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We prove lower bounds for the eigenvalues of the Spin c Dirac operator on submanifolds. These estimates are expressed in terms of extrinsic and intrinsic quantities. We also give estimates involving the Energy-Momentum tensor as well as conformal bounds. The limiting cases of these estimates give rise to particular spinor fields, called generalized twisted Killing spinors, which are also studied.

INTRODUCTION AND PREMILINARIES

The limiting cases of estimates for eigenvalues of the Dirac operator on compact (with or without boundary) manifolds give rise to examples of special geometries. For instance, equality in the classical inequalitiy of Friedrich [START_REF] Friedrich | Der erste Eigenwert des Dirac-operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung[END_REF] 

λ 1 n 4(n -1) inf M Scal M ,
where n is the dimanesion of the manifold M and Scal M its scalar curvature, forces the manifold to be Einstein with positive scalar curvature, due to the fact that the eigenspinor associated with the first eigenvalue is then a real Killing spinor. This is also the case for the conformal inequality of Hijazi [START_REF] Hijazi | A conformal Lower Bound for the Smallest Eigenvalue of the Dirac Operator and Killing Spinors[END_REF] λ 1 n 4(n -1)

µ 1 ,
where µ 1 is the first eigenvalue of the Yamabe operator as well for the inequality involving the Energy-momentum tensor [START_REF] Hijazi | Lower bounds for the eigenvalues of the Dirac operator[END_REF] λ 1 1 4 inf

M (Scal M + |Q ϕ | 2 ),
where Q ϕ is the Energy-Momentum tensor associated with a first eigenspinor ϕ.

On the other hand, in the recent years, many estimates have been proved for the eigenvalues of the Spin c Dirac operator. A great difference between both cases if that the equality cases for Spin c lower bounds are less and therefore give larger classes of limiting manifolds (see [START_REF] Herzlich | Generalized Killing spinors and conformal eigenvalue estimates for Spin c manifold[END_REF][START_REF] Nakad | Lower bounds for the eigenvalues of the Dirac operator on Spin c manifolds[END_REF][START_REF] Nakad | The Spin c Dirac operator on hypersurfaces and applications[END_REF] for instance).

In this note, we prove a new lower bound for the eigenvalues of the Spin c Dirac operator on submanifolds of Spin c manifolds (see Theorem 2.1). This generalizes for the Spin c case, previous estimates by Hijazi-Zhang [START_REF] Hijazi | Lower bounds for the Eigenvalues of the Dirac Operator, Part I. The Hypersurface Dirac Operator[END_REF][START_REF] Hijazi | Lower bounds for the Eigenvalues of the Dirac Operator, Part II. The Submanifold Dirac Operator[END_REF] and Ginoux-Morel [START_REF] Ginoux | On eigenvalue estimates for the submanifold Dirac operator[END_REF]. The limiting case of this estimate is characterized by the existence of particular spinor fields called generalized twisted Killing spinors. We will study these particular spinor fields and show that under a natural assumption on the dimension and the codimension of the submanifold, they are in fact twisted Killing spinors which generalize naturally the usual Killing spinors for twisted spinor bundles. Finally, we also prove conformal estimates (Theorem 2.3) as well as estimates involving the Energy-Momentum tensor associated with an eigenspinor (Theorem 2.2).

We recall briefly some basic facts about Spin c manifolds and their hypersurfaces (the reader can refer to [START_REF] Bär | Extrinsic bounds for eigenvalues of the Dirac operator[END_REF][START_REF] Bourguignon | A spinorial approach to Riemannian and conformal geometry[END_REF][START_REF] Friedrich | Dirac operators in Riemannian Geometry[END_REF][START_REF] Ginoux | On eigenvalue estimates for the submanifold Dirac operator[END_REF]). Let ( M m+n , g) be a Riemannian Spin c manifold and M m a submanifold isometrically immersed into M . Assume that M is also Spin c and denote by N M the normal bundle of the immersion of M into M . We denote by i Ω (resp. iΩ) the curvature 2-form of the corresponding auxiliary line bundle. Since the manifolds M and M are Spin c , there exists a Spin c structure on the bundle N M . We denote by ΣN the Spin c bundle of N M and let

Σ := ΣM ⊗ ΣN if m or n is even, ΣM ⊗ ΣN ⊕ ΣM ⊗ ΣN otherwise
It is well known that there is a natural isomorphism between Σ and Σ M |M . Moreover, we denote by ∇ the covariant derivative on Σ defined by

∇ := ∇ ΣM ⊗ Id + Id ⊗∇ ΣN if m or n is even, ∇ ΣM ⊗ Id + Id ⊗∇ ΣN ⊕ ∇ ΣM ⊗ Id + Id ⊗∇ ΣN otherwise.
We have the following identification between the Clifford multiplication

X • M ϕ = (X • ω ⊥ • ψ)| M , (1) 
where

ϕ = ψ| M , ψ ∈ Γ(Σ M ), ω ⊥ := ω n if n is even and ω ⊥ = -iω n if n is odd, with ω n = i [ n+1 2 ] ν 1 • • • ν n the complex
volume element of the normal bundle. We also recall the Spin c Gauss formula

∇ X ϕ = ∇ X ϕ + 1 2 m j=1 e j • B(X, e j ) • ϕ, (2) 
where ∇ is the spinorial connection on M and B is the second fundamental form of M in M . We will denote by H the mean curvature. and

D H = (-1) n ω ⊥ • D = (-1) n ω ⊥ • D + 1 2 H • ω ⊥ • .
Clearly, from the spinorial Gauss formula (2), we have D = D -1 2 H•. Moreover (see [1, Lemma 2.1]), D and D H are formally self-adjoint and D 2 H = D * D where D * is the formal adjoint of D with respect to the L 2 -scalar product M (•, •)dv g . We finish this section of preliminaries by the two following lemmas. The first one generalizes the classical Lichnerowicz formula in the context of twisted Spin c spinor bundles. Before stating the lemma, we need to introduce the following function associated to a spinor field ϕ

∈ Γ(Σ), R N ϕ := 2 n i,j=1 e i • e j • Id ⊗ R N ei,ej ϕ, ϕ |ϕ| 2 , on M ϕ = {x ∈ M | ϕ(x) = 0}.
Here, R N ei,ej stands for the spinorial curvature of the normal bundle N M . Proposition 1.1 (Twisted Lichnerowicz formula). For any spinor field ϕ ∈ Γ(Σ), pointwise on M ϕ , we have

D 2 ϕ, ϕ = ∇ * ∇ϕ, ϕ + 1 4 (Scal M + R N ϕ )|ϕ| 2 + i 2 Ω • ϕ, ϕ . (3) 
Proof: We give the proof in the case where m or n is even. The other case is similar. We compute the square of the Dirac operator D acting on ϕ = α ⊗ σ. We have (4)

D 2 ϕ = ∇ * ∇ϕ + 1 2 m i,j=1 e i • e j • R ei,ej ϕ,
where ∇ * is the formal adjoint of ∇ and R is the spinorial curvature associated with the connection ∇. From the definition of ∇, we see easily that

R ei,ej ϕ = (R M ei,ej σ) ⊗ α + σ ⊗ (R N ei,ej α).
Then, a classical computation on each factor gives the desired formula.

We have this second elementary lemma Proposition 1.2. For any spinor field ϕ ∈ Γ(Σ), we have

iΩ • ϕ, ϕ ≥ - c m 2 |Ω||ϕ| 2 . ( 5 
)
Proof: If m or n is even, then ΣM ⊗ ΣN and a spinor ϕ ∈ Σ can be written ϕ = σ ⊗ α. Hence, we have

iΩ • ϕ, ϕ = iΩ • (σ ⊗ α), σ ⊗ α = i(Ω • M σ) ⊗ α, σ ⊗ α = i(Ω • M σ), σ |α| 2 ≥ - c m 2 |Ω||σ| 2 |α| 2 ≥ - c m 2 |Ω||ϕ| 2 .
Note that we use the fact that the scalar product on Σ is the product of the scalar products on ΣM and ΣN . We also use the classical estimate on M , that is iΩ • σ, σ ≥ -cm 2 |Ω||σ| 2 (see [START_REF] Herzlich | Generalized Killing spinors and conformal eigenvalue estimates for Spin c manifold[END_REF]). If m and n are odd, then Σ = ΣM ⊗ ΣN ⊕ ΣM ⊗ ΣN and a spinor ϕ ∈ Σ is of the form ϕ = (α ⊗ σ, σ ⊗ α ). Thus, we have

iΩ • ϕ, ϕ = iΩ • (σ ⊗ α), σ ⊗ α + iΩ • (σ ⊗ α ), σ ⊗ α ≥ - c m 2 |Ω| |σ| 2 |α| 2 + |σ | 2 |α | 2 ≥ - c m 2 |Ω||ϕ| 2 .
This concludes the proof.

EIGENVALUE ESTIMATES FOR SUBMANIFOLDS

Now, we have all the ingredients to state the eigenvalue estimates. We begin by the following basic estimates involving intrinsic terms (scalar curvature, curvature of the line bundle over M ) and extrinsic terms (mean curvature and spinorial normal curvature). This result generalizes in the Spin c setting the estimate of Hijazi-Zhang [START_REF] Hijazi | Lower bounds for the Eigenvalues of the Dirac Operator, Part I. The Hypersurface Dirac Operator[END_REF] (extending to any codimension by Ginoux-Morel [START_REF] Ginoux | On eigenvalue estimates for the submanifold Dirac operator[END_REF]). 

Scal M + R E ϕ -c m |Ω M | > m -1 m ||H|| 2 > 0 on M ϕ , then, we have λ 2 ≥ 1 4 inf Mϕ m m -1 (Scal M + R N ϕ -c m |Ω|) -||H|| 2 .
Moreover, if equality holds, then ϕ is a twisted generalized Killing spinor.

Proof: Let λ be an eigenvalue of the submanifold Dirac operator D H and q a smooth function, nowhere equal to 1 m . We consider the following modified connection ∇ λ,q defined by

∇ λ,q X ψ = ∇ X ψ + 1 -q 2(1 -mq) X • H • ψ + qλX • ω ⊥ • ψ,
for any spinor field ψ ∈ Γ(Σ). Let ϕ be an eigenspinor for D H associated with the eigenvalue λ. Using the Twisted Lichnerowicz formula (3), we can easily compute

M |∇ λ,q ϕ| 2 v g = M (1 + mq 2 -2q) λ 2 - 1 4 Scal M + R N ϕ 1 + mq 2 -2q - (m -1) H 2 (1 -mq) 2 |ϕ| 2 - i 2(1 + mq 2 -2q) < Ω • ϕ, ϕ > v g (6)
Then, using Inequality [START_REF] Ginoux | On eigenvalue estimates for the submanifold Dirac operator[END_REF] and by assuming m(Scal

M +R N ϕ -c m |Ω|) > (m-1) H 2 > 0, we can choose q so that (1 -mq) 2 = (m -1) H m m-1 (Scal M + R N ϕ -c m |Ω|) -H , (7) 
on M ϕ . Inserting ( 7) in [START_REF] Grosse | Complex generalized Killing spinors on Riemannian Spin c manifolds[END_REF], and since the complement of M ψ in M is of measure 0, we conclude because the left member of ( 6) is nonnegative. If equality occurs, ∇ λ,q X ϕ = 0, which implies that |ϕ| is constant on M and

Dϕ = m(1 -q) 2(1 -mq) H • ϕ + mqλω ⊥ • ϕ.
On the other hand, since ϕ is an eigenspinor for D H and the link between D H and D, we get

0 = λω ⊥ • ϕ + H 2 • ϕ - m(1 -q) 2(1 -mq) H • ϕ -mqλω ⊥ • ϕ = (1 -mq) 2 λω ⊥ • ϕ -(m -1) H 2 • ϕ.
Moreover, equality also implies 2|λ| =

m m-1 (Scal M + R N ϕ -c m |Ω|) -||H||.
From the expression of q and the above relation, we have ω ⊥ •ϕ = sgn(λ) H ||H|| •ϕ and thus ϕ satisfies

∇ X ϕ = -f m X • ω ⊥ • ϕ, with f = sgn(λ) 2 m m-1 (Scal M + R N ϕ -c m |Ω|).
That is, ψ is a generalized twisted Killing spinor. Note that here f is a priori a function. We will see in Section 3 that under some assumptions on the dimensions m and n, the function f is constant. Now, we define the Energy-Momentum tensor associated with a spinor field ψ ∈ Γ(Σ) on M ψ by

Q ψ ij = 1 2 (e i • ω ⊥ • ∇ ej + e j • ω ⊥ • ∇ ei , ψ |ψ| 2 ) Note that Q ψ ij = 1 2 (e i • M ∇ ej + e j • M ∇ ei , ψ |ψ| 2 )
so it is the intrinsic energy momentum tensor and it is the one appearing in the Einstein Dirac equation. We have the following estimate involving the Energy-Momentum tensor.

Theorem 2.2. Let (M m , g) be a compact Riemannian Spin c manifold isometrically immersed into a Riemannian Spin c manifold ( M m+n , g). Consider a non-trivial eigenspinor field ϕ ∈ Γ(Σ) for the submanifold Dirac operator D H , i.e. D H ϕ = λϕ. Assume that m ≥ 2 and

Scal M + R N ϕ + 4|Q ϕ | 2 -c m |Ω M | > ||H|| 2 > 0 on M ϕ , then, we have λ 2 ≥ 1 4 inf Mϕ Scal M + R N ϕ + 4|Q ϕ | 2 -c m |Ω|) -||H|| 2 .
Moreover, if equality holds, then ϕ is a twisted (symmetric) EM-spinor.

Proof: For any real function q that never vanishes, consider the modified covariant derivative defined on Γ(Σ) by

∇ Q ei ψ = ∇ ei ψ - 1 2mq e i • H • ψ + (-1) n+1 qλe i • ω ⊥ • ψ + j Q ψ ij e j • ω ⊥ • ψ
Again, we can compute, for an eigenspinor ϕ

M |∇ Q ϕ| 2 v g = M (1 + mq) 2 λ 2 - 1 4 Scal M + R N ϕ + 4|Q ϕ | 2 (1 + mq 2 ) - H 2 mq 2 |ϕ| 2 v g - 1 4 M (1 + mq 2 ) 2 mq(1 + mq 2 ) H 2 - < H • ϕ, ω ⊥ • ϕ > 2 |ϕ| 4 |ψ| 2 v g - i 2 M < Ω • ϕ, ϕ > v g (8)
Now, we use again ( 5) and if moreover,

Scal M + R N ϕ -c M |Ω| + 4|Q ϕ | 2 > H 2 > 0, we take q = H m( Scal M + R N ϕ -c M |Ω| + 4|Q ϕ | 2 -H ) ,
and then by the Cauchy Schwarz inequality, we have

H 2 - < H • ϕ, ω ⊥ • ϕ > 2 |ϕ| 4 ≥ 0.
If equality holds, then ∇ Q ϕ = 0 and equality occurs in the Cauchy-Schwarz inequality, that is,

H 2 - < H • ϕ, ω ⊥ • ϕ > 2 |ϕ| 4 = 0.
Thus, proceeding as in the proof of Theorem 2.1, we deduce that

∇ X ϕ = -Q(X) • ω ⊥ • ϕ, that is ψ is a twisted (symmetric)
Energy-Momentum spinor (EM-spinor).

Note that, by a completely similar computation, we can obtain a lower bound involving both symmetric and skew-symmetric Energy-Momentum tensors as in [START_REF] Habib | Energy-Momentum tensor on foliations[END_REF]. We do not write it in this note.

Finally, following the idea of Hijazi [START_REF] Hijazi | A conformal Lower Bound for the Smallest Eigenvalue of the Dirac Operator and Killing Spinors[END_REF], we consider a conformal change of the metrc ḡ = e 2u g. Let Σ -→ Σ, ψ -→ ψ be the corresponding isometry between the two spinor bundles. Recall that for 2 spinors ψ and ϕ on Σ and for any vector field X on M , we have

(ϕ, ψ) = ( φ, ψ) ḡ and X• ψ = X • ψ Note that we have D(e -(m-1) 2 u ψ) = e -(m+1) 2 u Dψ
where D denotes the Dirac operator w.r.t the metric g. Moreover, the corresponding mean curvature is given by

H = e -2u (H -mgrad N u)
Now, assume that grad N u = 0 , then D H is also conformally covariant and we have

D H (e -(m-1) 2 u ψ) = e -(m+1) 2 u D H ψ
From now on, we will consider regular conformal change of the metric g, i.e., grad N u = 0.

Theorem 2.3. Let (M m , g) be a compact Riemannian Spin c manifold isometrically immersed into a Riemannian Spin c manifold ( M m+n , g). Consider a non-trivial eigenspinor field ϕ ∈ Γ(Σ) for the submanifold Dirac operator D H , i.e. D H ψ = λψ. For any regular conformal change of metric ḡ = e 2u g, assume that m ≥ 3 and

Scal M e 2u + R N ϕ + 4|Q ψ | 2 -c m |Ω M | > ||H|| 2 > 0 on M ϕ , then, we have λ 2 ≥ 1 4 inf M ψ Scal M e 2u + R N ψ + 4|Q ψ | 2 -c m |Ω|) -||H|| 2 .
Proof: For ψ ∈ Γ(Σ) an eigenspinor of D H with eigenvalue λ, let ϕ := e -(n-1)u 2

ψ. then, we have D H ϕ = λe -u ϕ. Recall that

∇ ei ψ = ∇ ei ψ - 1 2 e i • du • ψ - 1 2 e i (u)ψ,
and e i = e -u e i . Now, it is straightforward to get 8) is also true on ( M , g). If, we apply it to ϕ, we get

Q ϕ i,j = e -u Q ψ i,j , hence |Q ϕ | 2 = e -2u |Q ψ | 2 . Equation (
M |∇ Q ϕ| 2 v g = M (1 + mq) 2 (λe -u ) 2 - 1 4 Scal M + R N ϕ + 4|Q ϕ | 2 (1 + mq 2 ) - H 2 g mq 2 |ϕ| 2 g v g - 1 4 M (1 + mq 2 ) 2 mq(1 + mq 2 ) H 2 g - < H•ϕ, ω ⊥ •ϕ > 2 g |ϕ| 4 g |ϕ| 2 g v g - i 2 M < Ω•ϕ, ϕ > g v g (9) 
since H = e -u H and R N ϕ = e -2u R N ψ , we have

M |∇ Q ϕ| 2 v g = M (1 + mq) 2 e -2u (λ) 2 - 1 4 
Scal M e 2u + R N ψ + 4|Q ψ | 2 (1 + mq 2 ) - H 2 mq 2 |ϕ| 2 v g - 1 4 M (1 + mq 2 )e -2u 2 mq(1 + mq 2 ) H 2 - < H • ψ, ω ⊥ • ψ > 2 |ψ| 4 |ϕ| 2 v g - i 2 M < Ω•ϕ, ϕ > g v g (10)
Now, we use again [START_REF] Ginoux | On eigenvalue estimates for the submanifold Dirac operator[END_REF] and if moreover,

Scal M e 2u + R N ψ -c M |Ω| + 4|Q ψ | 2 > H 2 > 0, we take q = H m( Scal M e 2u + R N ψ -c M |Ω| + 4|Q ψ | 2 -H )
, and then we use the Cauchy Schwarz inequality

H 2 - < H • ψ, ω ⊥ • ψ > 2 |ψ| 4 ≥ 0,
to get the desired result.

By taking u as first eigenfunction of the Yamabe operator on M , we get the following corollary, where µ 1 is the first eigenvalue of the Yamabe operator.

Corollary 2.4. Under the assunptions of Theorem 2.3 and if

µ 1 + R N ψ + 4|Q ψ | 2 -c m |Ω M | > ||H|| 2 > 0 on M ϕ , then, we have λ 2 ≥ 1 4 inf M ψ µ 1 + R N ψ + 4|Q ψ | 2 -c m |Ω|) -||H|| 2 .

GENERALIZED TWISTED KILLING SPINORS

We have seen in Theorem 2.1 that if equality occurs, then, the eigenspinor ϕ is in fact a generalized twisted Killing spinor, that is satisfies the equation ( 11)

∇ X ϕ = f X • ω ⊥ • ϕ = f X • M ϕ,
where f is a real function. We prove the following Proposition 3.1. Let (M m , g) be a compact Riemannian Spin c manifold isometrically immersed into a Riemannian Spin c manifold ( M m+n , g). Let ϕ ∈ Γ(Σ) be a generalized twisted Killing spinor with real-valued function f . If m > n + 4, then f is constant.

Proof: We define the following forms for p ∈ {1, • • • , m},

ω p (X 1 , • • • , X p ) = (X 1 ∧ X 2 ∧ • • • ∧ X p ) • M ϕ, ϕ ,
We have the following easy facts (see [START_REF] Grosse | Complex generalized Killing spinors on Riemannian Spin c manifolds[END_REF][START_REF] Herzlich | Generalized Killing spinors and conformal eigenvalue estimates for Spin c manifold[END_REF] for instance). For any k 0, the forms ω 4k+1 and ω 4k+2 are imaginary-valued whereas the forms ω 4k+3 and ω 4k are real-valued. Moreover, we have for any p 0 dω p = ((-1) p f -f )ω p+1 .

In particular, we have for any k 1 Consequently, the space spanned by these spinors is a vector subspace of Σ x of complex dimension

1 + m -1 2 + m -1 4 + • • • + m -1 2l = 2 m-2 .
Since the complex dimension of Σ is

d(m, n) = 2 m+n 2 if m + n is even 2 m+n-1 2
if m + n is odd we conclude that 2 m-2 d(m, n). Therefore, f is constant if 2 m-2 > d(m, n) which corresponds to the condition expressed in the statement of the Proposition. Indeed, on one hand, if m + n is even, then 2 m-2 > d(m, n) is equivalent to m -2 > n+m 2 , that is m > n + 4. On the other hand, if f m + n is odd, then 2 2m-2 > d(m, n) is equivalent to m -2 > n+m-1

2

, that is m > n + 3. But since m + n is odd, then m cannot be equal to n + 4. hence we also have m > n + 4.

Hence, we deduce the following Corollary 3.2. Let (M m , g) be a compact Riemannian Spin c manifold isometrically immersed into a Riemannian Spin c manifold ( M m+n , g). if m > n + 4 and equality occurs in Theorem 2.1, then M admits a twisted Killing spinor.

Now

  

Theorem 2 . 1 .

 21 Let (M m , g) be a compact Riemannian Spin c manifold isometrically immersed into a Riemannian Spin c manifold ( M m+n , g). Consider a non-trivial eigenspinor field ϕ ∈ Γ(Σ) for the submanifold Dirac operator D H , i.e. D H ϕ = λϕ. Assume that m ≥ 2 and

( 12 ) 2 ,

 122 df ∧ ω 2k = 0.Assume that f is not constant and let x ∈ M such that df = 0, on a neighborhood V of x. Hence df ⊥ is of dimension m -1 and we consider {e 1 , • • • , e m-1 } an orthonormal frame of df ⊥ . From this, we haveω 2k (e i1 , • • • , e i 2k ) = 0, for any subset {i 1 , • • • , i 2k } of {1, • • • , m -1}.Thus, for l = m-1 we deduce that the spinor fields ϕ, e i1 • M e i2 • M ϕ, • • • and e i1 • M e i2 • • • e i 2l • M ϕ are orthonormal on V .
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