(k)
K − ũ

(k)
S ) + (u

(k)
S )2)



 .

Regrouping and using the property

∑

S∈VK

F
(u)
K,S =

∑

S∈VK

∑

i=1,2

A
(i)
K,Su

(i)
K = 0,

we get

bD(u, u, u) =
1

2

∑

k=1,2

∑

S∈V

∑

K∈MS

(u
(k)
K −ũ

(k)
S )2

(

|F
(u)
K,S | + 2µγK,S

)

+
1

2

∑

S∈V

∑

k=1,2

(ũ
(k)
S )2

∑

K∈MS

F
(u)
K,S.

The first sum of the right hand side is nonnegative, and therefore:

bD(u, u, u) ≥
∑

S∈V

ûS

∑

K∈MS

F
(u)
K,S.

2

We then deduce the following existence property.

Proposition 2.7 [Existence of a bounded discrete solution to the penal-
ized upstream weighting scheme] Under Hypotheses (2)-(4), let D be an admis-
sible discretization of Ω in the sense of Definition 2.1 of [4]. Let λ and µ ∈ (0,+∞)
be given. Then there exists at least one pair (u, p) ∈ (HD(Ω))2 ×LD(Ω), solution to
the upstream weighting scheme ((28), (29), (30), (31)). This solution then satisfies
(32) and (33).

Proof The proof of Proposition 2.7 is easily obtained by Brouwer’s topological
degree theorem and estimate (32). Note that the continuity of ũ as function of u is
ensured by the choice µ > 0. 2

Proposition 2.8 [Existence of a bounded discrete solution to the up-
stream weighting scheme] Under Hypotheses (2)-(4), let D be an admissible
discretization of Ω in the sense of Definition 2.1 of [4]. Let µ ∈ (0,+∞) be given.
Then there exists at least one solution to the scheme ((12), (28), (29), (30)), which
verifies (32).

Again, this property is obtained by passing to the limit on a sequence of solutions
of ((28), (29), (30), (31)), with values λ tending to 0.

We can now state the following convergence property of the scheme ((28), (29),
(30), (31)).

Proposition 2.9 [Convergence of the penalized upstream weighting scheme
in the nonlinear case] Under Hypotheses (2)-(4), let α > 0 be given. Let λ and

International Journal on Finite Volumes 12



A staggered finite volume scheme for the Navier-Stokes equations

µ ∈ (0,+∞) be given and let (D(n))n∈N be a sequence of admissible discretiza-
tions of Ω in the sense of Definition 2.1 of [4], such that lim

n→∞
size(D(n)) = 0 and

angle(D(n)) ≥ α, for all n ∈ N. Let (u(n), p(n)) ∈ (HD(n)(Ω))2×LD(n)(Ω) be a solution
to ((28), (29), (30), (31)). Then there exists a subsequence of the sequence (u(n))n∈N

which converges in L2(Ω)2 to u, weak solution of the Navier-Stokes problem in the
sense of (6).

Proof Again, we follow the proof of Proposition 7.1 in [4]. With the same notations,
the only additional property which we need to prove is that:

lim
n→∞

bD(n)(u(n), u(n), ϕ(n)) = b(u, u, ϕ).

For the sake of simplicity, we omit for a while the superscripts (n). By definition,

bD(u, u, ϕ) =
∑

K∈M

∑

S∈VK

∑

k=1,2

ϕ(k)(xK)(G
(u,+)
K,S u

(k)
K − G

(u,−)
K,S ũ

(k)
S ), (36)

Consider now the following term:

T1 =
∑

k=1,2

∑

K∈M

ϕ(k)(xK)
∑

S∈VK

F
(u)
K,Sũ

(k)
S .

As in the case of the centered scheme, we may apply Proposition 2.1 to prove that
the hypotheses of Proposition 7.3 of [4] are satisfied. We thus get that

lim
n→∞

T
(n)
1 = −b(u, u, ϕ).

We have

bD(u, u, ϕ) − T1 =
∑

k=1,2

∑

K∈M

ϕ(xK)
∑

S∈VK

(

G
(u,+)
K,S u

(k)
K − G

(u,−)
K,S ũ

(k)
S

)

−

∑

k=1,2

∑

K∈M

ϕ(k)(xK)
∑

S∈VK

ũ
(k)
S F

(u)
K,S.

Since
∑

K∈MS

G
(u,+)
K,S (u

(k)
K − ũ

(k)
S ) = 0, for k = 1, 2, we get

∑

k=1,2

∑

S∈V

ϕ(k)(xS)
∑

K∈MS

(

G
(u,+)
K,S u

(k)
K − G

(u,−)
K,S ũ

(k)
S

)

−
∑

k=1,2

∑

S∈V

ϕ(k)(xS) ũ
(k)
S

∑

K∈MS

F
(u)
K,S = 0.

Substracting this last equation off the one above, we get

bD(u, u, ϕ) − T1 =
∑

k=1,2

∑

S∈V

∑

K∈MS

(ϕ(k)(xK) − ϕ(k)(xS))
(

G
(u,+)
K,S u

(k)
K − G

(u,−)
K,S ũ

(k)
S

)

−

∑

k=1,2

∑

S∈V

∑

K∈MS

(ϕ(k)(xK) − ϕ(k)(xS)) ũ
(k)
S F

(u)
K,S

=
∑

k=1,2

∑

S∈V

∑

K∈MS

(ϕ(k)(xK) − ϕ(k)(xS))G
(u,−)
K,S (u

(k)
K − u

(k)
S ).
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Therefore, bD(u, u, ϕ) − T1 = T2 + T3 with

T2 =
∑

k=1,2

∑

S∈V

∑

K∈MS

(ϕ(k)(xK) − ϕ(k)(xS))
(

F
(u)
K,S

)−

(u
(k)
K − u

(k)
S )

and
T3 = µ

∑

k=1,2

∑

S∈V

∑

K∈MS

(ϕ(x
(k)
K ) − ϕ(x

(k)
S ))γK,S (u

(k)
K − u

(k)
S ).

Now, by definition of A
(i)
K,S, one has:

(

F
(u)
K,S

)−

≤diam(K)
∑

i=1,2

|u
(i)
K |. Furthermore,

thanks to inequalities (12) and (15) of Proposition 2.1 of [4], one has:
∑

S∈VK
γ2

K,S ≤
C2 C5 m(K). Therefore, re-introducing the superscripts (n), one obtains:

T
(n)
2 ≤ hC9

∑

k=1,2

‖u(n,k)‖(L2(Ω))2

∑

S∈V

∑

K∈MS

(u
(n,k)
K − u

(n,k)
S )2,

which proves, applying Proposition 2.1, that

lim
n→∞

T
(n)
2 = 0.

On the other hand, we have:

|T
(n)
3 | ≤ µ hC10

∑

k=1,2

∑

S∈V

∑

K∈MS

(u
(n,k)
K − u

(n,k)
S )2,

which proves that

lim
n→∞

T
(n)
3 = 0.

This concludes the proof of the convergence result. 2

3 Numerical results

3.1 The lid-driven cavity test

Figure 1 presents the stream lines in the case of the lid-driven cavity flow (see [6])
in the case where the Reynolds number is equal to 400.

Classically, we observe again that for both meshes (unstructured triangles and
rectangles) the centered scheme is more precise than the upstream weighting scheme,
because of the diffusion which is added by the upstream weighting scheme.

3.2 The backward facing step case

We now study the flow in a backward facing step, for a Reynolds number equal to
800. This is a well documented case in the literature ([1],[2]), and allows to test the
performance of methods with respect to the precision on the zones of recirculating
flow. Note that we preferred to let a small channel introduce the flow before the
step, as in [1], which seems more realistic. The geometrical data of the backward
step was also taken from [1]. We computed the streamlines using a reconstruction of
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Figure 1: Lid driven cavity, Reynolds = 400, top left: 1400 triangles centered, top
right: 1400 triangles upstream weighting, bottom left: 1600 rectangles centered,
bottom right: 1600 rectangles upstream weighting.

a discrete potential Φσ, located at the edges σ ∈ E of the mesh. The reconstruction
formula is the following:

Φσ1 − Φσ2 = F
(u)
K,S,

where σ1 and σ2 are the two edges of K ∈ M with the common vertex S ∈ VK

(F
(u)
K,S is defined in (28)).
We present in Figure 2 the streamlines in three different cases: starting form the

top, the first figure is obtained with the centered scheme, using a 25200 rectangular
grid blocks mesh, the second one with the centered scheme using a 2800 rectangular
grid blocks mesh, the third one with the upstream scheme using a 2800 rectangular
grid blocks mesh, and the two last ones with respectively the centered and the
upstream scheme for 847 cells. It is clear from these figures that the centered scheme
is, as one could expect, more precise, but that it becomes unstable for coarser meshes.
In fact, for a mesh of 700 cells, the Newton iterations do not converge, even when
using an under-relaxation procedure.

In Table 1, we show the separation and reattachement lengths for various schemes
referred to in the litterature (see [1, 2]) and for our scheme, in both the centered and
upstream cases, and for different grid sizes. The reattachment length of the vortex
located on the bottom wall is x1, the separation and reattachment lengths of the
vortex located on the upper wall are denoted x2 and x3. In Table 1, we give the
results for meshes consisting of 25200, 2800 and 847 cells.

The numerical solution obtained with the centered scheme, using a 25200 rect-
angular grid blocks mesh seems to be precise enough (comparing the separation and
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Centered scheme, 25200 cells

Centered scheme, 2800 cells

Upstream scheme, 25200 cells

Centered scheme, 847 cells

Upstream scheme, 847 cells

Figure 2: Streamlines for the backward step

reattachment lengths with those of the literature) to be used as a reference solution
for experiments carried out on coarser meshes. This allows to compute a rate of
convergence of h2.

We conclude from these numerical tests that the upstream scheme is too diffusive
and cannot be used for accurate results, although it has the advantage of remaining
stable even on coarse meshes. The centered scheme yields accurate results for a
reasonable number of Newton iterations (typically between 5 and 15).

4 Concluding remarks

In this paper we introduced a finite volume scheme for the solution of the stationary
Navier-Stokes equations on general meshes in two dimensions. We proved for a
penalized version of the scheme.

The observed accuracy of our numerical results indicates that this method is
convenient for the calculation of an incompressible flow in two space dimensions.
Furthermore, thanks to the location of the discrete unknowns, the finite volume
code can be easily coupled with thermal or chemical codes if needed.

Future developments will concentrate on the extension to three-dimensional
meshes and to the time-dependent case [5].
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x1 x2 x3

Armaly 14.2 11.2 20.
Sohn 11.5 9.4 18.8

Betts& Sayma 11.21 8.4 20.86
Srinivasan & Rubin 12.44 10.25 20.44

Barton QUICK 12.2 9.64 22.01
Barton SOUBD 12.17 9.61 22.07
Barton SOUD 12.09 9.54 22.21
centered 25200 13.31 11.10 20.64
upstream 25200 10.752 8.70 16.61
centered 2800 13.31 12.22 21.02
upstream 2800 9.12 7.90 12.22
centered 847 16.03 16.03 20.03
upstream 847 7.84 - -

Table 1: Separation and reattachement lengths, Re = 800
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[7] Y. Coudière, T. Gallouët and R. Herbin, Discrete Sobolev Inequalities and Lp

Error Estimates for Finite Volume Solutions of Convection Diffusion Equations,
M2AN, 35,4, 767-778, 2001.

International Journal on Finite Volumes 17



A staggered finite volume scheme for the Navier-Stokes equations
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linéaires, Dunod, Paris, 1969

[17] F.H. Harlow, J.E. Welch, Numerical calculation of time dependent viscous in-
compressible flow of fluids with free surface, Phys. Fluids, 8, 2182-2189, 1965.
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