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Abstract

This paper deals with the numerical simulation of CO2 transport in the leaf. We

study a mathematical model of the diffusion and photosynthesis processes, and

present the implementation of an axisymmetric cell centred finite volume scheme

for their numerical simulation. The resulting code enables the computation of

the lateral diffusion coefficient in the leaf porous medium, from experimental

measurements which yield the point wise value of internal CO2 concentration.

Hence our model and numerical code allow the analysis of the role of the internal

diffusion in the photosynthesis process. We show here that under moderate light,

CO2 does not diffuse across long distances because it is rapidly assimilated by

photosynthesising cells.

Key words : CO2 diffusion, photosynthesis, porous medium, finite volumes.

1 Introduction

The object of the present work is to develop a mathematical model to describe and quantify
the diffusion phenomena within the leaf tissue. Indeed, this model felt needed after a series of
experiences involving fluorescence measurements of the internal CO2 concentration within the
leaf tissue was set up at Essex University [7, 12]. In fact, CO2 diffusion within the leaf tissue is
a crucial process in the photosynthetic activity of plants. Once the CO2 enters the leaf tissues
through stomata, (the stomata are spaces of the leaf surface through wich exchange with the
atmosphere takes place), it diffuses towards the photosynthetic cells in the so-called intercellular
air space (IAS). Since the stomata are usually uniformly distributed across the leaf surface,
vertical CO2 diffusion seems to be more important than lateral diffusion. However, in stress
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situations, plants tend to close their stomata in patches; hence the question of the role of lateral
diffusion in these situations, where the photosynthetic cells may be away from open stomata.
One of the goal of the experience and the associated mathematical model was to analyse the
role of lateral diffusion in such cases. Other diffusion models have been developed, but at the
stomatal scale. For instance, in [1], the 3D diffusion is modelled at the scale of a single stoma
in Scots pine needles. In [14], a 2D finite element model is constructed to assess the influence of
the stomatal density on photosynthesis and transpiration. Here we are more interested in lateral
diffusion at a larger scale, and will therefore model the leaf tissue as a porous media.
The resulting mathematical model which describes the biological phenomena under consideration
is a semi-linear diffusion equation (the nonlinearity arises in the assimilation function of the
photosynthesis) with mixed Neumann and Robin boundary conditions. We choose to discretize
the equation with the finite volume method (rather than the finite element method) because
it involves a direct discretization of the fluxes at interfaces which are of crucial importance
here, and it is well adapted to the axisymmetric geometry under consideration. The numerical
analysis of the cell-centred finite volume (FV) method for diffusion problems is now well-known.
In the case of semi linear equations with Dirichlet boundary conditions, the convergence of the
FV scheme is shown in [4]. In the case of Robin conditions such as considered here, an error
estimate was obtained for linear convection-diffusion–reaction problems in [8]. In the present
case, we are able to discretize the geometry in such a way that the consistency of the discretized
inner fluxes is of order 2. Since the resulting discrete system is nonlinear, we adopt a monotony
method to solve it in a robust way.
We emphasise that the present model allows the estimation (from experimental data) of a Lateral
diffusion coefficient of the porous media and the determination of the relative contribution of
anatomy and sink strength in restricting CO2 diffusion. This quantitative analysis yields a
better understanding of the leaf physiology.
The paper is organised as follows: in Section 2, we describe the biological problem and the expe-
riences that were performed to measure the CO2 diffusion under the patch. The mathematical
model, based upon a diffusion equation for the transport of CO2 and a kinetic-type relation
between assimilation and CO2 internal molar fraction is presented in Section 3. It is proven
that the resulting semi linear diffusion equation with Robin boundary conditions is well posed,
in the sense that its weak solution exists, is unique, and satisfies the physical bounds. Section 4
is devoted to the discretization of the the diffusion equation by an axisymmetric finite volume
scheme. The resulting discrete system of equations is also shown to be well posed (existence,
uniqueness, and physical bounds). Convergence of the approximate solution towards the weak
solution is obtained when the mesh is refined. In Section 5 we briefly present the monotony
method which is used for the resolution of the nonlinear system. Section 6 is then devoted
to the determination of the diffusion parameter DCO2

from the experimental results and the
mathematical model. We conclude by a number of perspectives that this work leads to.

2 Biological problem and experimental data

Green plants are able to use energy from light to synthesise their own carbohydrates, [CH2O]n,
from soil water (H2O) and atmospheric carbon dioxide (CO2). This essential process, called
photosynthesis, can be summarised by the general equation: n(CO2 + H20) + light energy →
[CH2O]n + nO2. Photosynthesis takes place in the so called mesophyll, which consists of sev-
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eral layers and makes up most of the leaf interior. The mesophyll is surrounded by epidermal
cells covered with an impermeable cuticle. Consequently exchanges between the leaf and the
atmosphere take place exclusively through “pores” called stomata whose aperture may vary. At-
mospheric CO2 diffuses through the stomata into the leaf. It then diffuses in the inter cellular
airspace, made from the gap between cells, to reach the photosynthesising cells where it is as-
similated. There are essentially two important fluxes taking place through the stomata: a flux
of CO2 from the atmosphere into the leaf and a flux of H2O from the leaf to the atmosphere.
Stomatal aperture constantly adjusts to the external and internal conditions to maximise the
photosynthetic rate and minimise H2O evaporation. Under dry conditions for instance stomata
tend to close. In some cases stomatal aperture is heterogeneous across the leaf surface [10].
Groups of closed stomata can be next to groups of open stomata. It has been shown that such
behaviour, referred to as ”patchy stomatal closure”, can lead to heterogeneous photosynthesis
across the leaf due to heterogeneous CO2 supply in the mesophyll [18]. Indeed, variations in
internal CO2 molar fraction have an important influence on the carbon assimilation rate and
thus on the production of carbohydrates by the leaf [3]. In C3 plants, the first essential step
in the synthesis of carbohydrates is the carboxylation : the CO2 is attached to an acceptor,
made of a skeleton of 5 carbons, which produces two molecules of 3 carbons each. This reaction
is catalysed by the enzyme Rubisco which is very sensitive to variation in CO2 molar fraction
around ambient molar fraction (380ppm): this will lead to a non linearity in the mathematical
model. In this study we are interested in CO2 diffusion in the intercellular air space. Indeed we
wish to understand the extent to which intercellular diffusion may compensate patchy stomatal
behaviour. In other words, can cells under a group of closed stomata still maintain high photo-
synthetic rate thanks to the CO2 supply from lateral diffusion? Moreover there are two major
factors determining internal diffusion: physical resistance to diffusion, linked to the anatomy of
the leaf, and sink strength (photosynthesising cells consuming CO2 along the path). It is crucial
to quantify the relative contribution of these two factors in limiting CO2 diffusion in order to
better understand the plant physiology.
To address these questions, experiments were performed by the first author at the Department of
Biological Sciences at the University of Essex [12] on Phaseolus vulgaris (the common bean) a C3

plant. Groups of stomata were artificially blocked by applying circular patches of silicon grease
(4mm diameter) symetrically on both surfaces of the leaf. For the patched area diffusion through
the stomata is suppressed, consequently the supply of CO2 under the patch solely comes from
lateral diffusion from the surrounding tissues. Combined infrared gas analysis and chlorophyll a
fluorescence imaging was then used to map CO2 molar fraction in the leaves to a high resolution
[11].

2.1 Experimental results

Figure 2.1 represents a typical experimental result. It shows a map of the internal CO2 molar
fraction c for a 6mm wide square portion of a leaf. The z axis gives c in ppm. The circular patch
of grease (4mm diameter), which artificially prevents exchanges with the atmosphere, is at the
center of the plot. The x and y axes give the distance of a point from the center of the patch.
Atmospheric CO2 (ca) is free to penetrate the leaf, through the stomata, outside the patch
area. In this example ca is set at 364ppm, a little below the natural molar fraction. We can
clearly visualise a steep c gradient from the outside of the patch, where c is quite homogeneous,
to the center of the patch. It is worth noting that these images are obtained a few minutes
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Figure 1: Map of intercellular CO2 molar fraction (x, y axis : mm, z axis : c in ppm. Ca : external
CO2 molar fraction (ppm), Gs : stomatal conductance (mmol m−2 s−1) and Ci mean Internal CO2

molar fraction outside the patch given by gas exchanges measurements. O2 : % oxygen in the air.)

after the patch has been applied to allow for the steady state to be reached. We can already
conclude that CO2 from the tissues surrounding the patch is unable to give a sufficient supply
to photosynthesising cells under the patch. However at this stage we cannot go further in the
analysis: why does the CO2 not diffuse well? Is it due to cell packing and physical limitation
of the internal diffusion? or is the CO2 consumed so rapidly that it is simply not available to
distant cells?
We need a tool to quantify these phenomena and distinguish between the two factors. Whether
the anatomical or the biochemical limitation is greater will lead to a different interpretation
of the leaf behaviour with regards to stomatal regulation and internal anatomy. Measurements
similar to the example shown here were conducted at different external CO2 molar fractions (ca),
from 50ppm to 2000ppm. This variety of measures helps us to characterise the phenomenon and
gives a good material to build and validate a mathematical model.

2.2 Diffusion pathway and scale of measurements

The flux of CO2 through stomatal pores (Js
CO2

in mol m−2 s−1) can be described by Fick’s first
law in the following way [13]:

Js
CO2

= Dfa
CO2

×
δCO2

δx

where Dfa
CO2

is the diffusion coefficient of CO2 in free air (in mol m−1 s−1) and δCO2 the
difference in CO2 molar fraction (ppm) across δx, the mean distance (in m) travelled by the
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molecules from still air through the boundary layer and the pore depth, to the intercellular air
spaces. In the species studied, stomata are present on both the lower and upper surface with
a density of 100 stomata mm−2 on the lower and 20 stomata mm−2 on the upper surface.
measurements of c are performed on square leaf portions of encompassing approximately 2
stomata [12]. Therefore we study the phenomenon at a macroscopic scale considering the stomata
to be evenly open and distributed at the surface of the leaf outside the artificially patched area.
The CO2 flux per unit surface of the leaf (J l

CO2
)becomes:

J l
CO2

= Dfa
CO2

δCO2

δx
×

Sst

S

where Sst is the open stomatal area on the leaf area S. The stomatal conductance, gs, is defined
as Dfa

CO2
× Sst

δx×S . This parameter can be measured experimentally, by gaz exchanges, for a large

surface (10cm2). It varies with Sst which is directly linked to stomatal aperture. For each map
of CO2 we also measured gs (outside the patch) by the gaz exchange method.

2.3 Assimilation rate and intercellular molar fraction

The assimilation rate A is linked to the intercellular molar fraction c which may be determined
from gas exchange measurements. The equation used to describe this relation is derived from
the chemical properties of the carboxylation enzyme Rubisco.
The assimilation rate A is linked to the intercellular molar fraction c. The equation used describe
this relation is derived from the chemical properties of the carboxylation enzyme Rubisco. Under
non-photorespiratory condition and constant light it takes the following Michaelis-Menten form
(adapted from [6]):

A(c, z) =
Vcmax(z)c

c + Kc(z)
− Rd(z), (1)

where Vcmax(z) is the maximal assimilation velocity (mol m−3 s−1), Kc(z) the Michaelis constant
(ppm) and Rd(z) the respiration rate (mol m−3 s−1) at depth z inside the leaf. Note that even
in the light the plant respires, which is a source of CO2 inside the leaf, hence the term Rd.
At the point where c becomes non limiting this relation breaks into A = Amax(z) Under the
experimental conditions considered here, the A − c, z relation is described by the following
formula:

A(c, z) =

{
min(Amax(z), Vcmax(z)c

c+Kc(z) − Rd(z)) if c > 0,

A(c, z) = −Rd(z) otherwise,
(2)

At the so called compensation point

c∗z =
Rd(z) × Kc(z)

Vcmax(z) − Rd(z)
, (3)

the carboxylation rate κ = Vcmaxc
c+Kc

is equal to the respiration rate Rd, so the net CO2 assimilation
is zero. During experimentation the external CO2 molar fraction ca has always been maintained
above c∗z, and therefore, during the experience, the intercellular molar fraction c stays above c∗.
We shall prove in Theorem 3.2 below that under the above experimental conditions the molar
fractions given by the mathematical model also satisfy c ≥ c∗z.
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In the experiments presented in this paper we did not detailed the z variations. We Measured A
at different c for a leaf surface area using classical gaz exchange method. This yields yields to an
empirical A−c relation for the entire thickness of the leaf, the theoretical relation is then derived
from these experimental curves. we work under non-photorespiratory conditions (1%O2in the
air used) and constant light (Photon Flux Density of 400 µmol.m−2.s−1) The respiration rate
is assumed to be constant, here it is about 6 times smaller than maximal assimilation rate.
There is a good correlation between the experimental data and the theoretical relation fitted
using simplified Eq.(1) (without the z dependency) : the correlation coefficient between the two
curves is greater than 0.98.

3 The mathematical model

The physical domain Ω = {(r, θ, z), 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ H} is depicted in Figure 2.
It consists in a cylindrical section of a leaf, the thickness of which is denoted by H. The axis of
the cylinder runs through the center point of the patches, which are located symmetrically on
both lower (Σ`) and upper (Σu) surfaces of the leaf. The radius R of this cylinder is chosen large
enough so that the diffusion flux on its lateral side is negligible. We use cylindrical coordinates
r, z, θ to describe the area of study. Let ∂Ω denote the boundary of Ω. One has ∂Ω = ΣR∪Σu∪Σ`,
where ΣR = {(R, z, θ), 0 ≤ z ≤ H, 0 ≤ θ ≤ 2π} is the lateral boundary of Ω, Σu = {(r,H, θ),
0 ≤ r ≤ R, 0 ≤ θ ≤ 2π} (resp. Σ` = {(r, 0, θ), 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π}) is the upper (resp.
lower) surface. The blue area describes the patches ΣP = {(r, z, θ), 0 ≤ r ≤ RP , z = 0 or
z = h, 0 ≤ θ ≤ 2π}. The anatomy of the leaf (see e.g. [13]) is such that, at sufficiently large
scale, it may be considered as a porous media, with permeability depending only on z. For the
problem under consideration, we may therefore assume the CO2 molar fraction to be constant in
the θ dimension, and consider the problem to be axisymmetric. The diffusion coefficient DCO2

of the porous media of the leaf is unknown. In the sequel, for the sake of simplicity of notations,
we shall denote it by D. One of the goals of the mathematical model is to determine its value
from the above experimental data. In order to do so, let us first establish the mathematical
equations which rule the internal concentration c.

Definition 3.1 (Properties of the nonlinear sink term) Let A be the assimilation of CO2 by
photosynthesis, defined by (2), and let f be defined as

f(c, x) = −A(c, z) =

{
max

(
−Amax(z), Rd(z) − Vcmax(z) c

c+Kc(z)

)
if c > 0,

A(c, z) = Rd(z) otherwise
∀ c ∈ R, (4)

Therefore, f is a bounded decreasing function of c.

The diffusion equation for CO2 (see [13]) reads:

−∇ · (D∇c) = f(c, .) in Ω, (5)

(recall that D = DCO2
) with homogeneous Neumann boundary conditions on the lateral side of

Ω :
−D∇c · n = 0, on ΣR (6)

and Robin conditions due to the incoming flux of CO2 through the stomata of the leaf :

−D∇c · n = flst = gs(ca − c), on Σu ∪ Σ`, (7)
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where gs is the stomatal conductance defined in the previous section, which we set to 0 on ΣP ,
since the stomata are blocked by the patch, and ca is the atmospheric CO2 concentration. Since
ca is assumed to be higher than the compensation point c∗z defined by (3), for which f changes
sign. Hence the function f satisfies:

(i) if c ≤ c∗z then f(c, z) ≥ 0.

(ii) if c ≥ ca then f(c, z) ≤ 0.

Note that for the leaf considered as a porous medium, if the direction z is perpendicular to the
surface of the leaf, then the coefficient matrix D is of the form:

D =




dr 0 0
0 dr 0
0 0 dz


 , (8)

where dr, the “horizontal” diffusion coefficient (resp. dz, the vertical diffusion coefficient) only
depends on the coordinate in the z direction, and is bounded by below by a positive constant.
The problem (5)–(7) is well posed, in the sense that there exists a unique (and non negative)
solution of the weak formulation of (5)–(7) in an adequate functional space, as stated below.
Furthermore, this solution satisfies the physical bounds c∗z ≤ c ≤ ca.

Theorem 3.2 (Well posedness) Let f be defined by (4), gs > 0 and ca ≥ c∗z, where c∗z is the
compensation point defined by (3), let D be defined by (8), then there exists a unique function
c ∈ H1(Ω) such that:





c ∈ H1(Ω),∫

Ω
D(x)∇c(x) · ∇ϕ(x)dx +

∫

ΣU∪ΣR

gs(c(x) − ca)ϕ(x)dγ(x) =

∫

Ω
f(c(x), x)ϕ(x)dx,

∀ϕ ∈ H1(Ω).

(9)

where dx is the integration symbol for an open bounded set of R
3 and dγ(x) the integration

symbol for a surface of R
2. Moreover,

c∗z ≤ c ≤ ca a.e. in Ω.

Proof The existence of c is a consequence of Schauder’s fixed point theorem [2], which may be
applied to the fixed point operator T defined by c = T (c̃), where c is the unique function (by
the Lax Milgram theorem) such that:




c ∈ H1(Ω),∫

Ω
D(x)∇c(x) · ∇ϕ(x) dx +

∫

ΣU∪ΣR

gs(c(x) − ca)ϕ(x) dγ(x) =

∫

Ω
f(c̃(x), x)ϕ(x) dx,

∀ϕ ∈ H1(Ω).

(10)

Indeed, T is compact as an operator from L2(Ω) in in L2(Ω), thanks to the fact that f is
bounded.
Uniqueness is easily obtained by taking ϕ = c1 − c2 in (9), where c1 and c2 are two potential
solutions of (9), and using the fact that f is decreasing.
Finally, one proves that c ≤ ca by taking ϕ = (c − ca)

+(= max(0, c − ca)) in (9) and using the
fact that f is non-positive if c ≥ ca (see Definition 3.1). Similarly, one proves that c ≥ c∗z by
taking ϕ = (c − c∗z)

−(= −min(0, c − c∗z)) in (9) and using the fact that f ≥ 0 if c ≤ c∗z.
2
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4 The axisymmetric finite volume scheme

Assume that we know the diffusion parameter D, and we wish to find an approximate solution
c of Problem (5)–(7). In order to compute an approximate solution, we first discretize the
diffusion equation by an axisymmetric finite volume scheme. The finite volume strategy is very
well adapted to the axisymmetric geometry, and in particular, much more so than the usual
finite difference scheme on the Laplace operator written in cylindrical coordinates, where a term
in 1

r appears, which can yield a bad condition number for the resulting discretization matrix.

Definition 4.1 (Axisymmetric finite volume mesh) Let Nr ∈ N, Nz ∈ N, and let (ri)i=0,...Nr ⊂
[0, R] and (zj)j=0,...Nz ∈ [0,H] such that r1 = 0 < r2 < · · · < ri < ri+1 · · · < rNr < R, and
0 < z1 < z2 < · · · < zj < zj+1 · · · < rNz < H. We choose the values ri such that there exists a
radial interface corresponding to the patch, that is, there exists iP ∈ {1, . . . , Nr − 1} such that
riP +1/2 = RP , where the values ri+1/2 are defined by:

ri+1/2 =
ri + ri+1

2
for i = 1, . . . , Nr − 1, and rNr+1/2 = R,

and similarly:

z1/2 = 0, zj+1/2 =
zj + zj+1

2
for for j = 1, . . . , Nz − 1, and zNz+1/2 = H,

The physical domain Ω defined in the previous section is discretized in N = (Nr + 1) × Nz

annular control volumes defined by

K0,j = {(r, z, θ), 0 ≤ r < r3/2, zj−1/2 ≤ z < zj+1/2, 0 ≤ θ ≤ 2π}, j = 1, . . . , Nz,

Ki,j = {(r, z, θ), ri−1/2 ≤ r < ri+1/2, zj−1/2 ≤ z < zj+1/2, 0 ≤ θ ≤ 2π},

{
i = 1, . . . , Nr,
j = 1, . . . , Nz.

The mesh M is defined as the set of control volumes, i.e.

M = (Ki,j) i=1,...,Nr
j=1,...,Nz

,

and by hM the size of the mesh, that is:

hM = max (max{ρi), i = 1, . . . , Nr},max{hj , j = 1, . . . , Nz}) ,

where ρi = ri+1/2−ri−1/2 for i = 2, . . . , Nr, ρ1 = 2r3/2, and hj = zi+1/2−zi−1/2 for j = 1, . . . Nz.

Let us emphasise that the above defined mesh satisfies the orthogonality condition given in
Definition 9.1 of [5]. This condition is crucial for the consistency of the fluxes, and indeed, the
proofs of convergence and error estimates may be adapted for this kind of mesh. Furthermore,
with the above choice of interfaces, we have order 2 consistency of the internal fluxes. Let us
also note that the compatibility of the boundary of a control volume with the boundary of a
patch is not necessary to define the scheme, nor to prove its convergence. This choice was made
because of implementation and visualisation considerations.
In order to obtain the finite volume scheme, the diffusion equation (5) is integrated over each
control volume. Using the Stokes formula, this leads to the following flux balance equation:
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Figure 2: The physical domain (thick lines) of the model: a cylindrical portion of the leaf, (the blue area
represents the patch) and a control volume Ki,j (thin line) for flux balance

∫

∂Ki,j

−D(x)∇c(x) · n(x)dγ(x) =

∫

Ki,j

f(c(x), x)dx. (11)

We decompose ∂Ki,j = Σi−1/2,j ∪ Σi+1/2,j ∪ Σi,j−1/2 ∪ Σi,j+1/2 as shown on Figure 2, and write
(11) as:

Fi−1/2,j + Fi+1/2,j + Fi,j+1/2 + Fi,j−1/2 =

∫

Ki,j

f(c(x), x)dx,

where Fi,j+1/2 denotes the diffusion flux through the surface Σi,j+1/2 outward to Ki,j. Let
us now introduce the discrete unknowns (ci,j) i=1,...,Nr

j=1,...,Nz

, associated to the control volumes Ki,j,

and which are expected to be approximate values of c inside the control volumes Ki,j; denote
by (Fi+1/2,j) i=0,...Nr

j=0,...Nz

(resp. (Fi,j+1/2) i=0,...Nr
j=0,...Nz

) the radial interface (resp. horizontal interface)

numerical fluxes, which are expected to be approximations of the real fluxes Fi+1/2,j (resp.
Fi,j+1/2) through the boundaries of the control volume Ki,j. An approximate equation to (11)
is now:

Fi−1/2,j−1/2 + Fi+1/2,j−1/2 + Fi−1/2,j+1/2 + Fi+1/2,j+1/2 = |Ki,j |f(ci,j), (12)

where |Ki,j | denotes the volume of Ki,j. In order to fully define the finite volume scheme, we
need to express the numerical fluxes Fi,j in terms of the discrete unknowns ci,j. This expression
depends on the interface through which the flux Fi,j is defined. On internal faces, an easy
discretization of the normal gradient is obtained by a centred finite difference scheme. On
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external faces, the boundary conditions (null flux under the patch and on the lateral boundaries,
Robin condition on the upper and lower surfaces outside the patch) are taken into account. We
thus obtain the following expressions (note that the diffusion coefficients dr and dz depend on z
only):

• Lateral internal interfaces:

Fi+1/2,j = dr,i+1/2|Σi+1/2,j |
ci+1 − ci

ri+1 − ri
, i = 0, . . . , Nr − 1, j = 1, . . . , Nz . (13)

• Horizontal internal interfaces:

Fi,j+1/2 = dz,j+1/2|Σi,j+1/2|
cj+1 − cj

zj+1 − zi
, i = 0, . . . , Nr, j = 0, . . . , Nz. (14)

• Lateral boundary interfaces:

FNr+1/2,j = 0, j = 1, . . . , Nz. (15)

• Horizontal boundary interfaces:

– interface outside the patch, for i ≥ iP :

Fi,1/2 = |Σi,1/2|
2dz,1/2gs

2z1gs + 2dz,1/2
(ci,1 − ca),

Fi,Nz+1/2 = |Σi,Nz+1/2|
2dz,Nz+1/2gs

2(H − zN )gs + 2dz,Nz+1/2
(ci,N − ca).

(16)

– interface under the patch: for i ≤ iP :

Fi,1/2 = Fi,Nz+1/2 = 0, j = 1, . . . , Nz. (17)

In the above formulae, dr,i+1/2 and dz,j+1/2 represent some mean value of dr and dz over the
corresponding interface.

Theorem 4.2 (Well posedness of the discrete system) Let M be defined in Definition
4.1, there exists a unique solution (ci,j) i=1,...,Nr

j=1,...,Nz

to the system (12)-(17). Furthermore, one has:

c∗ ≤ ci,j ≤ ca, ∀i = 0, . . . , Nr, ∀j = 1, . . . , Nz . (18)

Proof First note that if f = 0, ca = 0, then the system (12)-(17) admits 0 as a unique solution,
which shows that for any ca, if f does not depend on c, then the system (12)-(17) admits a
unique solution. There remains to prove the existence and uniqueness in the nonlinear case. As
in the continuous case (see Theorem 3.2), the uniqueness of the solution is an easy consequence
of the fact that f is negative. Existence of a solution follows from Brouwer’s fixed point theorem.
Indeed, one considers the mapping T from R

N to R
N , defined by T (c̃) = c, where c is the unique

solution of the linearised problem obtained from (12)–(17) when replacing f(ci,j)= by f(c̃i,j)
in the right hand side of (12). Indeed, it was shown in [8] that for such a linear system, one
may obtain an estimate in the L2 norm on the approximate solution (Proposition 5.1 of [8]),
which only depends on the data. Hence we deduce that T maps L2(Ω) onto a closed ball, and
Brouwer’s theorem [2] applies.
Let us finally remark that (18) is easily deduced by using the assumptions of f (see Definition
3.1) and the fact that ca ≥ c∗, where the compensation point c∗ is defined in (3). 2
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Theorem 4.3 (Convergence of the finite volume scheme) Let M = (Ki,j) i=1,...,Nr
j=1,...,Nz

be

defined in Definition 4.1, and (ci,j) i=1,...,Nr
j=1,...,Nz

be the unique solution to 12–17. Let cM ∈ L2(Ω) be

the piecewise constant solution defined a.e. by:

cM(x) = ci,j, ∀x ∈ Ki,j . (19)

Then cM converges in L2(Ω) to the unique solution c of (9), as hM tends to 0.

Proof The proof of this result uses suitable adaptations to the cylindrical diffusion operator
considered here, of the tools developed in [4] for a semilinear problems with Dirichlet boundary
condition and in [8] for linear convection diffusion problems with Robin boundary conditions.
The first main adaptation concerns the proof of discrete Poincaré (Lemma 4.3 of [8]), which
in fact is simpler in the case of the axisymmetric meshes which are considered here. The
other adaptation concerns the passage to the limit in the scheme. In [4], the convergence of
the scheme was proven for a more general semi linear problem, but with Dirichlet boundary
conditions. Here we consider Robin boundary conditions, so the treatment of the boundary is
somewhat different. Indeed, we consider a sequence of approximate solutions (cM, cΓ), where
cΓ is a piecewise constant function from ∂Ω to R such that the constant value cσ of cΓ on a
given edge σ included in ∂Ω is determined by equalling the numerical flux (given by (15)–(17))
to Σ

d (cK − cσ), where Σ is the area of σ, K the control volume to which σ is boundary, d the
distance between the center point fo K and σ, and cK the unknown associated to K. Now, using
the same technique as that of the proof of Theorem 2 in [4] yields that the limit (c̃, c) sequence
of approximations (cM, cΓ) as the mesh size tends to 0 (which exists thanks to a compactness
result obtained from an estimate on the translate and Kolmogorov’s theorem, see [5] or [4])
satisfies :

∫

Ω
c̃(x) ∇ · (D(x)∇ϕ(x))dx +

∫

∂Ω
D(x)∇ϕ(x) · n(x)(c(x) − ca)dγ(x) =

∫
f(c̃(x), x)ϕ(x)dx,

for all function ϕ ∈ C1(Ω) such that ϕ = 0 on ∂Ω. Using the following lemma yields that c̃ is in
fact the unit solution of (9), which concludes the proof.

Lemma 4.4 let Ω be an open bounded subset of R
d, d ≥ 1, with Lipschitz boundary. Let

f ∈ L2(Ω), v ∈ L2(∂Ω), a ∈ C∞(Ω̄) such that a ≥ a > 0 and assume that
∫

Ω
u(x)div(a(x)∇ϕ(x)d(x) +

∫

∂Ω
a(x)∇ϕ(x) · n(x)v(x)dγ(x) =

∫
f(x)ϕ(x)dx,

for all functions ϕ ∈ C1(Ω) such that ϕ = 0 on ∂Ω; then −div(a∇u) = f in Ω and γ(u) = v on
∂Ω, where γ denotes the trace operator from H1(Ω) to L2(Ω).

2

5 Numerical solution of the discrete problem

The scheme (12)–(17) may then be written as:

MC = b(C), (20)

where:
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• M is a symmetric positive definite matrix and b(C) ∈ R
N , with N = Nr ×Nz. It is easily

shown that M satisfies the following discrete positive property:

Mx ≥ 0 =⇒ x ≥ 0. (21)

• C ∈ R
N is a vector of R

N with components ck (the unknowns of the system), k = 1, . . . , N ,

• b is a (component wise) non increasing function from R
N to R

N .

Let us first remark that since the matrix M is symmetric definite positive, and since b is con-
tinuous and non increasing function, one may show that there exists a unique solution to (20).
In order to solve this nonlinear system, one could use Newton’s method, which has the advantage
of converging fast: the method is known to be locally convergent with a quadratic convergence
if sufficient regularity conditions are fulfilled. However, it is also well known that Newton’s
method may not converge at all if the initial guess is taken too far from the solution of the
equation. Hence we prefer to choose a more robust (even though slower) method, based on the
monotony of the constructed sequence of approximations. In order to apply a monotonic fixed
point method and prove its convergence we need to apply it to a system of the form Bx = g(x)
where g is a non decreasing continuous function and where the matrix B satisfies the discrete
maximum principle, that is if x ∈ R

N is such that Bx ≥ 0, then x ≥ 0 (see [9] for further
details). Note that this last property is important when discretizing diffusion systems, since this
ensures that the approximate molar fractions will remain positive.
It is easily seen that the functions bk (components of b) are continuous and non increasing.
However, the functions gk defined by gk(x) = bk(x) + ωx with ω = V cmax

Kc
is non decreasing

(because in fact, −ω is a lower bound of the derivative of bk when it is derivable). Hence we
shall apply the monotonic fixed point method of [9] to the ”relaxed” system

MC + ωC = b(C) + ωC.

It is easily shown that the matrix M + ωId (where Id denotes the identity matrix) still satisfies
the discrete maximum principle and that the function g is now non decreasing. Furthermore the
other assumptions which are needed to prove the convergence of the method (namely that 0 is
a sub solution of the system and there exists a positive super solution of the system, see [9]) are
easily shown to be satisfied. Hence, the sequence (C(k))k∈N ⊂ R

N defined by:

• C(0) ∈ R
N chosen arbitrarily (or rather, adequately...)

• for k ≥ 0, C(k+1) ∈ R
N is the unique solution to the following linear system:

MC(k+1) + ωC(k+1) = F (C(k)) + ωC(k)

converges to the unique solution of (20) (which is also the unique solution to (12)–(17) (see [9]).
Indeed, we use this algorithm to solve the discrete nonlinear system, and the convergence up
to a tolerance of 10−6 on the relative error is found in less than 10 iterations with the given
parameters.
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6 Estimation of D(= DCO2
):

In the biological application (see [12] ) we are mainly interested in the role of lateral diffusion,
we therefore choose to implement our method according to this objective. Indeed, we integrate
the 3D diffusion equation over the depth of the leaf (which is the z direction), and obtain a 2D
diffusion equation, the unknown of which is the averaged value of the concentration over the
depth of the leaf. Let us give some details; integrating Eq. (5) in the z direction yields :

∫ H

0
−∇xy · (D∇c) dz − D∇c · n(H) + D∇c · n(0) =

∫ H

0
f(c)dz (22)

where ∇xy· denotes the two dimensional divergence operator. Let us the denote by c̃ the mean

value of c in the z direction. In equation (22), we approximate
∫ H
0 D∇c dz by HD̃∇c̃, where D̃

denotes the mean value of D in the z direction (note that the third component of the vector ∇c̃

is zero); we also approximate the source term
∫ H
0 f(c)dz by Hf(c̃). Furthermore, we take into

account the boundary conditions (7), also approximating the point wise values c(H) and c(0)
by c̃. We then obtain the following 2D model:

∇xy · (D̃∇c̃) +
gs

H
(c̃ − ca) = f(c̃) (23)

This equation has to be discretized on a disk of radius R. Since the diffusion coefficient is
constant in the r and θ directions, the axisymmetric finite volume discretization presented in
the above section boils down to a one dimensional computation (see [7]) in the sequel we shall
denote by D the mean value in the z direction of the lateral coefficient (which was denoted by
d` in (8)).

Determination of the lateral diffusion coefficient In the above section, we devised a
method to compute the internal concentration of CO2, given the assimilation parameters, the
conductance gs, the atmospheric CO2 concentration ca, and the diffusion parameter D within
the leaf. Now, as we mentioned in the introduction, the diffusion coefficient within the leaf is
not well known. We shall therefore determine this parameter by fitting the experimental data
with the results from the model at different D, and choose the parameter which minimises the
least square function defined by the computed values and the experimental values. The model
produces a string of c values. In order to compare this profile with the experimental data we
extract two transects perpendicular to each other centred in the center of the patch. Since we
choose the size of a discretization cell in the model equal to that of the measurement cell, the
calculated and estimated values of c may be easily compared cell by cell from the center of the
patch.
To determine the coefficient of lateral diffusion we compare the theoretical curve with the exper-
imental data varying the coefficient of diffusion. For a particular determination of D on a given
experiment numbered k, we calculated the mean punctual relative error, εm

k , between the exper-

imental data, ck, and the calculated ct. This error is defined by: εm
k = 1

n

∑n
i=1

|ct
i−ck

i |

|ck
i |

. where n

is the number of measured values of ck
i on the transect. The smallest relative errors ((εm

k )min)
gives the best estimation of the lateral diffusion coefficient. We then define the mean relative

error µm =
∑K

k=1(ε
m
k

)min

K where K is the number of experimental measurements performed for
each species. The standard deviation of the parameter D around its mean Dm

CO2
is given by

σ =

√∑K
k=1

(Dk−Dm)2

K
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Figure 3: Measured internal concentrations of CO2

Sensitivity analysis We analysed the sensitivity of the estimated D given by the model
to various parameters X. Variation of X are given as a percentage of the initial value X0

and variation in D are given as a percentage of initial D. To analyse the sensitivity of the
profile to the parameter X, the variation of the profile are given as a percentage of the mean
punctual differences between the new profile PX0

and the initial profile PX+δX define by V =

1
n

∑n
i=1

|c
X0
i −cX+δX |

|c
X0
i

|
. The elasticity of the parameter or the profile P relative to the parameter

X is given by e = V/ δX
X0

.
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Figure 4: Experimental and calculated profiles for Phaseolus vulgaris. The dotted lines represent
c values from experimental measurements for two perpendicular transects across the patch, the
solid line is the profile calculated with the model, using the D given by the best fit with the
experimental data. The patch radius is equal to 2mm. External CO2 molar fraction, ca, and
stomatal conductance, gs, are the values given by gas exchange measurements.

Results Figure 4 illustrates typical results obtained. One may observe that towards high ca,
outside the patch, the calculated profile deviates from the experimental data. There are essen-
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tially two reasons: firstly there are veins in the mesophyll tissues that punctually disturb the
determination of c, secondly at high c, around 300ppm, the limit of the experimental determi-
nation of c is reached. The corresponding computed lateral diffusion coefficient for Phaseolus

vulgaris, DCO2
, is equal to 73µmol m−1 s−1. DCO2

may also be expressed as a percentage of

the diffusion coefficient in free air (Dfa
CO2

= 1.51 10−5 m2 s−1 or 617µmol m−1 s−1 at 101.3
kPa and 20◦C). Since the reduction is mainly due to the anatomy of the leaf, especially the
porosity of the medium and the tortuosity of the pathways, the % of reduction also gives an
insight on the anatomy of the leaf. Here DCO2

= 12.4%Dfa
CO2

. Measurements were performed
on 5 different leaves of Phaseolus vulgaris An average of five measurements, each at different
external CO2 molar fraction, is performed for every leaf. The standard deviation, equals to 1.8
%Dfa

CO2
, partly reflects biological variability. Measurements were made on 5 different leaves thus

the areas investigated do not have identical anatomy. The mean punctual relative error, µm,
between the experimental data and the model is around 25%. As well as reflecting experimental
variation, this error can be explained by the lack of precision of the fit in the R dimension due
the measurements and discretization precisions. Indeed the radius of the experimental patch
can vary by 0.1mm and the center, or border of the patch, do not necessarily match with the
center of a measurement cell. The accuracy of the computed value for DCO2

depends on the
reliability of the other biological parameters. The principal source of error in the model arises
from the assimilation parameters. In particular the thickness of the photosynthesising tissue is
not precisely known, and therefore neither is the sink strength. We are currently working to
improve the photosynthesis and anatomical data in order to use the full 3D discretization, which
would lead to a better estimation of DCO2

. Secondly it is interesting to note that the elasticity
of the theoretical profile to different DCO2

is relatively low, 0.37 for Phaseolus vulgaris. This
low sensitivity is itself an important result. Indeed it suggests that CO2 depletion with the
assimilation parameters considered here is mainly driven by consumption. It is worth noting
that the sensitivity of the profile to DCO2

depends on the assimilation strength. If assimilation
is low, sensitivity to DCO2

will be high. Similarly sensitivity of the profile to the assimilation
strength depends on DCO2

. The higher DCO2 the higher the sensitivity to assimilation strength.
Recently Pieruschka et al. [17] also calculated a lateral diffusion coefficient for Phaseolus vulgaris

using a different method and they found it to be nearly zero. This is not compatible with the
results of our experiments; since all c under the patch are not equal to the compensation point
c∗ there must be some diffusion.

7 Perspectives

We used the finite volume method for the simulation of the diffusion of CO2 through the leaf
tissue, using an axisymmetric geometry. Numerical tests were performed and allowed us to
derive from experimental data the rate of lateral diffusion within the leaf tissue. The interest of
this work is two-fold: from the point of view of numerical analysis, it shows that the finite volume
method with cylindrical meshes works quite well, and that convergence and error estimate results
which were obtained for polyhedral meshes may be extended to this type of mesh. From the
biological point of view, we were able to infer that the diffusion process is not sufficient with
respect to assimilation to supply enough CO2 under the patch. Hence, under moderate to high
light, if stomata close in patches, the photosynthesis will be affected regardless of the anatomy
of the leaf.
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Future research requires a more precise study of the porous media itself, and“real”axi-symmetric
tests in order to see the influence of the depth of the leaf tissue. One needs to find a law in
particular for the variation of DCO2

in z. Another interesting problem to solve mathematically
is the sensitivity of the profile to DCO2

as a function of the assimilation strength and reciprocally
the sensitivity of the gradient to assimilation strength as a function of DCO2

. Future experi-
mental measurements should be conducted for the same species with different sink strength, this
can be achieved by modifying Rubisco content or its affinity to CO2. On the one hand these
experiments are necessary to verify that the estimated DCO2

by the model is independent of
assimilation rate, which it should be. On the other hand it will provide experimental data to
test sensitivity of the gradient to the assimilation strength for a given DCO2

.
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