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Abstract

This paper presents a new finite volume scheme for the steady Stokes

equations on a general 2D mesh. The scheme is staggered, i.e. the

discrete velocities are not located at the same place as the discrete

pressures. We prove the existence and the uniqueness of a discrete

solution. We then prove convergence of the discrete velocities to the

weak solution of the problem. Under additional regularity conditions,

we prove the convergence of a penalized version of the scheme to the

weak solution of the problem. Numerical experiments on problems with

known analytical solutions allow to obtain the rate of convergence for

both velocities and pressure.

Key words : Stokes equations, cell-centered finite volumes, unstructured

mesh.



A staggered scheme for the Stokes equations

1 Introduction

We study the following problems: find an approximation of u = (u(1), u(2))t ∈
H1

0 (Ω) × H1
0 (Ω) and p ∈ L2(Ω), weak solution to the generalized Stokes equations,

which write:
ηu − ν∆u + ∇p = f in Ω,

divu = ∂1u
(1) + ∂2u

(2) = 0 in Ω,
(1)

where η ≥ 0, u(1) and u(2) are the two components of the velocity, p denotes the
pressure, ν the viscosity of the fluid, under the following assumptions:

Ω is a polygonal open bounded connected subset of R2, (2)

ν ∈ (0,+∞), η ∈ [0,+∞), (3)

f = (f (1), f (1))t ∈ (L2(Ω))2, for i = 1, 2. (4)

The case η = 0 yields the usual steady-state equations.
For the simplicity of this presentation, we prescribe for both problems a homo-

geneous Dirichlet boundary condition on the velocity (u(1), u(2)). In all this paper,
we denote by x = (x(1), x(2)) any point of Ω and by dx the 2-dimensional Lebesgue
measure dx = dx(1)dx(2).

Definition 1.1 (Weak solution) Under hypotheses (2)-(4), let

E(Ω) := {v = (v(1), v(2))t ∈ (H1
0 (Ω))2,divv = ∂1v

(1) + ∂2v
(2) = 0 a.e.}. (5)

Then u = (u(1), u(2))t is called a weak solution of (1) (see e.g. [24]) if and only if






u = (u(1), u(2))t ∈ E(Ω),

η

∫

Ω
u(x) · v(x)dx + ν

∫

Ω
∇u(x) : ∇v(x)dx =

∫

Ω
f(x)v(x)dx, ∀v = (v(1), v(2))t ∈ E(Ω),

(6)

where, by definition, ∇u : ∇v(x) =
∑

i=1,2

∇u(i)(x) ·∇v(i)(x).

Numerical schemes for the Stokes equations (6) (and the nonlinear Navier-Stokes
equations) have been extensively studied: see [11, 20, 21, 22, 13, 12] and references
therein. Among different schemes, finite element schemes and finite volume schemes
are frequently used for mathematical or engineering studies. An advantage of the
finite volume schemes is that the unknowns are approximated by piecewise constant
functions: this makes it easy to take into account additional nonlinear phenomena
or the coupling with algebraic or differential equations, for instance in the case of
reactive flows; in particular, one can find in [20] the presentation of the classical finite
volume scheme on rectangular meshes, which has been the basis of many industrial
applications. Proofs of the convergence of the co-called “MAC scheme” [16] were
performed in [19] and [23] for the Stokes equations. However, the use of rectangular
grids makes an important limitation to the type of domain which can be gridded and
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more recently, finite volume schemes for the Navier-Stokes equations on triangular
grids have been presented: see for example [14] where the vorticity formulation is
used and [4] where primal variables are used with a Chorin type projection method
to ensure the divergence condition. In this paper, we propose a method which uses
the primitive variables and enforces the divergence condition directly, using quite
general meshes such as mixed rectangular-triangular or Voronöı meshes. This finite
volume scheme can be presented under the following variational form:

u = (u(1), u(2))t ∈ ED(Ω),

η

∫

Ω
u(x) · v(x)dx + ν[u, v]D =

∫

Ω
f(x) · v(x)dx,

∀v = (v(1), v(2))t ∈ ED(Ω).

(7)

where ED(Ω) is the nonconforming discrete functional space consisting of the pairs
of piecewise constant functions on the cells of the mesh D, satisfying a discrete
divergence–free condition, endowed with the inner product [·, ·]D (see Definition
3.1). The discrete unknowns of this scheme are the discrete velocities located at
some point within the discretization cells (or “control volumes” of the mesh (see
Section 2) whereas the discrete divergence–free condition is imposed at the vertices
of the mesh. Because of this choice, any iterative procedure will introduce discrete
pressures located at the vertices of the mesh. Therefore this scheme is also a stag-
gered scheme, in the sense that the velocities are not colocated with the pressures.
It is a slight modification of a scheme which was first proposed in [6]; its convergence
was proved in the linear case for an equilateral triangular mesh in [6] and after the
tentative generalization of [1], an error analysis was derived in the same setting in
[3]. In fact, the numerical results which we obtain here show that the modification
which we use here is crucial for the scheme to perform well on any mesh (even though
the original scheme and the modified scheme are identical on equilateral meshes).

This paper is organized as follows. In Section 2, we introduce the admissible finite
volume meshes and we describe the discretization scheme, as well as some discrete
functional tools. In Section 5, we prove the existence and uniqueness of discrete
velocities solution to (7) on general structured or unstructured finite volume meshes
(note that for general meshes, no inf-sup condition can be proven; this prevents from
deducing the uniqueness of a discrete pressure in the whole discrete space, see also
Remark 3). We then prove the convergence and an error estimate for a penalized
version of the scheme. The error estimate is a power 1/4 of the mesh size and is
clearly not sharp, as shown by the numerical results given in Section 9.

2 Admissible discretization of Ω

We first present the following notion of admissible discretization, which is an exten-
sion of [6].

Definition 2.1 [Admissible discretization] Let Ω be an open bounded polyg-
onal subset of R2, and ∂Ω = Ω \ Ω its boundary. An admissible finite volume
discretization of Ω, denoted by D, is given by D = (M, E ,P,V), where:
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Figure 1: Example of an admissible triangular discretization

• M is a finite family of non empty open polygonal convex disjoint subsets of
Ω (the “control volumes”) such that Ω = ∪K∈MK. For any K ∈ M, let
∂K = K \ K be the boundary of K and m(K) > 0 denote the area of K.

• E is a finite family of disjoint subsets of Ω (the “edges” of the mesh), such that,
for all σ ∈ E , there exists a hyperplane E of R2 and K ∈ M with σ = ∂K ∩E
and σ is a non empty open subset of E. We then denote by mσ > 0 the
1-dimensional measure of σ. We assume that, for all K ∈ M, there exists a
subset EK of E such that ∂K = ∪σ∈EK

σ. It then results from the previous
hypotheses that, for all σ ∈ E , either σ ⊂ ∂Ω or there exists (K,L) ∈ M2 with
K += L such that K ∩ L = σ; we denote in the latter case σ = K|L.

• P is a family of points of Ω indexed by M, denoted by P = (xK)K∈M. The

coordinates of xK are denoted by x(i)
K , i = 1, 2. The family P is such that,

for all K ∈ M, xK ∈ K. Furthermore, for all σ ∈ E such that there exists
(K,L) ∈ M2 with σ = K|L, it is assumed that the straight line (xK , xL) going
through xK and xL is orthogonal to K|L. For all K ∈ M and all σ ∈ EK , let
zσ be the orthogonal projection of xK on σ. We suppose that zσ ∈ σ.

• V is a finite family of non empty open polygonal disjoint subsets of Ω (constitut-
ing the “dual mesh” of M), which are centered around the vertices (xs)s=1,NV

in the following way (NV is the number of vertices):

for 1 ≤ s ≤ NV , let Ms ⊂ M be the set of control volumes to which xs is a
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vertex. For K ∈ Ms, denote by σ and σ′ ∈ EK the two edges of K with vertex
xs. Define Ks as the convex hull of the four points (see Figure 1)

(xs, xK , zσ , zσ′) .

The dual cell around xs, denoted by S, is then defined as (also see Figure 1):

S = ∪K∈Ms
Ks.

Since there is a one-to-one mapping between the set {1, . . . ,NV } ⊂ N and the
set V, we shall replace all subscripts s by S when dealing with the dual mesh.
Let VK denote the set of vertices of a given control volume K. Note that:

K = ∪xs∈VK
Ks, and Ks = K ∩ S.

The following notations are used. The size of the discretization is defined by:

hD = sup{diam(K),K ∈ M}.
We shall measure the regularity of the mesh through the function angle(D) de-

fined by

angle(D) = inf
{
| ̂zσxKxS |, | ̂zσxSxK |,K ∈ M, S ∈ VK , σ ∈ EK ∩ ES

}
, (8)

where |x̂yz| designates the absolute value of the measure of the angle x̂yz (note that
̂zσxKxS = π

2 − ̂zσxSxK .).
For all K ∈ M and σ ∈ EK , we denote by nK,σ the unit vector normal to σ

outward to K. We denote by dK,σ the Euclidean distance between xK and σ. We
then define

τK,σ =
mσ

dK,σ
.

The set of interior (resp. boundary) edges is denoted by Eint (resp. Eext), that is
Eint = {σ ∈ E ; σ +⊂ ∂Ω} (resp. Eext = {σ ∈ E ; σ ⊂ ∂Ω}). For any σ ∈ Eint,σ = K|L
(resp. Eext, σ ∈ EK), let xσ be the center point of the line segment [xKxL] (resp.

[xKzσ]), and x(1)
σ and x(2)

σ its coordinates.
For all K ∈ M and all S ∈ VK , let σ1 and σ2 ∈ EK ∩ ES numbered such that

(x(2)
σ1 − x(2)

S )(x(1)
σ2 − x(1)

S ) − (x(2)
σ2 − x(2)

S )(x(1)
σ1 − x(1)

S ) > 0. We then define AK,S ∈ R2

by:

A(1)
K,S = x(2)

σ1
− x(2)

σ2

A(2)
K,S = x(1)

σ2
− x(1)

σ1
.

(9)

Remark 1 (Comparison with a former finite volume scheme) Note that the former
finite volume scheme which was studied in [6], [1] and [3] may be formulated in the

same way, now taking for (x(1)
σ , x(2)

σ ) the components of the point zσ, which is the
intersection of the line segment between xK and xL, and the edge σ (rather the point
xσ, middle point of xK and xL in the present scheme, see Figure 1). Note that for
equilateral triangles, the points zσ and xσ coincide, and therefore the two schemes
are equivalent.
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Let us now state some properties which are induced by requiring some classical
regularity on the mesh.

Proposition 2.2 [Geometric properties of regular meshes] Under hypothesis
(2), Let D be an admissible discretization of Ω in the sense of Definition 2.1 and let
α > 0 such that angle(D) ≥ α. Then there exist strictly positive real numbers Ci,
for i = 1, . . . , 5, only depending on α, such that

C1 ≤ τK,σ, ∀K ∈ M, ∀σ ∈ EK , (10)

card(MS) ≤ C2 , ∀S ∈ V, (11)

card(VK) ≤ C2 , ∀K ∈ M, (12)

diam(K ∩ S)2 ≤ C3 m(K ∩ S), ∀K ∈ M, ∀S ∈ VK , (13)

diam(S)2 ≤ C4 m(S), ∀S ∈ V, (14)

diam(K)2 ≤ C5 m(K), ∀K ∈ M. (15)

Proof The following relations hold in triangles xK , zσ, xS (see Figure 1), for K ∈ M,
S ∈ VK and σ ∈ EK ∩ ES :

tan | ̂xSxKzσ| =
d(xS , zσ)

d(xK , zσ)
≥ tanα, and tan | ̂xKxSzσ| =

d(xK , zσ)

d(xS , zσ)
≥ tanα. (16)

Therefore we get (10) with C1 = 2tanα. Using | ̂xKxSzσ | ≥ α, we get, adding the
measures of the angles around xS ,

card(MS) ≤ C2 =
π

α
,

and similarly, since | ̂zσxKxS| ≥ α, we get, adding the measures of the angles around
xK ,

card(EK) = card(VK) ≤ C2 =
π

α
.

We thus prove (11) and (12).
Let us now remark that

meas(K ∩ S) =
1

2
d(xS , xK)2(sin ̂zσxSxKsin ̂xSxKzσ + sin ̂zσ′xSxKsin ̂xSxKzσ′)

≥ (sinα)2d(xS , xK)2,

where σ and σ′ are the two edges of K intersecting at S. This proves (13).

Let us then remark that

m(S) =
∑

K∈MS

m(K ∩ S) ≥ (sinα)2
∑

K∈MS

d(xS , xK)2,

so that

m(S) ≥ (sinα)2 max
K∈MS

d(xS , xK)2 ≥ (sinα)2
(

diam(S)

2

)2

,

International Journal on Finite Volumes 6
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which proves (14).
Similarly,

m(K) =
∑

S∈VK

m(K ∩ S) ≥ (sinα)2
∑

S∈VK

d(xS , xK)2 ≥ (sinα)2
(

diam(K)

2

)2

,

which proves (15).

3 Discrete functional properties

Definition 3.1 Let Ω be an open bounded polygonal subset of RN , with N ∈ N∗.
Let D = (M, E ,P,V) be an admissible finite volume discretization of Ω in the sense
of Definition 2.1. We denote by HD(Ω) ⊂ L2(Ω) the space of functions which are
piecewise constant on each control volume K ∈ M. For all w ∈ HD(Ω) and for all
K ∈ M, we denote by wK the constant value of w in K. For σ = K|L ∈ Eint, we
define wσ to be the linear interpolation between wK and wL if σ = K|L, and in this
case the following relationship (conservation of the local fluxes) is satisfied:

τK,σ(wσ − wK) + τL,σ(wσ − wL) = 0, ∀σ ∈ Eint,σ = K|L. (17)

and for σ ∈ Eext, we set
wσ = 0, ∀σ ∈ Eext. (18)

and
We denote by LD(Ω) the space of functions which are piecewise constant on

the domains S, for all S ∈ V. We then define the discrete divergence operator
divD : (HD(Ω))2 → LD(Ω), by:

divD(u)(x) =
1

m(S)

∑

K∈MS

AK,S · uK , for a.e. x ∈ S,∀S ∈ V.

We then set ED(Ω) = {u ∈ (HD(Ω))2,divD(u) = 0}. For v and w elements of
HD(Ω)), we denote by

[v,w]D =
∑

K∈M

∑

σ∈EK

τK,σ(vσ − vK)(wσ − wK), (19)

the inner product on HD(Ω). Remark that thanks to (17), one has:

[v,w]D =
∑

σ∈Eint,σ=K|L

τσ(vK − vL)(wK − wL) +
∑

σ∈Eext

τσvKσ
wKσ

,

where Kσ denotes the control volume to which σ is an edge. For simplicity, we shall
also denote by [, ] the inner product on (HD(Ω))2, that is:

[v,w]D =
∑

K∈M

∑

σ∈EK

∑

i=1,2

τK,σ(v(i)
σ − v(i)

K )(w(i)
σ − w(i)

K ), ∀(v,w) ∈ (HD(Ω))2.

International Journal on Finite Volumes 7
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We define a norm in HD(Ω) (resp. (HD(Ω))2), thanks to the discrete Poincaré
inequality (20) given below, by

‖w‖D = ([w,w]D)1/2 .

The discrete Poincaré inequality (see [6]) reads as:

‖w‖L2(Ω) ≤ diam(Ω)‖w‖D, ∀w ∈ HD(Ω). (20)

4 The finite volume scheme

Under hypotheses (2)-(4), let D be an admissible discretization of Ω in the sense of
Definition 2.1. The finite volume approximate problem to the Stokes problem (6) is
defined by the following set of equations:






u =∈ ED(Ω),

η

∫

Ω
u(x) · (x)dx + ν[u, v]D =

∫
Ω f(x) · v(x)dx, ∀v ∈ ED(Ω).

(21)

The existence and the uniqueness of a solution to (21) will be stated in Proposition
5.3. The numerical approximation of a solution to (21) is usually obtained by intro-
ducing the pressure, which may be seen as a Lagrange multiplier to the divergence–
free constraint. There are several methods to solve the velocities-pressure system,
which are more or less efficient depending on the data of the problem (see e.g.
[11, 12]). Among them, we select a penalized scheme, since it allows the derivation
of a mathematical proof of convergence. This penalized scheme, which we now state,
was introduced and analysed in [11] in the framework of a finite element discretiza-
tion. For any real value λ > 0, we look for u such that

u = (u(1), u(2))t ∈ (HD(Ω))2,

η
∫
Ω u(x) · v(x)dx + ν[u, v]D +

1

λ hD

∫

Ω
divD(u)divD(v) =

∫

Ω
f(x) · v(x)dx, ∀v ∈ (HD(Ω))2,

(22)

or, introducing a discrete pressure, we look for (u, p) such that

(u, p) ∈ (HD(Ω))2 × LD(Ω),

η
∫
Ω u(x) · v(x)dx + ν[u, v]D −

∫

Ω
p(x)divD(v)(x)dx =

∫

Ω
f · (x)v(x)dx, ∀v ∈ (HD(Ω))2,

divD(u) = −λ hD p.

(23)

System (23) is equivalent to finding the values (uK)K∈M, (uσ)σ∈E , (vK)K∈M,
(vσ)σ∈E and (pS)S∈V solution of the following system of equations:

International Journal on Finite Volumes 8
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η m(K)uK − ν
∑

σ∈EK

τK,σ(uσ − uK) −
∑

S∈VK

AK,S pS =

∫

K
f(x)dx,∀K ∈ M,

τK,σ(uσ − uK) + τL,σ(uσ − uL) = 0, ∀σ ∈ Eint with σ = K|L,

uσ = 0, ∀σ ∈ Eext,

(24)

∑

K∈MS

∑

i=1,2

AK,S · uK = −λ hDm(S)pS , ∀S ∈ V. (25)

Remark 2
1. In System (24), the values (u(i)

σ )σ∈E , i = 1, 2, can easily be eliminated using
the last two equations of (24), thus yielding a linear system, the unknowns of which

are the values (u(i)
K )K∈M, i = 1, 2, and (pS)S∈V . This is done in practice when

implementing this scheme.
2. The above scheme (23) coincides, in the case of an equilateral triangular mesh,

with that of [6] for which a convergence proof was given in [6] and an error estimate
in [3].

The existence of a solution to (23) will be proven below.

5 Existence and uniqueness of the discrete solution

In order to prove existence and uniqueness of a solution to the finite volume scheme,
we start with the following estimate:

Proposition 5.1 [Discrete H1 estimate on velocities, weak L2 inequality
on pressures] Under hypotheses (2)-(4), let D be an admissible discretization of Ω
in the sense of Definition 2.1. Let λ ∈ (0,+∞) be given. Let (u, p) ∈ (HD(Ω))2 ×
LD(Ω) be a solution to (23). Then the following inequalities hold:

ν‖u‖D ≤ diam(Ω)‖f‖(L2(Ω))2 , (26)

and
(ν λ hD)1/2 ‖p‖L2(Ω) ≤ diam(Ω)‖f‖(L2(Ω))2 . (27)

Proof We apply (23) setting v = u. We get

η

∫

Ω
u(x) · v(x)dx + ν‖u‖2

D −
∫

Ω
p(x)divD(u)(x)dx =

∫

Ω
f(x) · v(x)dx.

Since η ≥ 0, the second equation of (23) and Young’s inequality yield that:

η

∫

Ω
u(x)·v(x)dx+ν‖u‖2

D+λ h ‖p‖2
L2(Ω) ≤

diam(Ω)2

2ν
‖f‖2

(L2(Ω))2+
ν

2diam(Ω)2
‖u‖2

(L2(Ω))2 .

International Journal on Finite Volumes 9
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Using the Poincaré inequality (20) gives

ν‖u‖2
D + λ h ‖p‖2

L2(Ω) ≤
diam(Ω)2

2ν
‖f‖2

(L2(Ω))2 +
ν

2
‖u‖2

D,

which leads to (26). Then reporting (26) in the above inequality yields (27).
We can now state the existence and the uniqueness of a discrete solution to (23).

We first give the result for the case λ > 0.

Corollary 5.2 [Existence and uniqueness of a solution to the penalized
finite volume scheme] Under hypotheses (2)-(4), let D be an admissible discretiza-
tion of Ω in the sense of Definition 2.1. Let λ ∈ (0,+∞) be given. Then there exists
a unique solution to (23).

Proof System (23) is a linear system. Assume that f = 0. From Proposition 5.1,
we get that u = 0 and p = 0. This proves that the linear system (23) is invertible.

We now state the existence and uniqueness result for the case λ = 0.

Proposition 5.3 [Existence and uniqueness of a solution to the finite vol-
ume scheme] Under hypotheses (2)-(4), let D be an admissible discretization of Ω
in the sense of Definition 2.1. Then there exists a unique solution u to (21).

Proof The uniqueness result is an immediate consequence of (20), setting v = u in
(21).

Let us now prove the existence. Let (λ(n))n∈N be a sequence of strictly positive
real values such that λ(n) → 0 as n → ∞. For all n ∈ N, let (u(n), p(n)) ∈ (HD(Ω))2×
LD(Ω) be the solution to (23) with λ = λ(n). Using (26) and (20), we get that

the sequences (u(n)
K )n∈N is bounded, for all K ∈ M. We can therefore extract a

subsequence of (λ(n))n∈N, again denoted (λ(n))n∈N, such that the sequence (u(n)
K )n∈N

converge, for all K ∈ M. Let us denote u ∈ (HD(Ω))2 the piecewise constant

function whose value on a cell K is the limit of the sequence (u(n)
K )n∈N; it is easily

seen that u is also the limit in (L2(Ω))2 of the sequence (u(n))n∈N. Moreover, for all
v ∈ ED(Ω), the following equality holds:

η

∫

Ω
u(n)(x) · v(x)dx + ν[u(n), v]D =

∫

Ω
f(x) · v(x)dx, for all n ∈ N,

we only have to verify that u ∈ ED(Ω). From (23), one has:
∫

Ω

(
divD(u(n))(x)

)2
dx = (λ(n) h)2

∑

S∈V

m(S)p2
S .

Thanks to (27), we get

‖divD(u(n))‖2
L2(Ω) ≤ λ

(n) hD
diam(Ω)2

ν
‖f‖2

(L2(Ω))2 . (28)

Now

‖divD(u(n))‖2
L2(Ω) =

∑

S∈V

1

m(S)

∑

i=1,2

∑

K∈MS

(A(i)
K,S u(n,i)

K )2,

and therefore one may pass to the limit as n → ∞ in the Equation (28). This yields
divD(u) = 0 which implies u ∈ ED(Ω).

International Journal on Finite Volumes 10
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Remark 3 From the estimate on the solutions u of the penalized scheme (23), which
does not depend on λ, we can also get the existence and uniqueness of (u, p) ∈
(HD(Ω))2×(Ker(∇D))⊥ solution of (23) with λ = 0, where ∇D denotes the operator
from LD(Ω) to (HD(Ω))2 which is the tranposed of divD.

6 Consistency properties

We now study consistency properties of the discrete operators which will be needed
in the proof of convergence. Let us first recall that the approximation of the Laplace
operator by the above finite volume scheme is known to be of order 1: see e.g. [10],
[6]. Let us then turn to the other operators.

Proposition 6.1 [Consistency of the discrete divergence] Under hypothesis
(2), let D be an admissible discretization of Ω in the sense of Definition 2.1, and let
α > 0 such that angle(D) ≥ α.

Then, there exists C6 , only depending on α, such that, for all ū ∈ H1
0 (Ω)∩H2(Ω),

and for any S ∈ V,
∣∣∣∣∣∣

∑

K∈MS

A(k)
K,S ū(k)(xK) −

∫

∂S
ū(k)(x)ek · n(x)dγ(x)

∣∣∣∣∣∣
≤ C6 m(S)|ū(k)|H2(S), k = 1, 2,

(29)
where

|ū(k)|H2(S) =




2∑

i,j=1

∫

S

(
∂2ū(k)

∂xi∂xj
(x)

)2

dx




1/2

, k = 1, 2.

Remark 4 Remark that
∫

∂S
ū(k)(x)ek · n(x)dγ(x) =

∫

S
∂ku,

so that one may see the term

1

m(S)

∑

K∈MS

A(k)
K,S ū(k)(xK)

as a consistent discretization of ∂ku over the cell S, for k = 1, 2.

Proof Under the assumptions of Proposition 6.1, let S ∈ V, we wish to show

that |T (k)
S | ≤ C6 m(S)|ū(k)|H2(S), where:

T (k)
S =

∑

K∈MS

A(k)
K,S ū(k)(xK) −

∫

∂S
ū(k)(x)ek · n(x)dγ(x).

Let us first consider the case where S has no edge on the boundary of Ω. Then ∂S can
be given by the sequence of segments [xK1xK2], [xK2xK3 ] . . . [xKm−1xKm

], [xKm
xK1],

where xK1, . . . , xKm
are the centers of the control volumes {K1,K2, . . . ,Km} = MS ,
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taken in the trigonometric order around S. We then denote i+ = i + 1 if i =
1, 2, . . . ,m − 1 and m+ = 1, and i− = i − 1 if i = 2, . . . ,m and 1− = m. Then the

term T (k)
S can be rewritten as

T (k)
S =

m∑

i=1

A(k)
Ki,S

ū(k)(xKi
) −

∫

[xKi
xK

i+
]
ū(k)(x)ek · n(x)dγ(x).

Using the definition of A(k)
K,S given in Definition 2.1, we get that

A(k)
Ki,S

=
(−1)j

2

(
(x(j)

K
i+

+ x(j)
Ki

) − (x(j)
Ki

+ x(j)
K

i−
)
)

=
(−1)j

2

(
(x(j)

K
i+

− x(j)
Ki

) + (x(j)
Ki

− x(j)
K

i−
)
)

,

with j = 2 if k = 1, j = 1 if k = 2.

This yields T (k)
S =

m∑

i=1

(x(j)
K

i+
− x(j)

Ki
)L(i)

S (ū) with

L(i)
S (ū(k)) =

1

2
(ū(k)(xKi

) + ū(k)(xK
i+

) − 1

dKi|Ki+

∫

[xKi
xK

i+
]
ū(k)(x)dγ(x) , (30)

since ek ·n(x) = (x(j)
K

i+
−x(j)

Ki
)/dKi|Ki+

for all x ∈ [xKi
xK

i+
], for i = 1, 2, . . . ,m (See

Figure 2).

x
xK3

xK2

xK1

xKm

S

Figure 2: Consistency of the discrete divergence operator

We denote by S(i) the triangle xS , xKi
, xK

i+
and we remark that the operator

L(i)
S : H2(S(i)) → R defined by (30) is a continuous linear form. Let V̂ be a given

equilateral triangle xS1, xS2 , xS3 with diameter 1, and let Ψ be the affine mapping
from S(i) to V̂ such that Ψ(xS) = xS1 , Ψ(xKi

) = xS2 and Ψ(xK
i+

) = xS3. Let
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L̂ ∈ (H2(V̂ ))′ be defined, for all û ∈ H2(V̂ ), by L̂(û) = L(i)
S (û ◦ Ψ). Performing the

change of variable x = Ψ−1(x̂), we get

L̂(û) =
1

2
(û(xS2) + û(xS3)) −

1

|xS2 − xS3 |

∫

[xS2xS3 ]
û(x)dγ(x).

Since the linear form L̂ vanishes on the set of polynomials of degree 1, we get from
the Bramble-Hilbert Lemma the existence of C7 > 0 (which does not depend on
anything, this is to be noted since it is quite rare. . . ), such that

∣∣∣L̂(û)
∣∣∣ ≤ C7 |û|H2(V̂ ).

Defining, for ū ∈ H2(S(i)), the function û by û = ū ◦ Ψ−1, we get L(i)
S (ū) = L̂(û)

and therefore
∣∣∣L(i)

S (ū)
∣∣∣ ≤ C7 |û|H2(V̂ ). Let us recall, for the sake of completeness, the

classical relationships between a reference element and the current element (see [18]
for example):

2∑

i,j=1

(
∂2û

∂x̂i∂x̂j
(x̂)

)2

≤ ‖Ψ−1‖4
2∑

i,j=1

(
∂2ū

∂xi∂xj
(Ψ−1(x̂))

)2

,

and ‖Ψ−1‖ ≤ diam(S(i))/ρ̂, where ρ̂ is the diameter of the inscribed circle in V̂ . We
thus get

|û|2
H2(V̂ )

≤ diam(S(i))4

ρ̂4
m(V̂ )

m(S(i))
|ū|2H2(S(i)).

Applying (13) of Proposition 2.2, this yields |û|H2(V̂ ) ≤ C8 diam(S(i))|ū|H2(S(i)),
where C8 only depends on α, and therefore

∣∣∣L(i)
S (ū)

∣∣∣ ≤ C9 diam(S(i))|ū|H2(S(i)),

where the non negative real C9 only depends on α. Thanks to the Cauchy-Schwarz

inequality, to the inequality |x(j)
K

i+
− x(j)

Ki
| ≤ diam(S) and applying (11) and (14) of

Proposition 2.2, one obtains:

(T (k)
S )2 ≤ C9

2C2 C4
2m(S)2|ū(k)|2H2(S).

We thus obtain (29) in that case.

Let us now suppose that ∂S∩∂Ω is non empty. Then ∂S can be given by a part of
∂Ω, the segment [zσ0 , xK1 ], the sequence of segments[xK1xK2], [xK2xK3] . . . , [xKm−1xKm

], [xKm
xK1],

and the segment [xKm
zσ1 ], where again we denote by xKi

, i = 1, . . . ,m the centers of
the control volumes {K1,K2, . . . ,Km} = MS , still taken in the trigonometric order
around S. We then have:

A(k)
Ki,S

=
(−1)j

2

(
(x(j)

K2
+ x(j)

K1
) − (x(j)

K1
+ x(j)

σ0
)
)

=
(−1)j

2

(
(x(j)

K2
− x(j)

K1
) + (x(j)

K1
− x(j)

σ0
)
)

,

with j = 2 if k = 1, j = 1 if k = 2.
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which yields T (k)
S = (x(j)

K1
− x(j)

σ0
)T (k,0)

S +
m−1∑

i=1

(x(j)
K

i+
− x(j)

Ki
)T (k,i)

S + (x(j)
σ1

− x(j)
Km

)T (k,m)
S

with T (k,i)
S defined as above for i = 1, . . . ,m − 1 and

T (k,0)
S =

1

2
ū(k)(xK1) −

1

dK1,σ0

∫

[zσ0xK1 ]
ū(k)(x)dγ(x) ,

and

T (k,m)
S =

1

2
ū(k)(xKm

) − 1

dKm,σ1

∫

[zσ1xKm ]
ū(x)dγ(x) .

Since ū(k) vanishes in zσ0 and zσ1 , the application of the Bramble-Hilbert Lemma is
again possible. The conclusion follows.

Proposition 6.2 [Interpolation error for the pressure] Under hypothesis (2),
let D be an admissible discretization of Ω in the sense of Definition 2.1, and let
α > 0 such that angle(D) ≥ α. Then, there exists C10 , only depending on α, such
that, for all p ∈ H1(Ω), denoting by pD ∈ LD(Ω) the function defined by

pDS =
1

m(S)

∫

S
p(x)dx, for all S ∈ V,

∣∣∣∣∣

∫

[xσxS ]
(p − pD)(x) dγ(x)

∣∣∣∣∣ ≤ C10 diam(S)|p|H1(S), (31)

where

|p|H1(S) =

(
2∑

i=1

∫

S

(
∂p

∂xi
(x)

)2

dx

)1/2

.

Proof The proof results from the Bramble-Hilbert Lemma and the fact that∫

[xσxS ]
(q − qD)(x) dγ(x) = 0, for any q ∈ LD(Ω).

7 Convergence of the finite volume scheme.

We have the following result, which states the convergence of the scheme (23), the
parameter λ > 0 being fixed.

Proposition 7.1 [Convergence of the penalized finite volume scheme in
the linear case] Under hypotheses (2)-(4), let λ ∈ (0,+∞) be given and let
(D(n))n∈N be a sequence of admissible discretizations of Ω in the sense of Defi-
nition 2.1, such that lim

n→∞
size(D(n)) = 0 and such that there exists α > 0 with

angle(D(n)) ≥ α, for all n ∈ N.
Let (u(n), p(n)) ∈ (HD(n)(Ω))2 × LD(n)(Ω) be the solution to (23). Then the

sequence (u(n))n∈N converges in (L2(Ω))2 to u, weak solution of the Stokes problem
in the sense of (6).
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Proof Using (26), we obtain (see [9], [6]) an estimate on the translates of u(n):
for all n ∈ N, there exists C11 > 0, only depending on Ω, ν, f and g such that
∫

Ω
(u(n,k)(x + χ) − u(n,k)(x))2dx ≤ C11 |χ|(|χ| + 4size(D(n))), for k = 1, 2, ∀χ ∈ R2,

(32)
where u(n,k) denotes the k-th component of u(n). We may then apply Kolmogorov’s
theorem, and obtain the existence of a subsequence of (D(n))n∈N and of u ∈ H1

0 (Ω)2

such that (u(n))n∈N converges to u in L2(Ω)2. It suffices now to prove that u satisfies
(6) to conclude, thanks to the uniqueness of this solution. Let ϕ ∈ (C∞

c (Ω))2

such that div(ϕ) = 0. Let n ∈ N such that D(n) belongs to the above extracted
subsequence and let (u(n), p(n)) be the solution to (23) with D = D(n). We suppose
that n is large enough and thus size(D(n)) is small enough so that, for all K ∈ M,
if K∩ support(ϕ) += ∅, then ∂K ∩ ∂Ω = ∅. Let us denote by ϕ(n) the element of
(HD(Ω))2 with the constant value ϕ(xK) in K, for all K ∈ M. Let us take v = ϕ(n)

in (23). The convergence of the discrete Laplace operator was shown in [9] or [6]:

lim
n→∞

[u(n),ϕ(n)]D(n) =

∫

O
∇u(x) : ∇ϕ(x)dx.

Moreover, it is clear that :

lim
n→∞

∫

Ω
f(x)ϕ(n)(x)dx =

∫

Ω
f(x) · ϕ(x)dx,

and

lim
n→∞

η

∫

Ω
u(n)(x) · ϕ(n)(x)dx = η

∫

Ω
u(x) · ϕ(x)dx.

There now remains to prove that:

lim
n→∞

∫

Ω
p(n)(x)divD(n)(ϕ(n))(x)dx = 0. (33)

Let us write ∫

Ω
p(n)(x)divD(n)(ϕ(n))(x)dx =

∑

i=1,2

T (n,i)
1 ,

with
T (n,i)

1 =
∑

i=1,2

∑

S∈V(n)

∑

K∈MS

p(n)
S A(i)

K,S ϕ
(i)(xK), for i = 1, 2.

We define

T̃ (n,i)
1 =

∫

Ω
p(n)(x)∂iϕ

(i)(x)dx, for i = 1, 2,

Thanks to (27), we may apply Proposition 7.2 given below with θ = 1
2 . We thus get

that
lim

n→∞
(T (n,i)

1 − T̃ (n,i)
1 ) = 0, for i = 1, 2.

Since div(ϕ) = 0, we get
∑

i=1,2

T (n,i)
1 = 0, which yields (33).
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The last step is to prove that div(u) = 0 a.e. in Ω. Let ϕ ∈ C∞
c (Ω). For all

n ∈ N, let ϕ(n) ∈ HD(n)(Ω) be the function defined by the value ϕ(xK) in K, for all
K ∈ M(n), and let ϕ̃(n) ∈ LD(n)(Ω) be the function defined by the value ϕ(xS) in S,
for all S ∈ V(n). We multiply the second equation of (23) by the function ϕ̃(n) and

sum over S ∈ V(n). We get T (n)
2 = −T (n)

3 , where

T (n)
2 =

∑

S∈V(n)

ϕ(xS)
∑

K∈MS

∑

i=1,2

A(i)
K,S u(n,i)

K .

and

T (n)
3 = λ size(D(n))

∫

Ω
p(n)(x)ϕ̃(n)(x)dx.

Thanks to the regularity of ϕ and to (11) of Proposition 2.2, there exists C12 > 0,
which only depends on ϕ and α, such that:

∑

S∈V(n)

∑

K∈MS

(ϕ̃(n)
S − ϕ(n)

K )2 ≤ C12 ,

we may therefore apply Proposition (7.3) given below to obtain:

lim
n→∞

∑

S∈V(n)

∑

K∈MS

u(n,i)
K A(i)

K,Sϕ̃
(n)
S = −

∫

Ω
u(i)(x)∂iϕ

(i)(x)dx, for i = 1, 2,

which yields

lim
n→∞

T (n)
2 =

∑

i=1,2

∫

Ω
ϕ(x)∂iu

(i)dx.

Thanks to (27), we get:

∣∣∣T (n)
3

∣∣∣ ≤ λsize(D(n))‖p(n)‖L2(Ω)‖ϕ̃(n)‖L2(Ω) ≤ (
λ

ν
)

1
2 diam(Ω)‖f‖(L2(Ω))2‖ϕ‖L2(Ω)(size(D(n)))1/2.

Therefore, limn→∞ T (n)
3 = 0, and this in turn implies that:

∑

i=1,2

∫

Ω
ϕ(x)∂iu

(i)(x)dx = 0, for all ϕ ∈ C∞
c (Ω),

which proves that u ∈ E(Ω).

Proposition 7.2 [Convergence properties of pressure terms] Under Hypoth-
esis (2), let u ∈ H1

0 (Ω) ∩ H2(Ω) and let α > 0 be given. Let (D(n))n∈N be a
sequence of admissible discretization of Ω in the sense of Definition 2.1, such that
lim

n→∞
size(D(n)) = 0 and angle(D(n)) ≥ α, for all n ∈ N. Let C13 ∈ (0,+∞), θ ∈ [0, 1)

be given and let p(n) ∈ LD(n)(Ω) for all n ∈ N, be a given sequence such that

‖p(n)‖L2(Ω) ≤
C13

size(D(n))θ
, ∀n ∈ N. (34)
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(Indeed, the existence of some data satisfying the above hypothesis is clear). Then

lim
n→∞




∑

S∈V(n)

∑

K∈MS

u(i)(xK)A(i)
K,S p(n)

S −
∫

Ω
∂iu

(i)(x)p(n)(x)dx



 = 0, for i = 1, 2.

(35)

Proof Let n ∈ N and i = 1, 2 be given. Let us define

T (n,i)
4 =

∑

S∈V(n)

∑

K∈MS

u(i)(xK)A(i)
K,S p(n)

S , and T (n,i)
5 =

∫

Ω
p(n)(x)∂iu

(i)(x) for i = 1, 2.

We then have
|T (n,i)

4 − T (n,i)
5 | ≤

∑

S∈V(n)

|p(n)
S | |T (i)

S |,

where, for S ∈ V(n), the term T (i)
S is defined by

T (i)
S =

∑

K∈MS

A(i)
K,S u(i)(xK) −

∫

∂S
u(i)(x)ei · n(x)dγ(x),

denoting by ei the basis vector corresponding to the x coordinate. We apply Propo-
sition 6.1 and we get

|T (i)
S | ≤ C6 m(S)|u(i)|H2(S).

The above inequality leads to

|T (n,i)
4 − T (n,i)

5 |2 ≤ size(D(n))2C6
2|u(i)|2H2(Ω) ‖p(n)‖2

L2(Ω).

Thanks to Hypothesis (34) and to the Cauchy-Schwarz inequality, we get the exis-
tence of C14 , which depends on Ω and α but not on n such that

|T (n,i)
4 − T (n,i)

5 | ≤ C6 C13 |u(i)|H2(Ω)size(D(n))1−θ.

The above inequality yields (35).

Proposition 7.3 [Convergence properties for the divergence of the veloc-
ities] Under Hypothesis (2), let α > 0 be given. Let (D(n))n∈N be a sequence of ad-
missible discretizations of Ω in the sense of Definition 2.1, such that lim

n→∞
size(D(n)) =

0 and angle(D(n)) ≥ α, for all n ∈ N. For all n ∈ N, let v(n),ϕ(n) ∈ HD(n)(Ω) be
such that there exists v ∈ L2(Ω) with v(n) → v in L2(Ω) as n → ∞ and ϕ ∈ H1

0 (Ω)
such that ϕ(n) → ϕ in L2(Ω) as n → ∞. Let C15 > 0 be given and for all n ∈ N, let
ϕ̃(n) ∈ LD(n)(Ω) be a sequence of functions such that,

∑

S∈V(n)

∑

K∈MS

(ϕ̃(n)
S − ϕ(n)

K )2 ≤ C15 , ∀n ∈ N. (36)

(Indeed, the existence of such data is clear). Then

lim
n→∞

∑

S∈V(n)

∑

K∈MS

v(n)
K A(i)

K,Sϕ̃
(n)
S = −

∫

Ω
v(x)∂iϕ(x)dx, for i = 1, 2. (37)
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Proof
Let ε > 0; let us first define v̄ ∈ C∞

c (Ω) such that ‖v − v̄‖L2(Ω) ≤ ε. For any

K ∈ M(n), we define v̄(n)
K = v̄(xK), and we denote by v̄(n) ∈ HD(n)(Ω) the piecewise

function defined by v̄(n)|K = v̄(xK) for all K ∈ D(n). It is obvious that v̄(n) tends
to v̄ in L∞(Ω), as n tends to infinity. Let be i = 1, 2 given.

Thanks to the triangular inequality, we may write that,
∣∣∣∣∣∣

∫

Ω
v(x)∂iϕ(x)dx +

∑

S∈V(n)

∑

K∈MS

v(n)
K A(i)

K,Sϕ̃
(n)
S

∣∣∣∣∣∣
≤ T6 + T (n)

7 + T (n)
8 + T (n)

9 , (38)

with

T6 =

∣∣∣∣
∫

Ω
v(x)∂iϕ(x)dx −

∫

Ω
v̄(x)∂iϕ(x)dx

∣∣∣∣ ,

T (n)
7 =

∣∣∣∣

∫

Ω
∂̄iv(x)(ϕ(x) − ϕ̃(n)(x))dx

∣∣∣∣ ,

T (n)
8 =

∣∣∣∣∣∣

∫

Ω
∂̄iv(x)ϕ̃(n)(x)dx +

∑

S∈V(n)

∑

K∈MS

A(i)
K,S v̄(n)

K ϕ̃
(n)
S

∣∣∣∣∣∣
,

T (n)
9 =

∣∣∣∣∣∣

∑

S∈V(n)

∑

K∈MS

(v(n)
K − v̄(n)

K )A(i)
K,Sϕ̃

(n)
S

∣∣∣∣∣∣
.

The choice of v̄ immediately yields that

T6 ≤ ‖∂iϕ‖L2(Ω)‖v̄ − v‖L2(Ω) ≤ ε‖∂iϕ‖L2(Ω). (39)

We now remark that

T (n)
7 ≤ ‖v̄‖L2(Ω)‖ϕ−ϕ̃(n)‖L2(Ω) ≤ ‖v̄‖L2(Ω)‖ϕ−ϕ(n)‖L2(Ω)+‖v̄‖L2(Ω)‖ϕ(n)−ϕ̃(n)‖L2(Ω).

Since we have

‖ϕ(n)−ϕ̃(n)‖2
L2(Ω) ≤

∑

S∈V(n)

∑

K∈MS

m(K∩S)(ϕ(n)
K −ϕ̃(n)

S )2 ≤ πsize(Dn)2
∑

S∈V(n)

∑

K∈MS

(ϕ(n)
K −ϕ̃(n)

S )2,

we deduce, thanks to Assumption (36), that

‖ϕ(n) − ϕ̃(n)‖L2(Ω) ≤ C15
√
πsize(Dn).

Hence, thanks to the fact that ϕ(n) tends to ϕ in L2(Ω), we get that there exists
n1 ∈ N such that

T (n)
7 ≤ ε for any n ≥ n1. (40)

Let us now turn to T (n)
8 . Since (ϕ(n))n∈N is a converging sequence in L2(Ω), and

thanks to (7), the sequence (ϕ̃(n))n∈N is also bounded in L2(Ω). we may therefore
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apply Proposition 7.2 below to obtain that T (n)
8 → 0 as n → +∞, and therefore,

there exists n2 ∈ N such that

T (n)
8 ≤ ε for any n ≥ n2. (41)

Let us finally deal with T (n)
9 . Noting that, for any K ∈ M(n), one has

∑
S∈V(n)

K

A(i)
K,S =

0, and that

∑

S∈V(n)

∑

K∈MS

(v(n)
K − v̄(n)

K )A(i)
K,S ϕ̃

(n)
S =

∑

K∈M(n)

∑

S∈V
(n)
K

(v(n)
K − v̄(n)

K )A(i)
K,S ϕ̃

(n)
S ,

one gets

T (n)
9 = |

∑

K∈M(n)

∑

S∈V(n)
K

A(i)
K,S(v(n)

K − v̄(n)
K )(ϕ̃(n)

S − ϕ(n)
K )|.

Therefore, by the Cauchy-Schwarz inequality, and thanks to Assumption (36),

T (n)
9 ≤ C15

1
2




∑

K∈M(n)

(v(n)
K − v̄(n)

K )2
∑

S∈V
(n)
K

(A(i)
K,S)2





1
2

.

Now, thanks to Proposition 2.2,

∑

S∈V(n)
K

(A(i)
K,S)2 ≤

∑

S∈V(n)
K

diam(K)2 ≤ C2 C5 m(K).

Hence
T (n)

9 ≤ (C15 C2 C5 )
1
2 ‖v(n) − v̄(n)‖L2(Ω).

Since v(n) and v̄(n) tend to v in L2(Ω) as n → ∞, we deduce from this last inequality
that we may choose n3 ∈ N such that, for all n ≥ n3,

T (n)
9 ≤ ε. (42)

From (38), (39), (40), (41) and (42), we obtain that

lim
n→+∞

∣∣∣∣∣∣

∑

S∈V(n)

∑

K∈MS

v(n)
K A(i)

K,Sϕ̃
(n)
S +

∫

Ω
v(x)∂iϕ(x)dx

∣∣∣∣∣∣
= 0,

which concludes the proof.

8 Error estimate

We now prove the following error estimate.
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Proposition 8.1 [Error estimate for the penalized finite volume scheme
in the linear case] Under Hypotheses (2)-(4), let us suppose that there exists

(ū, p̄) ∈ (H1
0 (Ω) ∩ H2(Ω))2 × H1(Ω) solution of (1). Let D be an admissible

discretization of Ω in the sense of Definition 2.1. Let λ ∈ (0,+∞) be given and
α > 0 with angle(D) ≥ α.

Let (uD, pD) ∈ (HD(Ω))2 × LD(Ω) be the solution to (23). We denote by ūD ∈
(HD(Ω))2 the piecewise constant function equal to ū(xK) on each control volume
K ∈ M. Then there exists C16 > 0, which only depends on Ω, ν and α, such that
the following inequalities hold:

‖uD − ūD‖D ≤

C16 (h)1/4
(
‖ū‖2

(H2(Ω))2 + ‖p̄‖2
H1(Ω)

)1/2
(√
λ+

1√
λ

)1/2

,
(43)

and
‖uD − ū‖(L2(Ω))2 ≤

C16 (h)1/4
(
‖ū‖2

(H2(Ω))2 + ‖p̄‖2
H1(Ω)

)1/2
(√
λ+

1√
λ

)1/2

.
(44)

Dσ

σ

zσ

xσ

xK

Figure 3: The domains Dσ (solid lines) and K̃ (dashed lines)

Proof In this proof, we denote by Ci, where i is an integer, real values which
only depend on Ω, ν and α and not on h nor on λ. For all σ ∈ E , let σ̃ be defined by
σ̃ = [xS1xσ] ∪ [xσxS2 ], where xS1 and xS2 are the two vertices of σ. For all K ∈ M,
let K̃ be the polygonal subset of Ω whose edges are σ̃, for all σ ∈ EK (see Figure
(3)). We define εK,σ = −1 if σ̃ ⊂ K else εK,σ = 1. Let Dσ be the triangle with
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edges σ and σ̃. Let us integrate the first equation of (1) on K̃. We get

η

∫

K
ū(i)(x)dx − ν

∑

σ∈EK

∫

σ
∇ū(i)(x) · nK,σdγ(x) +

∑

σ∈EK

∫

σ̃
p̄(x) ei · nK̃(x)dγ(x) =

∫

K
f (i)(x)dx +

∑

σ∈EK

εK,σ

∫

Dσ

(
f (i)(x) + ν∆ū(i)(x) − ηū(i)

)
dx, i = 1, 2,

(45)
where we denote by nK̃(x) the unit vector outward to K̃ at point (x) and ei the
basis unit vector corresponding to the ith coordinate. Let us define

R(i)
ū,K,σ =

1

mσ

∫

σ
∇ū(i)(x) · nK,σ − 1

dK,σ
(ūD,(i)

σ − ūD,(i)
K ), i = 1, 2,

where ūD,(i) denotes the ith component of ūD, ūD,(i)
σ is defined by τK,σ(ūD,(i)

σ −
ūD,(i)

K ) + τL,σ(ūD,(i)
σ − ūD,(i)

L ) = 0. It is then easy to see that R(i)
ū,K,σ + R(i)

ū,L,σ = 0 if
σ = K|L, for i = 1, 2.

Let us also define

R̃(i)
ū,K = ūD,(i)

K − 1

m(K)

∫

K
u(i)(x)dx, i = 1, 2.

Thanks to the regularity assumption on the mesh angle(D) ≥ α, we may apply
Lemma 3.2 of [10], which states that there exists C17 depending only on ū such that

|R(i)
ū,K,σ| + |R̃(i)

ū,K | ≤ C17 h, for i = 1, 2. (46)

With these definitions, we get from (45) that:

ηm(K)ūD
K − ν

∑

σ∈EK

τK,σ(ūD
σ − ūD

K) +
∑

σ∈EK

∫

σ̃
p̄(x) nK̃(x)dγ(x) =

∫

K
f(x)dx+

∑

σ∈EK

εK,σ

∫

Dσ

(f(x) + ν∆ū(x) − ηū) dx + ν
∑

σ∈EK

mσRū,K,σ + m(K)ηR̃ū,K .

(47)
Let us substract the above equation off the first equation of (24), and take the

inner product with
ûK = uK − ūD

K ,

and sum the resulting equations for K ∈ M. Using (25), we get

η‖ûD‖2
L2(Ω)2 + ν‖ûD‖2

D + λ h ‖pD‖2
L2(Ω) = T10 + T11 + T12 + T13, (48)

with

T10 =

∫

Ω
pD(x)divD(ūD)(x)dx,

T11 =
∑

K∈M

∑

σ∈EK

ûK ·
∫

σ̃
p̄(x) nK̃(x)dγ(x),
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T12 = −
∑

K∈M

∑

σ∈EK

T (ū,K,σ)
14 · ûK ,

and

T13 = −
∑

K∈M

ηm(K)R̃ū,K · ûK ,

where

T (ū,K,σ)
14 = εK,σ

∫

Dσ

(f(x) + ν∆ū(x))dx + νmσRū,K,σ.

Let us first handle T10. We have

T10 =
∑

i=1,2

∑

S∈V

pS

∑

K∈MS

A(i)
K,SūD,(i)

K .

Thanks to div(ū) = 0, we may apply Proposition 6.1 and obtain:
∣∣∣∣∣∣

∑

i=1,2

∑

K∈MS

A(i)
K,SūD,(i)

K

∣∣∣∣∣∣
≤ C6 m(S)‖ū‖(H2(S))2 .

Thanks to the Cauchy-Schwarz inequality and to Estimate (27), we get

T10 ≤ C18
diam(Ω)‖f‖(L2(Ω))2hD

(νλhD)1/2
‖ū‖(H2(Ω))2 .

Now remark that since (ū, p̄) is solution to (6), one has

‖f‖(L2(Ω))2 ≤ C19 ‖ū‖(H2(Ω))2 + ‖p̄‖H1(Ω), (49)

so that:

T10 ≤ C20

(
h

λ

)1/2 (
‖ū‖2

(H2(Ω))2 + ‖p̄‖2
H1(Ω)

)
. (50)

We now turn to the study of T11. Let us introduce the function p̄D ∈ LD(Ω),
defined by

p̄D(x) = p̄DS , for a.e. x ∈ S, with p̄DS =
1

m(S)

∫

S
p̄(x)dx for all S ∈ V.

For an edge σ with vertices xS1 and xS2, this function is then equal to the constant
p̄DS1

on [xS1xσ] and to the constant p̄DS2
on [xσxS2 ], thus it is integrable on σ̃. We

then have T11 = T15 + T16 with

T15 =
∑

i=1,2

∑

K∈M

∑

σ∈EK

û(i)
K

∫

σ̃
(p̄ − p̄D)(x) ei · nK̃(x)dγ(x),

and

T16 =
∑

i=1,2

∑

K∈M

∑

σ∈EK

(
û(i)

K

∫

σ̃
p̄D(x) ei · nK̃(x)dγ(x)

)
.
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By definition, A(i)
K,S =

∫
[xσ1xS ]∪[xSxσ2 ] ei · nK̃(x)dγ(x) if xS is the common vertex to

edges σ1 and σ2 in the trigonometric order; therefore, we have for all K ∈ M:

∑

σ∈EK

∫

σ̃
p̄D(x) ei · nK̃(x)dγ(x) =

∑

S∈VK

A(i)
K,S p̄DS , i = 1, 2.

Thus we get T16 = T17 − T18 with

T17 =
∑

S∈V

p̄DS
∑

i=1,2

∑

K∈MS

A(i)
K,S uK =

∫

Ω
p̄D(x)divD(u)(x)dx,

and

T18 =
∑

S∈V

p̄DS
∑

i=1,2

∑

K∈MS

A(i)
K,S ūD,(i)

K =

∫

Ω
p̄D(x)divD(ūD)(x)dx.

Thanks to the fact that ‖p̄D‖L2(Ω) ≤ ‖p̄‖L2(Ω), we then have

|T17| ≤ ‖p̄‖L2(Ω)‖divD(u)‖L2(Ω)

which yields, thanks again to (27) and (49),

|T17| ≤ C21 (λ h)1/2
(
‖ū‖2

(H2(Ω))2 + ‖p̄‖2
H1(Ω)

)
. (51)

Using again Proposition 6.1, we have

|T18| ≤ C22 hD

(
‖ū‖2

(H2(Ω))2 + ‖p̄‖2
H1(Ω)

)
(52)

On the other hand, we have

T15 =
∑

K∈M

∑

i=1,2

∑

σ∈EK

(û(i)
K − û(i)

σ )

∫

σ̃
(p̄ − p̄D)(x) ei · nK̃(x)dγ(x),

which yields, thanks to Young’s inequality,

|T15| ≤
ν

4
‖û‖2

D +
1

ν

∑

K∈M

∑

σ∈EK

dK,σ

mσ

(∫

σ̃
(p̄ − p̄D)(x) ei · nK̃(x)dγ(x)

)2

.

Thanks to Proposition 6.2, we get, using σ̃ = [xS1xσ] ∪ [xσxS2] and thanks to
the fact that e1 · nK̃(x) is a constant smaller than 1 on [xS1xσ] and on [xσxS2 ],

∣∣∣∣
∫

σ̃
(p̄ − p̄D)(x) ei · nK̃(x)dγ(x)

∣∣∣∣ ≤ C10 h
(
|p̄|H1(S1) + |p̄|H1(S2)

)
, i = 1, 2.

This leads to
|T15| ≤

ν

4
‖û‖2

D + C23 h2‖p̄‖2
H1(Ω), (53)

thanks to (11) of Proposition 2.2.
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We finally turn to the study of T12. Using the fact that for σ = K|L, we have

T (i,ū,K,σ)
14 + T (i,ū,L,σ)

14 = 0, we may write that

T12 =
∑

i=1,2

∑

K∈M

∑

σ∈EK

T (i,ū,K,σ)
14 (û(i)

σ − û(i)
K ),

We again apply Young’s inequality. It yields

|T12| ≤
ν

4
‖û‖2

D + C24 h2
(
‖ū‖(H2(Ω))2 + ‖p̄‖2

H1(Ω)

)
, (54)

thanks to easy bounds on T (i,ū,K,σ)
14 and to (46).

Let us then turn to T13: Using Young’s inequality, one gets that

T13 ≤ 1

2

∑

i=1,2

∑

K∈M

ηm(K)(R̃(i)
ū,K)2 +

1

2

∑

i=1,2

∑

K∈M

ηm(K)(û(i)
K )2,

Using (46) and the discrete Poincaré inequality (see e.g. [6]) yields the existence of
C25 ∈ R+, depending only on η, ν, ū and Ω, such that

T13 ≤ ν
4
‖û‖2

D + C25 h2. (55)

From (48)–(55), and using 2 ≤
√
λ+ 1/

√
λ concludes the proof of (43). Thanks

to the existence of C26 such that ‖ū − ūD‖(L2(Ω))2 ≤ C26 h‖ū‖(H2(Ω))2 , we get (44)
using the discrete Poincaré inequality.

9 Numerical results

The implementation of the scheme was performed using the F90 language on a Unix
system. The linear systems are solved using a direct method. The grid generator
proceeds from a given number of initial grid blocks, which can be triangular or
rectangular, describing the geometry, which are then uniformly refined as desired.

In the case of triangular meshes, we shall use two different sorts of refinement
techniques in order to obtain rates of convergence. The first technique consists
in starting from a given number of initial large triangles, describing the geometry,
which are then uniformly refined as desired. We shall call this type of refinement
the “homothetic” grids, since within a large triangle, all the refined triangles may
be deduced from a large one by an homothety. Such a refinement procedure (and
its pressure mesh counterpart) is illustrated on the two upper graphics of Figure 4.
This type of refinement tends to yield some optimistic rates of convergence, because
of the symmetries occuring between the small triangles, as we shall see in the sequel.
Hence we designed another type of refinement, which consists in first cutting down
the domain into as many smaller subdomains as wanted, and then meshing each
subdomain with the triangular mesh. This procedure is depicted the two lower
graphics of Figure 4, in the case where the domain Ω is a square, and one may see
that even though there exists a mesh pattern, there is no symmetry between the
small refined triangles.
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Numerical experiments for the Stokes equations were performed on Ω = (0, 1) ×
(0, 1), with various analytical solutions. Here we shall present the results for three
cases:

• Case 1: u(1)(x) = 0, u(2)(x) = x(1)(1−x(1)), p(x) = 0. Note that in this case,
the velocity is a polynomial function of degree 2, and therefore the consistency
error on the diffusion flux is zero.

• Case 2: The velocities are u(1)(x) = −∂2Φ(x), and u(2)(x) = ∂1Φ(x), where
Φ(x) = 1000[x(1)(1 − x(1))x(2)(1 − x(2))]2, the pressure being given by p(x) =
(x(1))2 + (x(2))2 − 2/3, for all x ∈ Ω.

• Case 3: The velocities are u(1)(x) = 1
2 sin(2πx(1)) cos(2πx(2)), u(2)(x) =

−1
2 cos(2πx(1)) sin(2πx(2)), and the pressure p(x) = 1

8 cos(4πx(1)) sin(4πx(2)).

In all cases, the right hand side f is then computed with (1) for the Stokes equations,
taking ν = 1 and η = 0.

The finite volume scheme (24)–(25) (which we call “present scheme” here) for
which we proved convergence in the above sections was tried against the former
scheme which was studied in [6], [1] and [3], and which we shall refer to as “VF-P1
scheme”. Recall that these two schemes coincide on equilateral meshes.

The rate of convergence is obtained by computing ln ‖ψh − ψex‖, where ψh rep-
resents the computed approximation of the exact quantity ψex (component of the
velocity or pressure) and identifying it as an affine function of the step size h:
ln ‖ψh − ψex‖ = ρh + C; when h is small enough, ρ is a good candidate for the
convergence rate.

The rate of convergence for the three cases for both schemes on different meshes
are given in Table 1. The rates of convergence are identical for both components
of the velocities in all three cases. In the case of the former scheme, we have only
given the results for triangular meshes, since there is no sound basis for a definition
of this scheme on rectangular meshes (see [6]); in fact, this scheme implemented on
rectangles does not converge. Note also that for the solution of case 1, we do not give
the rate of convergence of the present scheme on rectangles, because the precision
obtained is the machine precision for any mesh. Indeed, this is due to the fact that
the solution is a second order polynomial, and therefore the consistency error on the
flux is zero. Hence we obtain the exact solution (up to machine precision) for this
case. One may also see that on rectangles, the order of convergence is equal to 2 for
both velocities and pressure, for case 2; however, for case 3, it is still close to 1 for
the velocities but drops down below 1 for the pressure.

One may see that the rate of convergence of the present scheme is always higher
than that of the former scheme. The difference is particularly drastic for Case 2
on the non homogeneous mesh, since the rate of convergence of the present scheme
is 1.66 for the velocities, and .52 for the pressure, while the VF-P1 scheme does
not seem to really converge. Of course, as expected, the rates of convergence are
better on the homothetic meshes than on the non-homothetic ones, and this is
particularly true for the VF-P1 scheme; indeed, this illustrates the fact that the
VF-P1 scheme was shown to converge on equilateral meshes, since the homothetic
meshes are “closer” to the equilateral meshes than the non-homothetic ones.
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VF-P1 scheme Present scheme
hom. non-hom. hom. non-hom

u 1.91 1.03 1.91 1.80
p 1.00 0.10 1.00 .95

Case 1: u(1)(x) = 0, u(2)(x) = x(1)(1 − x(1)), p(x) = 0.

VF-P1 scheme Present scheme
hom. non-hom. hom. non-hom rectangles

u 1.95 0.05 1.99 1.66 1.99
p 1.03 −10−5 1.07 0.52 1.51

Case 2 u(1)(x) = −∂2Φ(x), u(2)(x) = ∂1Φ(x),
Φ(x) = [x(1)(1 − x(1))x(2)(1 − x(2))]2, p(x) = (x(1))2 + (x(2))2.

VF-P1 scheme Present scheme
hom. non-hom. hom. non-hom rectangles

u 1.93 0.25 2.00 2.00 2.00
p 1.00 0.05 1.50 1.12 2.00

Case 3 u(1)(x) = 1
2 sin(2πx(1)) cos(2πx(2)), u(2)(x) = −1

2 cos(2πx(1)) sin(2πx(2)),

p(x) = 1
8 cos(4πx(1)) sin(4πx(2)).

Table 1: Rates of convergence of both schemes on the different meshes and for the
three cases of analytical solutions
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In figure 5, we show the location of the error in velocity and pressure for the
velocity and the pressure for both the VF-P1 scheme and the present one, on a
homothetic mesh. It is clear that the error for the VF-P1 scheme is much higher at
the interface between the large triangles of the original mesh, where no symmetry is
there to help out. The scheme studied here is far less sensitive to these interfaces.

10 Concluding remarks

In this paper we introduced a finite volume scheme for the solution of the stationary
Stokes equations on general meshes in two dimensions. We prove an error estimate
for a penalized version of the scheme.

From the numerical results, we notice that the scheme which was introduced in
[6] and proved to converge for equilateral meshes in [6] and [3] requires the modi-
fication made here in order to converge on general triangular meshes, contrarily to
the expectations of [1].

The numerical results show that the present theoretical error estimate is not
sharp. In order to improve this error estimate, an analytical estimate on the discrete
pressure should be obtained. This has been done in the case of the MAC scheme
(velocities at the edges of the mesh, [16]) where a L2(Ω)-estimate on the discrete
pressures can be obtained [23], [2], thanks to a De Rham theorem, connecting the
components of the gradient of the pressure with the Laplacian of functions of H1

0 (Ω)
(see [17]). The use of the De Rham theorem is unfortunately not straightforward
in our case, due mainly to the L2 regularity of the discrete pressure together with
consistency properties.

From the numerical results, we also show that the scheme which was introduced
in [6] and proved to converge for equilateral meshes in [6] and [3] requires the mod-
ification made here in order to converge on general triangular meshes, contrarily to
the expectations of [1].

Nevertheless, the observed accuracy of our numerical results indicates that this
method is convenient for the calculation of an incompressible flow on triangular
meshes. We do need to mention some oscillations of the pressure in one case. Fur-
thermore, thanks to the location of the discrete unknowns, the finite volume code
can be easily coupled with thermal or chemical codes if needed.

The scheme has also been developed for the nonlinear case, that is the Navier-
Stokes equations, and yields interesting results on wellknown benchmarks such as
the backward step.
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Figure 4: Velocity and pressure meshes for two types of refinement techniques
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Figure 5: Relative error on velocity and pressure for both schemes on homothetic
mesh

International Journal on Finite Volumes 31


