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LOWER BOUNDS FOR THE EIGENVALUES OF THE Spinc DIRAC
OPERATOR ON SUBMANIFOLDS

ROGER NAKAD AND JULIEN ROTH

ABSTRACT. We prove lower bounds for the eigenvalues of the Spinc Dirac operator on
submanifolds. These estimates are expressed in terms of extrinsic and intrinsic quanti-
ties. We also give estimates involving the Energy-Momentum tensor as well as conformal
bounds. The limiting cases of these estimates give rise to particular spinor fields, called
generalized twisted Killing spinors, which are also studied.

1. INTRODUCTION AND PREMILINARIES

The limiting cases of estimates for eigenvalues of the Dirac operator on compact (with
or without boundary) manifolds give rise to examples of special geometries. For instance,
equality in the classical inequalitiy of Friedrich [3]

λ1 6
n

4(n− 1)
inf
M
ScalM ,

where n is the dimanesion of the manifold M and ScalM its scalar curvature, forces the
manifold to be Einstein with positive scalar curvature, due to the fact that the eigenspinor
associated with the first eigenvalue is then a real Killing spinor.
This is also the case for the conformal inequality of Hijazi [9]

λ1 6
n

4(n− 1)
µ1,

where µ1 is the first eigenvalue of the Yamabe operator as well for the inequality involving
the Energy-momentum tensor [10]

λ1 6
1

4
inf
M

(ScalM + |Qϕ|2),

where Qϕ is the Energy-Momentum tensor associated with a first eigenspinor ϕ.

On the other hand, in the recent years, many estimates have been proved for the
eigenvalues of the Spinc Dirac operator. A great difference between both cases if that the
equality cases for Spinc lower bounds are less and therefore give larger classes of limiting
manifolds (see [8, 13, 14] for instance).
In this note, we prove a new lower bound for the eigenvalues of the Spinc Dirac operator
on submanifolds of Spinc manifolds (see Theorem 2.1). This generalizes for the Spinc

case, previous estimates by Hijazi-Zhang [11, 12] and Ginoux-Morel [5]. The limiting
case of this estimate is characterized by the existence of particular spinor fields called
generalized twisted Killing spinors. We will study these particular spinor fields and show
that under a natural assumption on the dimension and the codimension of the submanifold,
they are in fact twisted Killing spinors which generalize naturally the usual Killing spinors
for twisted spinor bundles.
Finally, we also prove conformal estimates (Theorem 2.3) as well as estimates involving
the Energy-Momentum tensor associated with an eigenspinor (Theorem 2.2).
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We recall briefly some basic facts about Spinc manifolds and their hypersurfaces
(the reader can refer to [1, 2, 4, 5]). Let (M̃m+n, g̃) be a Riemannian Spinc manifold and
Mm a submanifold isometrically immersed into M̃ . Assume that M is also Spinc and
denote by NM the normal bundle of the immersion of M into M̃ . We denote by iΩ̃ (resp.
iΩ) the curvature 2-form of the corresponding auxiliary line bundle. Since the manifolds
M and M̃ are Spinc, there exists a Spinc structure on the bundle NM . We denote by ΣN
the Spinc bundle of NM and let

Σ :=

{
ΣM ⊗ ΣN if m or n is even,
ΣM ⊗ ΣN ⊕ ΣM ⊗ ΣN otherwise

It is well known that there is a natural isomorphism between Σ and ΣM̃|M . Moreover, we
denote by∇ the covariant derivative on Σ defined by

∇ :=

{
∇ΣM ⊗ Id + Id⊗∇ΣN if m or n is even,
∇ΣM ⊗ Id + Id⊗∇ΣN ⊕∇ΣM ⊗ Id + Id⊗∇ΣN otherwise.

We have the following identification between the Clifford multiplication

X ·M ϕ = (X · ω⊥ · ψ)|M ,(1)

where ϕ = ψ|M , ψ ∈ Γ(ΣM̃), ω⊥ := ωn if n is even and ω⊥ = −iωn if n is odd, with
ωn = i[

n+1
2 ]ν1 · · · νn the complex volume element of the normal bundle. We also recall the

Spinc Gauss formula

∇̃Xϕ = ∇Xϕ+
1

2

m∑
j=1

ej ·B(X, ej) · ϕ,(2)

where ∇̃ is the spinorial connection on M̃ and B is the second fundamental form of M in
M̃ . We will denote by H the mean curvature.

Now, let us define the following Dirac operators

D =

m∑
j=1

ej · ∇ej , D̃ :=

m∑
j=1

ej · ∇̃ej ,

and

DH = (−1)nω⊥ · D̃ = (−1)nω⊥ ·D +
1

2
H · ω⊥ · .

Clearly, from the spinorial Gauss formula (2), we have D̃ = D − 1
2H·. Moreover (see [1,

Lemma 2.1]), D andDH are formally self-adjoint andD2
H = D̃∗D̃ where D̃∗ is the formal

adjoint of D̃ with respect to the L2-scalar product
∫
M

(·, ·)dvg .
We finish this section of preliminaries by the two following lemmas. The first one gen-
eralizes the classical Lichnerowicz formula in the context of twisted Spinc spinor bun-
dles. Before stating the lemma, we need to introduce the following function associ-
ated to a spinor field ϕ ∈ Γ(Σ), RNϕ := 2

∑n
i,j=1

〈
ei · ej · Id⊗RNei,ejϕ,

ϕ
|ϕ|2

〉
, on

Mϕ = {x ∈ M | ϕ(x) 6= 0}. Here, RNei,ej stands for the spinorial curvature of the normal
bundle NM .

Proposition 1.1 (Twisted Lichnerowicz formula). For any spinor field ϕ ∈ Γ(Σ), point-
wise on Mϕ, we have〈

D2ϕ,ϕ
〉

= 〈∇∗∇ϕ,ϕ〉+
1

4
(ScalM +RNϕ )|ϕ|2 +

i

2
〈Ω · ϕ,ϕ〉 .(3)
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Proof: We give the proof in the case where m or n is even. The other case is similar. We
compute the square of the Dirac operator D acting on ϕ = α⊗ σ. We have

(4) D2ϕ = ∇∗∇ϕ+
1

2

m∑
i,j=1

ei · ej · Rei,ejϕ,

where ∇∗ is the formal adjoint of ∇ and R is the spinorial curvature associated with the
connection ∇. From the definition of∇, we see easily that

Rei,ejϕ = (RMei,ejσ)⊗ α+ σ ⊗ (RNei,ejα).

Then, a classical computation on each factor gives the desired formula. �
We have this second elementary lemma

Proposition 1.2. For any spinor field ϕ ∈ Γ(Σ), we have

〈iΩ · ϕ,ϕ〉 ≥ −cm
2
|Ω||ϕ|2.(5)

Proof: If m or n is even, then ΣM ⊗ ΣN and a spinor ϕ ∈ Σ can be written ϕ = σ ⊗ α.
Hence, we have

〈iΩ · ϕ,ϕ〉 = 〈iΩ · (σ ⊗ α), σ ⊗ α〉 = 〈i(Ω ·
M
σ)⊗ α, σ ⊗ α〉

= 〈i(Ω ·
M
σ), σ〉|α|2 ≥ −cm

2
|Ω||σ|2|α|2 ≥ −cm

2
|Ω||ϕ|2.

Note that we use the fact that the scalar product on Σ is the product of the scalar products
on ΣM and ΣN . We also use the classical estimate onM , that is 〈iΩ ·σ, σ〉 ≥ − cm2 |Ω||σ|

2

(see [8]). If m and n are odd, then Σ = ΣM ⊗ΣN ⊕ΣM ⊗ΣN and a spinor ϕ ∈ Σ is of
the form ϕ = (α⊗ σ, σ′ ⊗ α′). Thus, we have

〈iΩ · ϕ,ϕ〉 = 〈iΩ · (σ ⊗ α), σ ⊗ α〉+ 〈iΩ · (σ′ ⊗ α′), σ′ ⊗ α′〉

≥ −cm
2
|Ω|
(
|σ|2|α|2 + |σ′|2|α′|2

)
≥ −cm

2
|Ω||ϕ|2.

This concludes the proof. �

2. EIGENVALUE ESTIMATES FOR SUBMANIFOLDS

Now, we have all the ingredients to state the eigenvalue estimates. We begin by the follow-
ing basic estimates involving intrinsic terms (scalar curvature, curvature of the line bundle
over M ) and extrinsic terms (mean curvature and spinorial normal curvature). This result
generalizes in the Spinc setting the estimate of Hijazi-Zhang [11] (extending to any codi-
mension by Ginoux-Morel [5]).

Theorem 2.1. Let (Mm, g) be a compact Riemannian Spinc manifold isometrically im-
mersed into a Riemannian Spinc manifold (M̃m+n, g̃). Consider a non-trivial eigenspinor
field ϕ ∈ Γ(Σ) for the submanifold Dirac operator DH , i.e. DHϕ = λϕ. Assume that
m ≥ 2 and

ScalM +REϕ − cm|ΩM | >
m− 1

m
||H||2 > 0

on Mϕ, then, we have

λ2 ≥ 1

4
inf
Mϕ

(√
m

m− 1
(ScalM +RNϕ − cm|Ω|)− ||H||

)2

.

Moreover, if equality holds, then ϕ is a twisted generalized Killing spinor.
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Proof: Let λ be an eigenvalue of the submanifold Dirac operator DH and q a smooth
function, nowhere equal to 1

m . We consider the following modified connection∇λ,q defined
by

∇λ,qX ψ = ∇Xψ +
1− q

2(1−mq)
X ·H · ψ + qλX · ω⊥ · ψ,

for any spinor field ψ ∈ Γ(Σ). Let ϕ be an eigenspinor for DH associated with the eigen-
value λ. Using the Twisted Lichnerowicz formula (3), we can easily compute∫
M

|∇λ,qϕ|2vg =

∫
M

(1 +mq2 − 2q)
[
λ2 − 1

4

( ScalM +RNϕ
1 +mq2 − 2q

− (m− 1)‖H‖2

(1−mq)2

)
|ϕ|2

− i

2(1 +mq2 − 2q)
< Ω · ϕ,ϕ >

]
vg(6)

Then, using Inequality (5) and by assumingm(ScalM+RNϕ −cm|Ω|) > (m−1)‖H‖2 > 0,
we can choose q so that

(1−mq)2 =
(m− 1)‖H‖√

m
m−1 (ScalM +RNϕ − cm|Ω|)− ‖H‖

,(7)

on Mϕ. Inserting (7) in (6), and since the complement of Mψ in M is of measure 0, we
conclude because the left member of (6) is nonnegative.
If equality occurs,∇λ,qX ϕ = 0, which implies that |ϕ| is constant on M and

Dϕ =
m(1− q)
2(1−mq)

H · ϕ+mqλω⊥ · ϕ.

On the other hand, since ϕ is an eigenspinor for DH and the link between DH and D, we
get

0 = λω⊥ · ϕ+
H

2
· ϕ− m(1− q)

2(1−mq)
H · ϕ−mqλω⊥ · ϕ

= (1−mq)2λω⊥ · ϕ− (m− 1)
H

2
· ϕ.

Moreover, equality also implies 2|λ| =
√

m
m−1 (ScalM +RNϕ − cm|Ω|)− ||H||. From the

expression of q and the above relation, we have ω⊥ ·ϕ = sgn(λ) H
||H|| ·ϕ and thus ϕ satisfies

∇Xϕ = − f
mX · ω⊥ · ϕ, with f = sgn(λ)

2

√
m
m−1 (ScalM +RNϕ − cm|Ω|). That is, ψ is

a generalized twisted Killing spinor. Note that here f is a priori a function. We will see
in Section 3 that under some assumptions on the dimensions m and n, the function f is
constant. �

Now, we define the Energy-Momentum tensor associated with a spinor field ψ ∈ Γ(Σ) on
Mψ by

Qψij =
1

2
(ei · ω⊥ · ∇ej + ej · ω⊥ · ∇ei ,

ψ

|ψ|2
)

Note that

Qψij =
1

2
(ei ·M ∇ej + ej ·M ∇ei ,

ψ

|ψ|2
)

so it is the intrinsic energy momentum tensor and it is the one appearing in the Einstein
Dirac equation. We have the following estimate involving the Energy-Momentum tensor.

Theorem 2.2. Let (Mm, g) be a compact Riemannian Spinc manifold isometrically im-
mersed into a Riemannian Spinc manifold (M̃m+n, g̃). Consider a non-trivial eigenspinor
field ϕ ∈ Γ(Σ) for the submanifold Dirac operator DH , i.e. DHϕ = λϕ. Assume that
m ≥ 2 and

ScalM +RNϕ + 4|Qϕ|2 − cm|ΩM | > ||H||2 > 0
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on Mϕ, then, we have

λ2 ≥ 1

4
inf
Mϕ

(
ScalM +RNϕ + 4|Qϕ|2 − cm|Ω|)− ||H||

)2
.

Moreover, if equality holds, then ϕ is a twisted (symmetric) EM-spinor.

Proof: For any real function q that never vanishes, consider the modified covariant deriva-
tive defined on Γ(Σ) by

∇Qeiψ = ∇eiψ −
1

2mq
ei ·H · ψ + (−1)n+1qλei · ω⊥ · ψ +

∑
j

Qψijej · ω⊥ · ψ

Again, we can compute, for an eigenspinor ϕ∫
M

|∇Qϕ|2vg =

∫
M

(1 +mq)2
[
λ2 − 1

4

(ScalM +RNϕ + 4|Qϕ|2

(1 +mq2)
− ‖H‖

2

mq2

)]
|ϕ|2vg

−1

4

∫
M

(1 +mq2)
[ 2

mq(1 +mq2)

(
‖H‖2 − < H · ϕ, ω⊥ · ϕ >2

|ϕ|4
)]
|ψ|2vg

− i
2

∫
M

< Ω · ϕ,ϕ > vg(8)

Now, we use again (5) and if moreover, ScalM +RNϕ − cM |Ω|+ 4|Qϕ|2 > ‖H‖2 > 0, we
take

q =

√√√√ ‖H‖

m(
√

ScalM +RNϕ − cM |Ω|+ 4|Qϕ|2 − ‖H‖)
,

and then by the Cauchy Schwarz inequality, we have

‖H‖2 − < H · ϕ, ω⊥ · ϕ >2

|ϕ|4
≥ 0.

If equality holds, then ∇Qϕ = 0 and equality occurs in the Cauchy-Schwarz inequality,

that is, ‖H‖2 − < H · ϕ, ω⊥ · ϕ >2

|ϕ|4
= 0. Thus, proceeding as in the proof of Theorem

2.1, we deduce that ∇Xϕ = −Q(X) · ω⊥ · ϕ, that is ψ is a twisted (symmetric)
Energy-Momentum spinor (EM-spinor). �

Note that, by a completely similar computation, we can obtain a lower bound in-
volving both symmetric and skew-symmetric Energy-Momentum tensors as in [7]. We do
not write it in this note.

Finally, following the idea of Hijazi [9], we consider a conformal change of the metrc
ḡ = e2ug̃. Let Σ −→ Σ̄, ψ −→ ψ̄ be the corresponding isometry between the two spinor
bundles. Recall that for 2 spinors ψ and ϕ on Σ and for any vector field X on M̃ , we have

(ϕ,ψ) = (ϕ̄, ψ̄)ḡ and X̄ ·̄ψ̄ = X · ψ
Note that we have

D(e
−(m−1)

2 uψ) = e
−(m+1)

2 uDψ

where D denotes the Dirac operator w.r.t the metric g. Moreover, the corresponding mean
curvature is given by

H = e−2u(H −mgradNu)

Now, assume that gradNu = 0 , then DH is also conformally covariant and we have

DH(e
−(m−1)

2 uψ) = e
−(m+1)

2 uDHψ

From now on, we will consider regular conformal change of the metric g, i.e., gradNu = 0.
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Theorem 2.3. Let (Mm, g) be a compact Riemannian Spinc manifold isometrically im-
mersed into a Riemannian Spinc manifold (M̃m+n, g̃). Consider a non-trivial eigenspinor
field ϕ ∈ Γ(Σ) for the submanifold Dirac operator DH , i.e. DHψ = λψ. For any regular
conformal change of metric ḡ = e2ug̃, assume that m ≥ 3 and

ScalM e2u +RNϕ + 4|Qψ|2 − cm|ΩM | > ||H||2 > 0

on Mϕ, then, we have

λ2 ≥ 1

4
inf
Mψ

(√
ScalM e2u +RNψ + 4|Qψ|2 − cm|Ω|)− ||H||

)2

.

Proof: For ψ ∈ Γ(Σ) an eigenspinor of DH with eigenvalue λ, let ϕ := e
−(n−1)u

2 ψ. then,
we have DHϕ = λe−uϕ. Recall that

∇eiψ = ∇eiψ −
1

2
ei · du · ψ −

1

2
ei(u)ψ,

and ei = e−uei. Now, it is straightforward to get Q
ϕ

i,j = e−uQψi,j , hence |Qϕ|2 =

e−2u|Qψ|2. Equation (8) is also true on (M̃, g). If, we apply it to ϕ, we get∫
M

|∇Qϕ|2vg =

∫
M

(1 +mq)2
[
(λe−u)2 − 1

4

(ScalM +R
N

ϕ + 4|Qϕ|2

(1 +mq2)
−
‖H̃‖2g
mq2

)]
|ϕ|2gvg

−1

4

∫
M

(1 +mq2)
[ 2

mq(1 +mq2)

(
‖H̃‖2g −

< H̃·ϕ, ω⊥·ϕ >2
g

|ϕ|4g

)]
|ϕ|2gvg

− i
2

∫
M

< Ω·ϕ,ϕ >g vg(9)

since H̃ = e−uH and R
N

ϕ = e−2uRNψ , we have

∫
M

|∇Qϕ|2vg =

∫
M

(1 +mq)2e−2u
[
(λ)2 − 1

4

(ScalMe
2u +RNψ + 4|Qψ|2

(1 +mq2)
− ‖H‖

2

mq2

)]
|ϕ|2vg

−1

4

∫
M

(1 +mq2)e−2u
[ 2

mq(1 +mq2)

(
‖H‖2 − < H · ψ, ω⊥ · ψ >2

|ψ|4
)]
|ϕ|2vg

− i
2

∫
M

< Ω·ϕ,ϕ >g vg(10)

Now, we use again (5) and if moreover, ScalM e2u+RNψ − cM |Ω|+ 4|Qψ|2 > ‖H‖2 > 0,
we take

q =

√√√√ ‖H‖

m(
√

ScalMe2u +RNψ − cM |Ω|+ 4|Qψ|2 − ‖H‖)
,

and then we use the Cauchy Schwarz inequality

‖H‖2 − < H · ψ, ω⊥ · ψ >2

|ψ|4
≥ 0,

to get the desired result. �

By taking u as first eigenfunction of the Yamabe operator on M , we get the follow-
ing corollary, where µ1 is the first eigenvalue of the Yamabe operator.
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Corollary 2.4. Under the assunptions of Theorem 2.3 and if

µ1 +RNψ + 4|Qψ|2 − cm|ΩM | > ||H||2 > 0

on Mϕ, then, we have

λ2 ≥ 1

4
inf
Mψ

(√
µ1 +RNψ + 4|Qψ|2 − cm|Ω|)− ||H||

)2

.

3. GENERALIZED TWISTED KILLING SPINORS

We have seen in Theorem 2.1 that if equality occurs, then, the eigenspinor ϕ is in fact a
generalized twisted Killing spinor, that is satisfies the equation

(11) ∇Xϕ = fX · ω⊥ · ϕ = fX ·
M
ϕ,

where f is a real function. We prove the following

Proposition 3.1. Let (Mm, g) be a compact Riemannian Spinc manifold isometrically
immersed into a Riemannian Spinc manifold (M̃m+n, g̃). Let ϕ ∈ Γ(Σ) be a generalized
twisted Killing spinor with real-valued function f . If m > n+ 4, then f is constant.

Proof: We define the following forms for p ∈ {1, · · · ,m},

ωp(X1, · · · , Xp) =
〈

(X1 ∧X2 ∧ · · · ∧Xp) ·
M
ϕ,ϕ

〉
,

We have the following easy facts (see [6, 8] for instance). For any k > 0, the forms ω4k+1

and ω4k+2 are imaginary-valued whereas the forms ω4k+3 and ω4k are real-valued. More-
over, we have for any p > 0

dωp = ((−1)pf − f)ωp+1.

In particular, we have for any k > 1

(12) df ∧ ω2k = 0.

Assume that f is not constant and let x ∈M such that df 6= 0, on a neighborhood V of x.
Hence df⊥ is of dimension m− 1 and we consider {e1, · · · , em−1} an orthonormal frame
of df⊥. From this, we have

ω2k(ei1 , · · · , ei2k) = 0,

for any subset {i1, · · · , i2k} of {1, · · · ,m − 1}. Thus, for l =
[
m−1

2

]
, we deduce that

the spinor fields ϕ, ei1 ·
M
ei2 ·

M
ϕ, · · · and ei1 ·

M
ei2 · · · ei2l ·

M
ϕ are orthonormal on V .

Consequently, the space spanned by these spinors is a vector subspace of Σx of complex
dimension

1 +

(
m− 1

2

)
+

(
m− 1

4

)
+ · · ·+

(
m− 1

2l

)
= 2m−2.

Since the complex dimension of Σ is

d(m,n) =

{
2
m+n

2 if m+ n is even
2
m+n−1

2 if m+ n is odd

we conclude that 2m−2 6 d(m,n). Therefore, f is constant if 2m−2 > d(m,n) which
corresponds to the condition expressed in the statement of the Proposition. Indeed, on one
hand, if m + n is even, then 2m−2 > d(m,n) is equivalent to m − 2 > n+m

2 , that is
m > n + 4. On the other hand, if f m + n is odd, then 22m−2 > d(m,n) is equivalent to
m − 2 > n+m−1

2 , that is m > n + 3. But since m + n is odd, then m cannot be equal to
n+ 4. hence we also have m > n+ 4. �

Hence, we deduce the following
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Corollary 3.2. Let (Mm, g) be a compact Riemannian Spinc manifold isometrically im-
mersed into a Riemannian Spinc manifold (M̃m+n, g̃). if m > n + 4 and equality occurs
in Theorem 2.1, then M admits a twisted Killing spinor.

Acknowledgment. The first author is indebted to the Center for Advanced Mathemati-
cal Sciences (CAMS, Lebanon) and the University of Paris-Est, Marne-la-Vallée for their
hospitality and support.
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