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ABSTRACT: By means of the contact dynamics method together with a particle fracture model, in which
the particles are cohesive aggregates of irreducible polygonal fragments, we investigate the evolution of particle
size distribution in the process of uniaxial compaction of granular materials. The case of single particle breakup
under compressive stress is used to test the method and the influence of discretization (number of irreducible
fragments). We show that the breaking threshold of the granular assembly scales with the internal cohesion of
the particles but it depends also on the initial size distribution and irregularity of polygonal particle shapes.
The evolution of size distribution proceeds by consecutive periods of intense particle crushing, characterized by
local shattering instability, and periods of little breaking activity. Starting with either monodisperse or power-
law distribution of particle sizes, the latter evolves towards a broad distribution of the fragmented particles with
a nearly power-law distribution in the range of intermediate particle sizes. Interestingly, a finite number of large
particles survive despite ongoing crushing process due to the more homogeneous distribution of forces in the
presence of small fragmented particles filling the pores between larger particles.

1 INTRODUCTION

Particle breakage occurs very commonly in natural
granular flows and in industrial processes involving
the transport, handling and compaction of granular
materials. The particle size reduction is often unde-
sired or uncontrolled, and it is referred to as attri-
tion process. In contrast, the fragmentation of parti-
cles under controlled conditions is used in comminu-
tion processes such as the milling of vegetal products
or grinding of mineral materials. The evolution of par-
ticle size distribution and energy dissipation in such
processes depend on many factors such as particle
properties (shape, crushability), initial size distribu-
tion, loading history and mobility of the grains during
the crushing process (Thornton, Yin, & Adams 1996,
Fuerstenau, Gutsche, & Kapur 1996, Couroyer, Ning,
& Ghadiri 2000, Potapov & Campbell 2001, Nakata,
Hyodo, Hyde, Kato, & Murata 2001, Cleary 2001,
Bolton, 2, & Cheng 2008, Hosten & Cimilli 2009,
Liu, Kafui, & Thornton 2010).

The manufacture of compact shapes by molding
powdered materials is the archetypal example of a
process in which the bulk crushing of particles plays
as much a role as particle rearrangements (Fuerste-

nau, Gutsche, & Kapur 1996, Hosten & Cimilli 2009,
Das, Nguyen, & Einav 2011, Ben-Nun, Einav, &
Tordesillas 2010, Esnault & Roux 2013). However,
despite its industrial importance, the compaction pro-
cess and its underlying microscopic mechanisms are
still poorly understood partially due to short length
and time scales governing particle breakup. The bulk
comminution process and redistribution of the frag-
ments during compaction are controlled by the struc-
tural disorder of granular media and highly inhomo-
geneous distribution of contact forces (Tsoungui, Val-
let, Charmet, & Roux 1997, Radjaı̈ 1998, Thornton,
Ciomocos, & Adams 2004, Agnolin & Roux 2007,
Ben-Nun, Einav, & Tordesillas 2010). Moreover, the
process is both nonlinear and nonlocal as cascading
events follow a local particle breakup and seem to
have strong impact on the resulting size distributions
(Esnault & Roux 2013). Analytical models have also
been proposed for the distribution of particle sizes
(Wohletz, Sheridan, & Brown 1989, Redner 1990,
Astrom & Herrmann 1998, Gorokhovski 2003, Elek
& Jaramaz 2009, Bird, Watts, Tarquis, & Whitmore
2009). Most models are based on kinematic consid-
erations and the cascading nature of the fragmenta-
tion process, leading thus to log-normal distributions



or power laws. However, the nonlinear effects and ho-
mogeneity of breakup events inside the material are
essential for the size distributions (Redner 1990, Bird,
Watts, Tarquis, & Whitmore 2009).

Numerical simulations by the molecular dynam-
ics (MD) or discrete element method (DEM) have
been increasingly employed in order to get a bet-
ter understanding of the particle-scale mechanisms of
the comminution process (Thornton, Yin, & Adams
1996, Moreno, Ghadiri, & Antony 2003, Liu, Ka-
fui, & Thornton 2010). Such methods combine the
general framework of the DEM, based on rigid-body
dynamics and frictional contact interactions, with a
particle fracture model. DEM numerical models have
the advantage of providing detailed information about
the local particle environments and force chains that
control the local breakup events. The most straight-
forward approach consists in modeling the parti-
cles as agglomerates of irreducible spherical particles
bonded together by cohesive forces. Such agglom-
erates may represent real agglomerates such as pel-
lets and ceramic compacts . This model has, however,
been more generally used to investigate the behavior
of crushable soils, rocks, fault gouge and other mate-
rials (Cheng, Bolton, & Nakata 2004, Khanal, Schu-
bert, & Tomas 2007, Bolton, 2, & Cheng 2008, Abe
& Mair 2009, Wang & Yan 2012, Timár, Kun, Car-
mona, & Herrmann 2012, Metzger & Glasser 2012).
An alternative method consists in replacing a circular
or spherical particle at its fracture threshold by sev-
eral smaller fragments of the same shape (Astrom &
Herrmann 1998, Tsoungui, Vallet, & Charmet 1999,
Ben-Nun, Einav, & Tordesillas 2010). A major draw-
back of both methods is that an aggregate of spher-
ical particles includes voids, so that the breakup of
the agglomerate leads to volume loss. To circumvent
this pathology, some authors have applied the DEM to
particles of arbitrary shape discretized into polygons
interconnected by springs with a breaking threshold
(D’Addetta, Kun, & Ramm 2002, Galindo-Torres, Pe-
droso, Williams, & Li 2012). This approach has been
used to study the fragmentation process of a single
particle.

In this paper, we introduce a novel approach based
on the contact dynamics (CD) method (Moreau 1994,
Radjaı̈& Richefeu 2009, Radjaı̈& Dubois 2011). The
particles have polygonal shapes and modeled as cohe-
sive aggregates of irreducible fragments of polygonal
shape generated by Voronoi tessellation so that they
fill the whole volume of the particle. A contact line
between two irreducible fragments loses its cohesion
and becomes frictional when a cohesion threshold is
reached. Upon fragmentation, the total volume of the
fragments is equal to the initial volume of the initial
particle, so that, in contrast with an aggregate of cir-
cular particles, the volume is conserved. As we shall
see below, our simulations reveal the highly nonlin-
ear feature of the breaking process with periods of
intense breakup events followed by periods of load-

Figure 1: Discretization of a particle by Voronoi cells represent-
ing irreducible fragments interacting by cohesive forces.

ing with little breaking activity. We also observe local
shattering of the particles as well as a finite number
of surviving particles. The size distributions are rather
complex as they can not be fitted into a single func-
tion, but we find that the intermediate sizes are rather
well represented by power-law distributions.

In the following, we first describe the numerical
procedures and our particle system. Then, we con-
sider the case of single particle breakup in order to
quantify the effect of discretization. Then, we present
the evolution of size distributions for different system
parameters as a function of the compressive stress. We
conclude with a brief discussion of the most salient
findings of this work.

2 NUMERICAL PROCEDURES

The simulations were carried out by means of the
CD method, which is suitable for simulating large
assemblies of undeformable particles (Moreau 1994,
Radjaı̈& Richefeu 2009). In this method, the equa-
tions of motion are integrated by an implicit time-
stepping scheme accounting for the kinematic con-
straints resulting from frictional contact interactions.
The implicit integration scheme makes the method
unconditionally stable. An iterative algorithm is used
to determine the contact forces and particle velocities
simultaneously for all particles in the system. The CD
method has been extensively employed for the sim-
ulation of aspherical particles (Azéma, Radjaı̈, Pey-
roux, & Saussine 2007, Azéma, Radjaı̈, & Saussine
2009, Azéma & Radjaı̈ 2010, Azéma & Radjaı̈ 2012,
Azéma, Radjaı̈, & Dubois 2013).

We divide each particle into irreducible fragments
by Voronoi tessellation as shown in figure 1. These
fragments represent primary rigid particles that inter-
act by frictional cohesion along their sides character-
ized by a normal fracture threshold σc and a shear
threshold µsσc, where µs is the internal friction coeffi-
cient. All primary fragments interact by side/side con-
tacts. The normal adhesion threshold fc between two
fragments linearly depends on the lengthL of the con-
tact (representing the interface): fc = 0.5Lσc, where
σc is the internal cohesion of the particle. The factor
0.5 accounts for the two contact points representing



geometrically a side/side contact. The fracture is as-
sumed to be irreversible and a side/side contact trans-
forming into a side/vertex contact loses its cohesion.
Each contact point carries a normal force fn and a
tangential force ft. The friction coefficient in the sim-
ulations reported below is set to µs = 0.3.

Figure 2: A single circular particle subjected to diametral com-
pression. The red and green lines represent compressive and ten-
sile contacts, respectively.
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Figure 3: Axial stress versus axial strain for several values of the
cohesive stress σc. The inset shows the axial stress normalized
by σc.
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Figure 4: Tensile strength normalized by the internal cohesion as
a function of the number nV of Voronoi cells.

We used slow single-particle compression tests in
order to evaluate the effect of numerical parameters
on the breakup process. Fig. 2 displays the incipi-
ent fracture of a particle compressed between two
planes together with compressive and tensile forces
between irreducible fragments composing the parti-
cle. The crack is triggered at the top plane and propa-
gates from top to bottom into the particle. This mode-I

fracture is observed in experiments. The zigzag aspect
of the main crack reflects the rather coarse discretiza-
tion of the particle. We also observe secondary cracks,
and small fragments in addition to the two main frag-
ments produced.

δ = 0 δ = 0.5 δ = 1

Figure 5: Example of a regular pentagon δ = 0 transformed into
irregular pentagons for two values of the parameter δ (see text).

Figure 3 shows the mean axial stress σa as a func-
tion of axial deformation εa for different values of the
internal cohesion σc. The stress increases smoothly
with strain and falls off abruptly when fracture is trig-
gered. The stress peak is the fracture threshold of the
particle. Except for the lowest cohesion, it scales with
σc, as shown in the inset. The higher threshold of
σa/σc in the low-cohesion limit may be attributed to
the prevailing effect of interlocking and friction be-
tween fragments as compared to the cohesive inter-
actions. This is consistent with the fact that the frac-
ture threshold σmaxa declines when the number nV of
meshing Voronoi cells increases, as shown in Fig. 4.
For nV > 100 the fracture threshold is nearly inde-
pendent of nV , indicating that for nV > 100 the de-
tails of Voronoi tessellation do not affect the frac-
ture behaviour of the particle. In the simulations re-
ported below all particles, irrespective of their sizes,
are meshed with irreducible fragments of the same
size and the smallest particles have at least 50 frag-
ments.

3 EVOLUTION OF SIZE DISTRIBUTIONS IN
UNIAXIAL COMPRESSION

We consider the evolution of particle size distribu-
tions of an assembly of polygonal particles in oedo-
metric geometry. We use pentagons as reference par-
ticle shape. An irregular pentagon can be obtained by
changing the angular positions of the vertices. Let
θ0 be the position of the first vertex. The angular
position of a vertex i is given by θi = θ0 + 2πi/5.
This regular pentagon can be transformed into an ir-
regular pentagon by perturbing randomly the posi-
tion of each vertex i within an angular limit ±δπ/5:
θi = θ0+

2π
5
i± δ π

5
, where δ can be varied in the range

[0,1]. Its value quantifies the degree of shape irregu-
larity. Fig. 5 shows two examples of irregular pen-
tagons constructed from a regular one. The size of a
pentagonal particle is defined by the diameter d of its
circumscribed disk. It is varied in a range [dmin, dmax]
with a uniform distribution of particle volume frac-
tions. Following (Voivret, Radjaı̈, Delenne, & Yous-
soufi 2007), we define the size span s of the distribu-
tion by s= dmax−dmin

dmax+dmin
. The value s= 0 corresponds to
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Figure 6: Three snapshots of a packing under uniaxial com-
paction for axial stresses σa = σc(a) σa = 2σc(b) and σa =
10σc(c).

a monodisperse packing whereas s= 1 corresponds to
“infinite” polydispersity.

All packings are prepared according to the same
protocol. For given values of s and δ, 200 particles are
generated with ten size classes and a uniform particle
volume distribution. The particles are initially placed
on a square network in a rectangular box of dimen-
sions l0 × h0 and deposited under the action of the
gravity g. Then, the gravity is set to 0 and the pack-
ings are subjected to vertical compression under an
axial load σa applied on the upper wall and where
the left, bottom and right walls are fixed. The fric-
tion coefficient between particles and with the walls
is set to zero during the compression in order to ob-
tain dense and nearly isotropic packings. The com-
pression is stopped when the contact force network
jams. The samples prepared by the above procedure
are then subjected to to uniaxial compaction in the
same box by incrementally increasing σa.
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Figure 7: Evolution of axial deformation (a) and mean particle
diameter (b) as a function of normalized axial stress, and evolu-
tion of mean particle diameter as a function of axial strain (c), for
four different combinations of size polydispersity s and shape ir-
regularity δ. The diameters are normalized by the largest particle
diameter dmax before the beginning of fragmentation.

Figure 6 displays three snapshots of a packing com-
posed of irregular pentagons at three stages of evolu-
tion of the particles and cracks between adjacent irre-
ducible fragments, as well as the fragments generated.
We see that the cracks are initiated in different parts
of the packing and most of time they do not propa-
gate to neighbouring particles. Instead, due to local
load transfer, they lead to the shattering of a few par-
ticles whereas a number of particles are at the same
time only superficially damaged.

Figure 7(a) shows the axial deformation εa as a
function of the normalised axial stress σa/σc for four
different combinations of size polydispersity s and
shape irregularity δ. Since the particles are perfectly
rigid, the axial deformation reflects the breakup of
particles and partial filling of the pore space by small
fragments. This process begins for a stress well below
the cohesive strength σc of the particles as a result of
broad force distribution in granular materials and con-
centration of forces in strong force chains. The defor-
mation then proceeds by periods of fast fragmenta-



tion due to shattering instability and sudden increase
of εa followed by periods of loading without frag-
mentation and deformation. Up to σa = 5σc, the total
deformation is larger for monodisperse (s = 0) pack-
ings than for polydisperse packings (s = 0.5). Figure
7(b) shows the evolution of the mean particle diameter
〈d〉 normalized by dmax as a function of axial stress.
The evolution of 〈d〉 clearly underlies the “staircase”
aspect of the evolution of deformation with a series
of equilibrium configurations separated by rearrange-
ments allowed by particle breakage. This correlation
is observed for all values of s and δ. As a result, when
〈d〉 is plotted vs. εa, we observe an almost smooth de-
pendence as shown in Fig. 7(c). In the monodisperse
case, the mean particle size declines logarithmically
with axial deformation during fragmentation. In the
polydisperse case, we observe a similar trend but over
a narrower range. Note that for all values of s and δ,
the mean particle diameter is two times the diameter
of a irreducible fragment at σa = 5σc.

Figure 8 shows the cumulative volume fraction
(CVF) h(d) of fragmented particles at different levels
of compression for packings of regular monodisperse
((s = 0.0) and polydisperse (s = 0.5) particles. By
definition, we have h(d) = π

∑
di<d d

2
in(di) δd, where

n(di)δd is the proportion of particles of diameter di.
In the monodisperse case, the fragmentation generates
quite rapidly all size classes down to the size of irre-
ducible fragments. The CVF tends to a well-defined
shape with three distinct size ranges: 1) small-size
range d < 0.1dmax, 2) intermediate range 0.1dmax <
d< 0.8dmax and 3) large-size d > 0.8dmax. The small-
size range reflects the cutoff imposed by the size of
irreducible fragments. The large-size range, with its
relatively higher number of particles, represents a sig-
nature of the initial size distribution. It indicates that
large particles break to a lesser extent due to the effect
of smaller fragmented particles that tend to reduce the
concentration of shear stresses.

The CVF in the intermediate range is nearly lin-
ear, implying thus a power-law distribution n(d)∝ dα
with α ' −2. Note that this distribution corresponds
to a uniform distribution by volume fractions and it
was found to be the distribution best filling the pore
space in two dimensions (Voivret, Radjaı̈, Delenne, &
Youssoufi 2007). This distribution is also very close
to the fractal distribution of Apollonian packings with
exponent α ' −2.3 (Astrom & Herrmann 1998). The
emergence of a pore-filling power-law size distribu-
tion by fragmentation is remarkable as it suggests that
the particle breakup down to small sizes is affected by
the sizes of unfilled pores. As far as this is the case,
the size distribution is stable and only the low-limit
particle size evolves. The case of polydisperse pack-
ings, shown in Fig. 8(b), is interesting in this respect.
Here, the initial size distribution is uniform by vol-
ume fractions from the very beginning. We see that
the linear CVF is conserved by fragmentation in the
range d > 0.3dmax.
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Figure 8: Cumulative volume fraction of particles during
compression for packings of regular (δ = 0) pentagons both
monodisperse (s = 0.0) (a) and polydisperse with (s = 0.5)(b).
The diameters are normalized by the diameter dmax of the
largest particle before the beginning of particle breakage.

4 CONCLUSION

In this work, we introduced a numerical approach
based on the contact dynamics method and meshing
of the particles by irreducible fragments of polyg-
onal shape for the simulation of granular materials
with potential particle breakup. This approach con-
serves particle shapes (polygonal) and total volume
of the particles during the fragmentation process. The
fracture threshold of a single particle scales with its
cohesive strength and is not affected by the num-
ber of meshes if the latter is sufficiently high. It was
shown that stress-controlled oedometric compaction
of crushable particles occurs in consecutive periods
of intense particle breakup leading to rearrangements
and fast increase of packing fraction, and periods of
loading with nearly no particle breakup. The fragmen-
tation process is initiated by cracks inside the par-
ticles. The cracks do not propagate from particle to
particle. Instead, local shattering of a number of parti-
cles occurs as a result of the effect of persistent strong
force chains. We showed that the cumulative volume
fractions are linear in the intermediate size range, cor-
responding to a power-law size distribution of expo-
nent −2. More work is under way to characterize in
more detail the fragmentation process, the evolution
of local stresses and contact force distributions, the
shapes of fragments, and the effect of external param-
eters such as gravity. In the same way, an interesting
topic that may be investigated within the present ap-
proach is the effect of particle breakup on the quasi-
static and inertial granular flows.
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Azéma, E. & F. Radjaı̈ (2010). Stress-strain behavior and geo-
metrical properties of packings of elongated particles. Phys.
Rev. E 81, 051304.
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