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Willis elastodynamic homogenization theory revisited for
periodic media

Hussein Nassar, Qi-Chang He∗, Nicolas Auffray
Université Paris-Est, Modélisation et Simulation Multi-Echelle, MSME UMR 8208 CNRS,

5 bd Descartes, 77454 Marne-la-Vallée, France

Abstract

The theory of elastodynamic homogenization initiated by J.R. Willis is revisited for
periodically inhomogeneous media through a careful scrutiny of the main aspects
of that theory in the 3D continuum context and by applying it to the thorough
treatment of a simple 1D discrete periodic system. The Bloch theorem appears to
be central to appropriately defining and interpreting effective fields. Based on some
physical arguments, three necessary conditions are derived for the transition from
the microscopic description to the macroscopic description of periodic media. The
parameters involved in the Willis effective constitutive relation are expressed in
terms of two localization tensors and specified with the help of the corresponding
Green function in the spirit of micromechanics. These results are illustrated and
discussed for the 1D discrete periodic system considered. In particular, inspired by
Brillouin’s study, the dependency of the effective constitutive parameters on the
frequency is physically interpreted in terms of oscillation modes of the underlying
microstructure.
Keywords: Homogenization, Bloch waves, Dynamics, Constitutive behavior,
Inhomogeneous material

1. Introduction

The beginnings of the elastodynamic homogenization theory of J.R. Willis can
be traced back to the relevant papers he published during the first half of the
1980s (Willis, 1980a,b, 1981, 1985). The main body of this theory was, in a rather
complete manner, presented more than 10 years later in a chapter of a book edited
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after a course dedicated to continuum micromechanics (Willis, 1997). Recently,
increasing interest in acoustic metamaterials and cloaking (see, e.g., papers by
Chen and Chan (2010), Lee et al. (2012), Liu et al. (2000), Liu et al. (2012), Milton
et al. (2006), Norris (2008), Norris and Shuvalov (2011) and Simovski (2007))
has, in particular, given an impetus to the development and application of the
elastodynamic homogenization theory of Willis (Milton and Willis, 2007, 2010;
Nemat-Nasser and Srivastava, 2011, 2013; Nemat-Nasser et al., 2011; Norris et al.,
2012; Shuvalov et al., 2011; Srivastava and Nemat-Nasser, 2011; Willis, 2009, 2011,
2012).

The elastodynamic homogenization theory of Willis exhibits the following salient
features: (i) in the microscopic-to-macroscopic upscaling process, no approximation
hypotheses are made, so that, in this sense, the resulting theory can be considered
as exact; (ii) the effects of material microscopic inhomogeneities are, after homoge-
nization, all incorporated only in the resulting non-classical effective constitutive
law, so that the macroscopic (or effective) motion equation takes the same classical
form as the one at the microscopic level; (iii) for a composite formed of elastic
phases whose constitutive laws are local in time and space, the effective constitutive
law obtained by homogenization becomes generally nonlocal both in time and space;
(iv) the effective mass density is, in general, no longer a scalar but a second-order
tensor quantity; (v) a non-classical coupling between the effective stress tensor and
the effective velocity, and another one between the effective momentum and the
effective strain tensor, occur generally in the effective constitutive law; (vi) the
parameters involved in the effective constitutive law are non-unique but can be
rendered unique by prescribing, for example, an additional eigenstrain field. Note
that the features (iii)-(vi) make that the effective constitutive law derived in the ho-
mogenized elastodynamic theory of Willis is very different from the constitutive law
involved in the classical elastodynamic theory and that its explicit determination
in terms of the phase properties is a quite tough task and in general necessitates
using a numerical method.

The present work consists in revisiting the elastodynamic homogenization theory
of Willis for periodic composites so as to reach the following threefold objective.
First, it aims to derive, on the basis of some physically sound arguments, a few
necessary conditions for the application of that theory to be physically meaningful.
Second, it has the purpose of expressing the effective constitutive parameters of
the effective constitutive law in terms of some appropriate localization tensors in
the spirit of micromechanics, so that a general numerical method, such as the finite
element method, can be directly used to numerically compute said parameters.
Thirdly, it aims to gain physical insights into the general theory by applying it to
thoroughly and analytically study a simple one-dimensional (1D) periodic discrete
system. By achieving these three objectives, the present work contributes not
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only to getting a better understanding of but also developing the elastodynamic
homogenization theory initiated by Willis.

The next sections of this paper are structured and summarized as follows.
In section 2, which is the main part of this paper, the elastodynamic homoge-

nization theory of Willis is carefully reformulated mathematically and examined
physically for periodic composites. After providing some geometrical preliminaries
and recalling the local classical elastodynamic equations for periodic media, Bloch
theorem is shown to play a central role in solving the corresponding local motion
equation and in properly defining and interpreting the effective (or macroscopic)
fields. Three necessary conditions are then proposed for the elastodynamic homog-
enization theory of Willis applied to a periodic composite to lead to a physically
meaningful effective behavior. The first necessary condition corresponds to the
requirement that the microscopic virtual work be equal to the effective (or macro-
scopic) virtual work, which is reminiscent of the well-known Hill-Mandel lemma
in micromechanics. The second necessary condition concerns wavenumbers and
demands that the effective (or macroscopic) fields capture the long-wavelength
parts of the relevant microscopic fields. The third necessary condition is relative
to frequencies and comes from the requirement that the effective elastodynamic
behavior of a composite be a good approximation of its microscopic one. In the
last part of section 2, two localization tensors are first introduced in the spirit
of micromechanics and then explicitly expressed in terms of the relevant Green
function for a given pair of frequency and wavenumber. With the help of the
expressions for the localization tensors, the frequency- and wavenumber-dependent
parameters characterizing the effective elastodynamic constitutive law are finally
specified in terms of the Green function. The obtained effective elastodynamic
behavior is then reinterpreted physically in light of the established homogenizability
conditions.

In section 3, inspired by the work of Brillouin (1953), a simple 1D periodic
discrete system is analytically and exhaustively studied to illustrate and discuss
the main results of section 2. In particular, the effective constitutive parameters
are analytically and exactly obtained, and the effective impedance and dispersion
relation are derived and illustrated. The homogenizability conditions proposed in
section 2 are discussed.

Finally, in section 4, a few concluding remarks are drawn and some open
problems are mentioned.

2. Elements of an elastodynamic homogenization theory for periodic
media

We start by presenting some useful geometrical tools to the study of periodic
media and the basic motion and constitutive equations. The motion equation is
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subsequently simplified and restricted to one arbitrary unit cell thanks to Bloch-
Floquet theorem. The Bloch-wave-expansion leads to a definition of the effective
fields and the corresponding effective behavior. We then thoroughly discuss the
consistency of the Willis approach according to three criteria hereafter called
“homogenizability conditions”. Such a discussion is possible even before having any
expression of the effective constitutive equations. The derivation of said expression
is presented last.

2.1. Problem set-up
2.1.1. Geometrical considerations

Let Ω be a periodic medium. We liken Ω to a 3D point space with an underlying
vector space called E and a periodicity lattice R. Vectors of E can be identified
with points of Ω through the choice of an arbitrary origin. The lattice R is defined
as

R = {r ∈ E | r = a1b1 + a2b2 + a3b3, ai ∈ Z}
where Z stands for the set of integers and the vectors (b1, b2, b3) form a basis for E .
A unit cell T for Ω can then be specified as

T = {r ∈ E | r = r1b1 + r2b2 + r3b3, ri ∈ [0, 1[} .
Note that neither the choice of (b1, b2, b3) nor that of T is unique. In figure 1, a
two-dimensional (2D) lattice R is illustrated.

b1

b2 T

Figure 1: A 2D lattice. Each point represents a vector r of the lattice R. Many choices for b1,
b2 and T are possible.

The vector space dual to E is symbolized by E ∗. In what follows, E ∗ corresponds
physically to the space of wavenumbers, and a generic element of E ∗ is denoted
by k. For later use, it is useful to introduce the reciprocal lattice1 R∗ of R:

R∗ = {ξ ∈ E ∗ | ξ = a1b
∗
1 + a2b

∗
2 + a3b

∗
3, ai ∈ Z} .

1 The superscript (∗) will mean reciprocal, dual or conjugate depending on the objects it acts
on; each new meaning of this notation will be defined precisely when first used.
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In this definition, the vectors (b∗1, b∗2, b∗3) form a basis for E ∗ and verify

b∗i · bj = 2πδij

where the dot operator (·) stands for the scalar product, δij is the Kronecker delta
and 2π is a conventional scaling factor. In addition, use will be made of the first
Brillouin zone T ∗ of the reciprocal lattice R∗:

T ∗ = {k ∈ E ∗ | ∀ξ ∈ R∗ − {0}, ‖k‖ < ‖k − ξ‖}.

We can geometrically interpret T ∗ as the set of wavenumbers k of E ∗ which are
closer to the null wavenumber than to any other wavenumber ξ of the reciprocal
lattice R∗. It should be underlined that the interior of T ∗ is uniquely defined and
is, in particular, independent of the choice of T . In figure 2, a 2D example for R∗

and T ∗ is shown.
Given a function φ(x) of the space variable x ∈ E , its spatial Fourier transform

φk is defined over the space E ∗ of wavenumbers k by

φ(x) =
∫

E ∗
φke

ik·x dk,

where i2 = −1. In particular, an R-periodic function φ(x) can be expanded into
the Fourier series

φ(x) =
∑
ξ∈R∗

φξe
iξ·x.

b∗
1

b∗
2

T ∗

Figure 2: The reciprocal lattice3 R∗ of the direct lattice R depicted in figure 1 and its first
Brillouin zone T ∗.

3Vectors bi and b∗
i have different dimensions (respectively, a length and the inverse of a length)

and their magnitudes, therefore, cannot be compared.
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2.1.2. Local elastodynamic equations
The periodic medium Ω under consideration is assumed to undergo small

deformations and behave as a linearly elastic inhomogeneous material. Aiming to
carry out the elastodynamic homogenization of Ω, we first recall the relevant local
equations.

Letting u be the displacement field over Ω, the infinitesimal strain field ε is
given by

ε = 1
2(∇⊗u+ u⊗∇) ≡∇⊗su

where ∇ is the gradient operator, the symbol ⊗ designates the tensor product,
the superscript (s) stands for symmetrization and the relation ≡ is equality by
definition. The stress field σ and the (linear) momentum field p are related to the
strain field ε and the velocity field v by

σ = C : ε, p = ρv

where the colon (:) stands for double contraction, C is the fourth-order elastic
stiffness tensor and ρ is the mass density. Owing to the periodicity of Ω, we have

C(x+ r) = C(x), ρ(x+ r) = ρ(x),

for every point x ∈ Ω and all lattice vectors r ∈ R. Thus, the elastic and inertial
properties of Ω are entirely defined by specifying them over a unit cell T and by
periodicity. Let f be a body force field over Ω, then the motion equation of Ω
takes the form

∇ · σ + f = ṗ

with (∇·) being the divergence operator and the superimposed dot standing for
the time derivative4.

The problem to be treated in what follows is the homogenization of the periodi-
cally heterogeneous medium forming Ω within the framework of elastodynamics.
Precisely, that periodically heterogeneous medium will be replaced by a homo-
geneous medium over which appropriate effective fields are defined and whose

4One can account for initial displacement and velocity conditions by changing the unknown
displacement field:

u(x, t) 7→ H(t)u(x, t)

where H(t) is the Heaviside function, and correspondingly altering the body force:

f(x, t) 7→ f(x, t) + δ(t)ρ(x)u̇(x, t = 0) + δ̇(t)ρ(x)u(x, t = 0)

where δ(t) is the Dirac function. Initial conditions can then be thought of as a particular loading
applied at t = 0. However, we shall mostly work with harmonic fields.
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elastodynamic behavior is determined in such a way that the most important
elastodynamic features of the initial periodic medium are captured. To achieve this
objective, we shall work with transformed fields instead of dealing directly with
fields of space and time. As will be seen, the Bloch theorem and the superposition
principle pave a very efficient method.

2.2. Bloch-wave-expansion and simplified motion equation
We start by performing the partial Fourier transform of the local motion

equation with respect to time:

∇ · σω(x) + fω(x) = iωpω(x)

where ω is the time angular frequency, simply referred to as the frequency, and the
notation φω(x) stands for the time-Fourier transform of φ(x, t) satisfying

φ(x, t) =
∫
R
φω(x)eiωt dω.

One way to determine the displacement response uω(x) to the solicitation fω(x) is to
calculate elementary responses to elementary plane wave solicitations. Letting fk,ω
be the spatial Fourier transform of the harmonic force field fω(x), we have the
plane-wave-expansion of fω(x) as follows:

fω(x) =
∫

E ∗
fk,ωe

ik·x dk,

so that the phase of body force is k · x + ωt with a plus sign convention. We
denote by uk,ω(x)eik·x the elementary displacement response of Ω to the plane
wave solicitation fk,ωeik·x. This response is a solution of the equation

∇ ·
{
C(x) :

[
∇⊗s

(
uk,ω(x)eik·x

)]}
+ fk,ωeik·x = −ω2ρ(x)uk,ω(x)eik·x.

At a given frequency ω, free wave solutions5 have specific wavelengths. In what
follows, we exclude such wavelengths so as to guarantee the solution uniqueness.
Next, consider the foregoing problem translated by a lattice vector r ∈ R:

∇ ·
{
C(x+ r) :

[
∇⊗s

(
uk,ω(x+ r)eik·(x+r)

)]}
+ fk,ωeik·(x+r)

= −ω2ρ(x+ r)uk,ω(x+ r)eik·(x+r).

We cancel the factor eik·r and apply the R-periodicity to C and to ρ in the above
equation and obtain

∇ ·
{
C(x) :

[
∇⊗s

(
uk,ω(x+ r)eik·x

)]}
+ fk,ωeik·x = −ω2ρ(x)uk,ω(x+ r)eik·x.

5Solutions of ∇ · σω(x) = iωpω(x).
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Therefore, uk,ω(x)eik·x and uk,ω(x+r)eik·x turn out to be two solutions for the same
problem. The solution uniqueness allows us to conclude that uk,ω(x) = uk,ω(x+ r)
for all lattice vectors r ∈ R. The elementary solution then admits the so-called
Bloch form

uk,ω(x)eik·x where uk,ω(x) is R-periodic. (2.1)
For the excluded free wave solutions, the same Bloch form still hold. A proof in
this case can be found in a paper by Gazalet et al. (2013) (see also Appendix A).

To sum up, the solution u(x, t) of the motion equation can be constructed as a su-
perposition of harmonic-Bloch waves, indexed by (k, ω), of the form uk,ω(x)ei(k·x+ωt)

with uk,ω(x) being R-periodic. The couple (k, ω) is given once and for all; the
dependencies relative to time and to (k, ω) will often be omitted. The elementary
body force field will be denoted simply by f(x) = f̃eik·x where f̃ is independent
of x. All other fields φ ∈ {u,v, ε,p,σ} have the Bloch form φ(x) = φ̃(x)eik·x
with φ̃(x) being R-periodic. The motion equation, in terms of ũ,

∇ ·
{
C(x) :

[
∇⊗s

(
ũ(x)eik·x

)]}
+ f̃eik·x = −ω2ρ(x)ũ(x)eik·x

or equivalently, by expanding the derivatives of eik·x,

(∇ + ik) · {C : [(∇ + ik)⊗sũ]}+ f̃ = −ω2ρũ (2.2)

needs then to be solved only over the unit cell T , under periodic boundary conditions.

2.3. Effective fields and effective motion equation
Following Amirkhizi and Nemat-Nasser (2008), we define the effective field Φ

of a microscopic Bloch-wave field φ(x) = φ̃(x)eik·x as being the plane wave

Φ(x) = 1
|T |

(∫
T
φ̃(y) dy

)
eik·x ≡

〈
φ̃
〉
eik·x (2.3)

where |T | is the volume of T and 〈·〉 is the space-average-over-T operator. We
insist on the fact that only R-periodic fields (e.g., φ̃) can be averaged without
any ambiguity as all choices of T are equivalent. A non R-periodic field will
have different averages over different unit cells. Definition (2.3) is equivalent
to Willis (2011) ensemble average: at a point x, Φ(x) is the expected value
of multiple measures φ(x) recovered from multiple experiences carried out over
multiple samples taken randomly out of the same material.

For the moment, we argue that the effective field definition (2.3) allows to
satisfy exactly the usual motion equation. We recast (2.2) into the equivalent form

∇ · σ̃ + ik · σ̃ + f̃ = iωp̃.
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Then, by the divergence theorem and the periodic boundary conditions, averaging
over T yields

ik · 〈σ̃〉+
〈
f̃
〉

= iω 〈p̃〉 .

When multiplied by eik·x, the above equation becomes the effective motion equation

∇ ·Σ + F = iωP , (2.4)

with F = f . Therefore, the effective medium satisfies the same motion equation as
for the microscopic medium, and the body force remains unchanged.

2.4. Necessary conditions for homogenization
For the effective fields defined in (2.3) to act as physically meaningful macro-

scopic fields, frequencies and wavenumbers have to satisfy some conditions, hereafter
called homogenizability conditions. Below, we derive three of them. The first one
amounts to a generalized version of Hill-Mandel lemma. The second one is based on
the physically sound requirement that the effective field Φ defined for a microscopic
field φ be a slowly space-varying approximation of φ. The third one comes from
the demand that Φ be a good approximation of φ.

2.4.1. First condition: Hill-Mandel lemma
Starting from the microscopic and effective motion equations (2.2) and (2.4),

we can show that the virtual work theorem holds, so that6

〈f · u∗〉 = 〈σ : ε∗ + iωp · u∗〉 ,
〈F ·U ∗〉 = 〈Σ : E∗ + iωP ·U ∗〉

where the superscript star (∗) stands for complex conjugation. The following
straightforward calculation

〈f · u∗〉 =
〈
f̃ · ũ∗

〉
= f̃ · 〈ũ∗〉 = f̃eik·x · (〈ũ〉 eik·x)∗ = F ·U ∗ = 〈F ·U ∗〉

shows that both microscopic and effective works are equal to each other. Therefore,
we have

〈σ : ε∗ + iωp · u∗〉 = 〈Σ : E∗ + iωP ·U ∗〉 , (2.5)
which is reminiscent of the well-known Hill-Mandel lemma. Even though products
such as Σ : E∗ are constant in space, it is important to recall that all effective fields
are x-dependent. Finally, neither the microscopic constitutive equation, nor the

6using integration by parts and divergence theorem while accounting for the fact that boundary
terms are null owing to the Bloch form.
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(to-be-found) effective one has been used to establish the above equality, therefore,
Hill-Mandel lemma is valid for virtual fields independently of any constitutive law.

It is of interest to see whether the lemma (2.5) holds or not for combinations of
Bloch waves. It is enough to consider two sets of microscopic and effective fields
φ,Φ and φ′,Φ′ corresponding to two modes (ω,k) and (ω,k′). The question is:

〈(f + f ′) · (u+ u′)∗〉 ?= 〈(F + F ′) · (U +U ′)∗〉 . (2.6)

The averaged quantities here are unfortunately non-periodic. Therefore, before
answering the above question, we need to extend the definition of the averaging
operator to non-periodic fields. This is done according to:

〈·〉 = lim
R→+∞

1
|B(R)|

∫
B(R)
· dx,

where B(R) is a ball of radius R and |B(R)| is its volume. For R-periodic fields,
the above definition yields exactly the usual average over one unit cell T . Remark
also that for any wavenumber k ∈ E ∗ − {0},

〈
eik·x

〉
= 0.

Back to the question (2.6), it is elementary to prove that:

〈(f + f ′) · (u+ u′)∗〉 − 〈(F + F ′) · (U +U ′)∗〉
= f̃ ·

〈
ũ′ei(k

′−k)·x
〉∗

+ f̃ ′ ·
〈
ũei(k−k

′)·x
〉∗
, (2.7)

and that the error term in the right member always vanishes if and only if
k − k′ /∈ R∗. Otherwise, f of wavenumber k (respectively, f ′ of wavenumber
k′) will work with some component of ũ′ of wavenumber k− k′ ∈ R∗ (respectively,
of ũ of wavenumber k′ − k ∈ R∗) leading to violation of Hill-Mandel lemma.

To sum up, Hill-Mandel lemma (2.5) remains valid for combinations of plane-
wave, and therefore arbitrary, loadings f as long as the Fourier spectrum of f , Sf ,
satisfies the following first homogenizability condition:

∀ξ ∈ R∗, if k ∈ Sf then (k + ξ) /∈ Sf . (2.8)

One example of such maximal spectra is the first Brillouin zone T ∗. Note that this
first condition has no implications on free waves propagation (for which f = 0).

Hill-Mandel lemma as presented in equation (2.5) and generalized to arbitrary
loadings satisfying condition (2.8) deals with the effective and microscopic virtual
works and not with their expectancies. Willis (1997) proved another version of
Hill-Mandel lemma based on the expectancies (the ensemble average) of virtual
works, which is valid for all sure body forces. In fact, randomizing equation (2.7)
then taking its expectancy yields a zero error term. Incidentally, this ensemble
averaged version of Hill-Mandel lemma has been obtained somehow differently, but
in an equivalent manner to Willis, by Smyshlyaev and Cherednichenko (2000).
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2.4.2. Second condition: effective vs macroscopic
As φ̃ is R-periodic, it admits a Fourier series expansion with respect to the

reciprocal lattice R∗ of the direct lattice R. Thus,

φ(x) = φ̃(x)eik·x =
∑
ξ∈R∗

φ̃ξe
iξ·xeik·x =

∑
ξ∈R∗

φ̃ξe
i(ξ+k)·x.

The slowest/long-wavelength component of φ is then given by

φslow(x) = φ̃ζe
i(ζ+k)·x

where ζ corresponds to the vector of R∗ minimizing the spatial frequency ‖ξ + k‖
for ξ ∈ R∗. The effective description is a macroscopic one, in the sense that
it corresponds to the behavior “as seen from far away”, if it keeps track of the
long-wavelength component. The second homogenizability condition consists in
requiring

Φ = φslow. (2.9)
This is equivalent to the proposition that

ζ = 0 minimizes ‖ξ + k‖ for ξ ∈ R∗,

because then φ̃ζ = φ̃0 =
〈
φ̃
〉
. Wavenumbers k which satisfy Φ = φslow lie, by

definition, in the first Brillouin zone:

k ∈ T ∗. (2.10)

If the body force f (including initial-conditions-related loadings) contains compo-
nents with k outside of T ∗, the effective fields as defined by equation (2.3) can
no longer be interpreted as the long-wavelength part of the microscopic fields.
Definition (2.3) can then be replaced by (2.9) with the purpose of saving the above
second homogenizability condition. However, for the Hill-Mandel lemma (2.5) and
the effective motion equation (2.4) to remain valid for this new definition, one must
require (2.10) to hold. In other words: both definitions have to be identical so
that the first one guarantees Hill-Mandel lemma and the effective motion equation
and that the second one guarantees the validity of the long-wavelength-component
interpretation. Remark at last that the present second homogenizability condition
automatically implies the first one (2.8).

For example, back in the real space domain, body forces such as f(x) =
ρ(x)f ◦, where f ◦ is a homogeneous field, will violate condition (2.10). Such
expression for body forces have been reported elsewhere to lead to a force-dependent
effective behavior (Boutin, 1996). Here, the effective behavior will always be
force-independent, however, short-wavelength body forces can lead to the above
mentioned inconsistencies.
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For a 1D medium, if |T | is the length of the unit cell T , the condition (2.10)
reduces simply to

− π

|T | < k <
π

|T | .

Therefore, the effective field wavelength λ = |2π
k
| must be at least twice as large

as T (see figure 3).

λ

T T

Figure 3: An illustration of the second homogenizability condition showing the shortest allowed
wavelength.

2.4.3. Third condition: on free waves
The effective behavior is defined with respect to forced regime solutions. How-

ever, it is of interest to discuss some non negligible complications which arise for
unforced regimes. Up till now, the wavenumber k has been prescribed by body
forces which are null for free waves. Two remarks are therefore in order.

1. A microscopic solution u is transformed into an effective one U under the
same loading and of the same mode (k, ω). In particular, free waves are
transformed into free waves and if a mode (k, ω) allows for propagation of
microscopic free waves, it also allows for propagation of effective ones.

2. A microscopic free wave u has multiple representations, one for each ξ ∈ R∗,
as a Bloch wave:

u(x) = ũ(x)eik·x =
(
ũ(x)e−iξ·x

)
eik
′·x,

with k′ = k + ξ. In fact, the wavenumber of a free wave is only well defined
modulo R∗ (mod R∗). The consequence is such that definition (2.3) is ill
posed for free waves. Given u(x) of mode (k mod R∗, ω), one can define
multiple corresponding effective free waves of modes (k + ξ, ω) which are
different from one another (each one corresponds to one Fourier component
ũξ of ũ).

One needs then to precise which of the modes (k + ξ, ω) is (are) kept and which is
(are) rejected. In other words, one needs to extend definition (2.3) unambiguously
to free waves. Next, we discuss three possibilities.
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1. We can define the effective free wave as the limit of a forced one by a plane
wave loading. This insures a continuous definition of the effective behavior
over the whole (k, ω) space. However, to one microscopic free wave will
correspond an infinity of effective ones, one for each limit process or, as
remarked earlier, one for each Fourier component. Therefore, the effective
behavior, by superposition of Fourier components, will be able to reproduce
exactly the microscopic free wave, which is physical, but also an infinity of
other non-physical free waves.

2. Definition (2.3) can be extended thanks to the long-wavelength-component
interpretation (2.9). However, this is not without restricting wavenumbers to
the first Brillouin zone T ∗ as previously discussed. Accordingly, the effective
behavior will have a meaning only for modes (k, ω) such that k ∈ T ∗.

3. Finally, the effective wavenumber k + ξ can be chosen so that U is the best
approximation of u in some sense.

Let us discuss the last choice in more details. The quality of the approximation U
of u depends on the choice of the effective wavenumber k which represents the class
k mod R∗. To assess this quality, an error function must be defined. Srivastava
and Nemat-Nasser (2014) have recently studied this question and defined the error
as the normalized reflected energy over an interface separating the effective medium
from the original one and gave results based on the study of some particular layered
composites. Here, we define the error by comparing the order of magnitudes of two
terms constituting the microscopic elastic energy. Though our approach is more
general, it only yields a necessary condition for this error to be small hereafter
called third homogenizability condition.

As a matter of fact, calling k the chosen effective wavenumber, for U to be a
physically good approximation of u, components {ũξ, ξ 6= 0} should be small, in
the strain-energy sense for example, with respect to the component ũ0 = 〈ũ〉. This
can be written as

〈[C : (∇⊗sũ)] : (∇⊗sũ∗)〉 � 〈[C : (ik⊗sũ)] : (ik⊗sũ)∗〉. (2.11)

In fact, the strain field ε has the expression

ε = ∇⊗su = ∇⊗s
(
ũeik·x

)
= (∇⊗sũ) eik·x + (ik⊗sũ) eik·x ≡ ε̃eik·x.

Condition (2.11) implies that the microscopic variations due to ũ are small with
respect to the variations due to the effective wavenumber k. To exploit this
hypothesis, we invoke the virtual work principle (recall that f = 0):

ω2 〈ρu · u∗〉 = 〈(C : ε) : ε∗〉 .
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The triangle inequality has the consequence that

ω2 〈ρu · u∗〉 ≤
(√
〈[C : (∇⊗sũ)] : (∇⊗sũ∗)〉+

√
〈[C : (ik⊗su)] : (ik⊗su)∗〉

)2
.

Hence, the condition (2.11) yields

ω2 〈ρu · u∗〉 . 〈[C : (ik⊗su)] : (ik⊗su)∗〉

where the relation . is defined as “smaller than or almost equal to”. Consequently,
we have

ω2 .
〈[C : (ik⊗su)] : (ik⊗su)∗〉

〈ρu · u∗〉 .

Next, we compare the C-norm and the ρ-norm. In this regard, we have

〈[C : (ik⊗su)] : (ik⊗su)∗〉 =
〈
ρ

[
C

ρ
: (ik⊗su)

]
: (ik⊗su)∗

〉

≤ 〈ρ (ik⊗su) : (ik⊗su)∗〉 max
x∈T
I=1...6

(
cI(x)
ρ(x)

)
≤ (k · k) 〈ρu · u∗〉 max

x∈T
I=1...6

(
cI(x)
ρ(x)

)

where the (cI)I=1...6 are the eigenvalues of the elasticity tensor C. It can then be
concluded that

ω2 . max
x∈T
I=1...6

(
cI(x)
ρ(x)

)
‖k‖2. (2.12)

This third homogenizability condition says that for high frequencies, the elastic
energy is carried by short wavelengths (see figures 9 and 10 for examples that are
to be introduced later). It gives accordingly a necessary condition on the optimal
choice of k which can yield a relatively small error between U and u. The higher
the frequency is, the shorter the effective wavelength must be. High frequencies
tend therefore to violate the second homogenizability condition for free waves.

Requiring both conditions (2.10) and (2.12) yields an upper bound for the set
of homogenizable frequencies ω:

ω2 . max
x∈T
I=1...6

(
cI(x)
ρ(x)

)
max
k∈T ∗
‖k‖2 ≡ max

x∈T
I=1...6

(
cI(x)
ρ(x)

)
π2

4`2 , (2.13)

where ` is a microstructural length depending only on the geometry of R. The
homogenizable frequency-domain can contain the acoustic branches of the dispersion
curve and, depending on the actual microstructure of Ω, some of the optical branches.
This result is in agreement with and generalizes that of Srivastava and Nemat-
Nasser (2014). The cited authors proved that, for particular layered composites,
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the acoustic branch was homogenizable (in their particular sense presented above)
and so is the first optical branch for composites with internal resonances.

Finally, condition (2.13) can be seen as a relaxed scale separation condition in
comparison with the following classical one

ω2 � min
I=1...6

(
cmI
ρm

)
π2

4`2
m

,

for all phases m, where `m means the “radius” of phase m.

2.5. Formal solutions and effective relation
In this subsection, the methodology developed by Willis (2011) to derive effective

constitutive laws is revisited in such a way that the main aspects for periodic media
are specified and clarified. In fact, we present a purely spatial7 counterpart of said
methodology.

2.5.1. Preliminary discussion
In deriving the effective constitutive relation, the solution of (2.2) needs to

be expressed first in terms of the applied loadings (representation step) and then
in terms of the effective strain and velocity (localization step). Formally, in the
localization step, we write

ũ = 〈ũ〉+A : 〈ε̃〉+B · 〈ṽ〉

where A and B are two localization tensor fields to be determined. However, 〈ε̃〉
and 〈ṽ〉 are not algebraically independent since:

iω 〈ε̃〉 = iω (〈∇⊗sũ〉+ ik⊗s〈ũ〉) = ik⊗s〈ṽ〉 ,

where ∇⊗sũ has zero average given the periodic boundary conditions. This will
result in an ambiguity in the definition of tensors A and B.

The foregoing fact that velocity and strain are dependent is unusual. Indeed,
for a local medium, the strain tensor ε(x◦) and the velocity vector v(x◦) at a
given point x◦ are independent of each other and they are also independent of
the displacement u(x◦) at the same point. However, for a nonlocal medium, the
variables are some fields over all the medium. For example, the strain tensor and
velocity fields are not independent since the time derivative of the former is equal
to the symmetric part of the space gradient of the latter. The effective behavior
of the periodic medium once homogenized is, a priori, nonlocal and characterized
by a relation between some (x, t)-dependent effective fields over Ω. In contrast,

7This is: without referring to random descriptions.
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some numerical homogenization schemes seek, at isolated macroscopic points, for
an effective behavior which links total averages of the microscopic fields. Such
schemes do not seem to have to deal with E-V dependency, because they explicitly
presume locality through the use of spatial Taylor expansions and, thus, leave no
place for a nonlocal behavior (see (Pham et al., 2013)).

One way to solve the ambiguity in definition of tensors A and B is to prohibit
“abusive” time integration and derivation (i.e., division and multiplication by iω).
To this end, let γ(x) = γ̃eik·x be a plane-wave eigenstrain field over Ω so that the
stress-strain relationship becomes

σ = C : (ε− γ).

Now, since γ do not derive from the displacement field u and is therefore inde-
pendent of v, by keeping track of (ε − γ) as a whole, no confusion between the
strain and velocity components is possible. Correspondingly, equation (2.2) takes
the form

(∇ + ik) · {C : [(∇ + ik)⊗sũ− γ̃]}+ f̃ = −ω2ρũ (2.14)
where γ̃ can be viewed as a generalized loading. The use of eigenstrain in (Willis,
2011) was inspired by the numerical scheme of Fietz and Shvets (2010).

We underline the fact that non-uniqueness is not due to a particular choice of
boundary conditions, even though the dependency takes a simple algebraic form in
this periodic case. This is mentioned explicitly in the more general study (Willis,
2011). Incidentally, eigenstrain γ can be seen to play the dual role of body force f .
If f was not taken into account, stress Σ and momentum P would have been
dependent through the effective motion equation:

ik ·Σ = iωP ,

which is equivalent to restraining our attention to free wave solutions. The bottom
line is that different loadings will allow to investigate more general aspects of the
effective behavior. We also refer to the discussion presented in (Willis, 2012) for
other interesting aspects of non-uniqueness.

Here, we have adopted the choice of localizing u with respect to E − γ and V .
Other legitimate choices exist. For example, we could have renounced the use of γ
and localized u directly with respect to U (as sketched in (Willis, 2009)). Such
choices will lead to other forms of the constitutive equations, which are, however,
compatible in the sense that they give rise to the same motion equation in terms
of U .

2.5.2. Representation equation
We define component gij(x,y) = ψi(x) of the Green tensor g as the ith com-

ponent, at x, of the solution of the following equation, where y and j are merely
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parameters, under periodic boundary conditions imposed on T :

(∇ + ik) · {C : [(∇ + ik)⊗sψ]}+ |T |δyej = −ω2ρψ (2.15)

where ej is the jth vector of an orthonormal basis of the space E and δy is the
Dirac function. Letting ψ and ũ be kinematically admissible displacements for
equations (2.14) and (2.15), respectively, the virtual work principle yields〈

f̃ ·ψ∗
〉

=
〈
[C : (ε̃− γ̃)] : [(∇ + ik)⊗sψ]∗ − ω2ρũ ·ψ∗

〉
,

〈|T |δyej · ũ∗〉 =
〈
{C : [(∇ + ik)⊗sψ]} : ε̃∗ − ω2ρψ · ũ∗

〉
.

Since C is a real symmetric tensor and ρ is a real scalar, the difference between
the first of the preceding two equations and the complex conjugate of the second
leads to

− 〈|T |δyej · ũ〉+
〈
f̃ ·ψ∗

〉
= −〈(C : γ̃) : [(∇ + ik)⊗sψ]∗〉 . (2.16)

This is the sought representation equation in a rather implicit form.
Equation (2.16) is valid for all triplets (ũ, f̃ , γ̃) and in particular for γ̃ = 0,

f̃ = |T |δxei and, accordingly, ũj(y) = gji(y,x), which yields8

gij(x,y) = gji(y,x)∗. (2.17)

With the aid of this symmetry property of g, let us rewrite the representation
equation (2.16) in a more explicit way:

|T |ũ(y) =
∫
T
g(y,x) · f̃ dx+

∫
T

[g(y,x)⊗s(∇x − ik)] : [C(x) : γ̃] dx (2.18)

where ∇x is the usual differential operator applied to the x variable. The operator ∇y

will be similarly understood. In addition, use will be made of the volume average
operators 〈·〉x, 〈·〉y and 〈〈·〉〉 with respect to x, y and both x and y, respectively.
However, no distinction is indicated when confusion is impossible, i.e., for fields of
one variable. Unless otherwise specified, the symbol g stands for g(y,x) hereafter.
A last notation convention is that all fields written on the right of the operator
g are x-dependent while all those on the left of g are y-dependent. Finally,
equation (2.18) can be written in the following compact form9:

ũ = 〈g〉x · f̃ + 〈[g⊗s(∇x − ik)] : C〉x : γ̃ (2.19)

where f̃ and γ̃ are homogeneous.

8For a thorough study of fundamental solutions g, one may refer to (Bonnet, 1995).
9This is an equality between vector fields of the variable y. The operator g is to be seen as a

second order tensor.
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2.5.3. Localization
Aiming to localize ũ with respect to 〈ṽ〉 and to 〈ε̃− γ̃〉, we can re-write γ̃

as −〈ε̃− γ̃〉+ 〈ε̃〉 in equation (2.19) which becomes

ũ = 〈g〉x · f̃ − 〈[g⊗s(∇x − ik)] : C〉x : 〈ε̃− γ̃〉
+ 〈[g⊗s(∇x − ik)] : C〉x : 〈ε̃〉 . (2.20)

The third term in the right-side member of this equation can be further written as

〈[g⊗s(∇x − ik)] : C〉x : 〈ε̃〉 = 〈[g⊗s(∇x − ik)] : C〉x : (ik⊗s〈ũ〉)
= {〈[g⊗s(∇x − ik)] : C〉x · ik} · 〈ũ〉 .

(2.21)

At the time, the motion equation (2.15) of g averaged with respect to x gives

ik · 〈C(x) : [(∇x + ik)⊗sg(x,y)]〉x + I = −ω2 〈ρ(x)g(x,y)〉x
where I is the second order identity tensor. Transposing the above equation, we
obtain

〈[gᵀ(x,y)⊗s(∇x + ik)] : C(x)〉x · ik + I = −ω2 〈gᵀ(x,y)ρ(x)〉x ,

with the superscript (ᵀ) standing for transposition. Accounting for the symme-
try (2.17) of g, it follows that

〈[g∗(y,x)⊗s(∇x + ik)] : C(x)〉x · ik + I = −ω2 〈g∗(y,x)ρ(x)〉x ,

whose complex conjugate takes the form

〈[g(y,x)⊗s(∇x − ik)] : C(x)〉x · ik = I + ω2 〈g(y,x)ρ(x)〉x . (2.22)

Combining (2.20), (2.21) and (2.22) delivers

ũ− 〈ũ〉 = 〈g〉x · f̃ − 〈[g⊗s(∇x − ik)] : C〉x : 〈ε̃− γ̃〉+ ω2 〈gρ〉x · 〈ũ〉 . (2.23)

The volume average of this equation with respect to y results in an algebraic
equation

0 = 〈〈g〉〉 · f̃ − 〈〈[g⊗s(∇x − ik)] : C〉〉 : 〈ε̃− γ̃〉+ ω2 〈〈gρ〉〉 · 〈ũ〉

whose solution for f̃ is given by

f̃ = 〈〈g〉〉−1 · 〈〈[g⊗s(∇x − ik)] : C〉〉 : 〈ε̃− γ̃〉 − ω2〈〈g〉〉−1 · 〈〈gρ〉〉 · 〈ũ〉 (2.24)

provided det 〈〈g〉〉 6= 0. Introducing (2.24) into (2.23), we finally obtain

ũ(y)− 〈ũ〉 = A(y) : 〈ε̃− γ̃〉+B(y) · 〈ṽ〉 ,
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with

A = 〈g〉x · 〈〈g〉〉
−1 · 〈〈[g⊗s(∇x − ik)] : C〉〉 − 〈[g⊗s(∇x − ik)] : C〉x ,

B = iω 〈g〉x · 〈〈g〉〉
−1 · 〈〈gρ〉〉 − iω 〈gρ〉x .

(2.25)

Then, it is immediate that

σ̃ = {C +C : [(∇y + ik)⊗sA]} : 〈ε̃− γ̃〉+ {C : [(∇y + ik)⊗sB]} · 〈ṽ〉 ,
p̃ = iωρA : 〈ε̃− γ̃〉+ (ρI + iωρB) · 〈ṽ〉 . (2.26)

2.5.4. Homogenization step
With the expressions for σ̃ and p̃, from equation (2.26), the homogenization step

can be accomplished easily by volume averaging. Indeed, using the definition (2.3)
for Σ and P , the effective constitutive law of a periodic medium is specified by[

Σ
P

]
=
[
Ce S1

S2 ρe

]
k,ω

[
E − γ
V

]
(2.27)

where the fourth-order effective stiffness tensor Ce, the second-order effective mass
tensor ρe and the third-order coupling tensors S1 and S2 depend on (k, ω) and
have the expressions

Ce = 〈C〉+ 〈C : [(∇y + ik)⊗sA]〉 , ρe = 〈ρ〉 I + iω 〈ρB〉 ,
S1 = 〈C : [(∇y + ik)⊗sB]〉 and S2 = iω 〈ρA〉 .

Accounting for the formulae (2.25) forA andB, the constitutive tensors can further
be specified as follows (an equivalent form of equation (3.19) of (Willis, 2011)):

Ce = 〈C〉+ 〈〈C : [(∇y + ik)⊗sg]〉〉 · 〈〈g〉〉−1 · 〈〈[g⊗s(∇x − ik)] : C〉〉
− 〈〈C : [(∇y + ik)⊗sg⊗s(∇x − ik)] : C〉〉 ,

ρe = 〈ρ〉 I − ω2 〈〈ρg〉〉 · 〈〈g〉〉−1 · 〈〈gρ〉〉+ ω2 〈〈ρgρ〉〉 ,
S1 = iω 〈〈C : [(∇y + ik)⊗sg]〉〉 · 〈〈g〉〉−1 · 〈〈gρ〉〉 − iω 〈〈C : [(∇y + ik)⊗sg] ρ〉〉 ,
S2 = iω 〈〈ρg〉〉 · 〈〈g〉〉−1 · 〈〈[g⊗s(∇x − ik)] : C〉〉 − iω 〈〈ρ [g⊗s(∇x − ik)] : C〉〉 .

(2.28)
To use the constitutive law (2.27) in the real space and time domains, let us,

for simplicity, set γ to zero and let E(x, t) and V (x, t) be two arbitrary (not
necessarily plane waves) strain and velocity effective fields. Those fields can be
written as a sum of harmonic plane waves indexed by (k, ω). For example:

E(x, t) =
∫
Ek,ωe

i(k·x+ωt) dk dω.
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The effective stress and momentum fields (Σ(x, t),P (x, t)) admit similar expansions.
According to (2.27), for all (k, ω), the stress response is given by

Σk,ω = Ce
k,ω : Ek,ω + S1

k,ω · Vk,ω.

Application of the superposition principle yields

Σ(x, t) = Ce(x, t) ∗: E(x, t) + S1(x, t) ∗· V (x, t)

= 1
(2π)4

∫ (
Ce(x− x′, t− t′) : E(x′, t′) + S1(x− x′, t− t′) · V (x′, t′)

)
dx′ dt′

where Ce(x, t) and S1(x, t) are the inverse Fourier transforms of Ck,ω and S1
k,ω

while
(∗:) and

(∗·) are space-time convolution operations. The effective constitutive
behavior of a periodic medium homogenized within the framework of elastodynamics
appear then to be nonlocal both in space and time.

Finally, the effective constitutive equation (2.27) is clearly independent of the
body force f and therefore is also independent of the prescribed initial conditions
(see footnote 4).

2.6. Reinterpreting the effective behavior: back to the homogenizability conditions
The effective behavior has been derived with the help of plane-wave body forces.

We have already discussed the effect of combining plane waves when presenting a
generalized version of Hill-Mandel lemma. It was observed that combining body
forces can lead to an error term. Here, we present the effect of such combinations
on the effective behavior.

As can be seen from equation (2.7), only plane-wave body forces of wavenumbers
separated by a reciprocal lattice vector can interact with one another. A general
body force whose all wavenumbers are separated from each other by reciprocal
lattice vectors is simply a Bloch wave:

f(x) = f̃(x)eik·x =
 ∑
ξ∈R∗

f̃ξe
iξ·x

 eik·x.
The microscopic displacement field has a similar expression:

u(x) = ũ(x)eik·x =
 ∑
ξ∈R∗

ũξe
iξ·x

 eik·x, (2.29)

and the representation equation (2.19) still hold and reads

ũ(y) =
〈
g(y,x) · f̃(x)

〉
x
.
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Using Fourier series expansion, the above equation becomes

∀ζ ∈ R∗, ũζ =
∑
ξ∈R∗

〈〈
eiζ·yg(y,x)eiξ·x

〉〉
· f̃ξ. (2.30)

The above equations solve the unit cell problem (2.2) Fourier-series expanded:

∀ζ ∈ R∗, −
∑
ξ∈R∗

[
(ik + iζ) ·Cζ−ξ · (ik + iξ) + ω2ρζ−ξI

]
· ũξ = f̃ζ , (2.31)

where Cξ and ρξ, for ξ ∈ R∗, are the Fourier series components of C(x) and ρ(x).
Keeping that in mind, we know that the effective displacement is calculated

for each plane wave f̃ξei(k+ξ)·x independently according to the same representation
equation (2.19) averaged with respect to y. However, since g is defined with respect
to k and is now applied to a body force of wavenumber k + ξ, two phase factors
appear so as to yield

∀ξ ∈ R∗, Ũξ =
〈〈
eiξ·yg(y,x)eiξ·x

〉〉
· f̃ξ. (2.32)

A simple matrix inversion yields then the effective motion equation:

∀ξ ∈ R∗,
〈〈
eiξ·yg(y,x)eiξ·x

〉〉−1 · Ũξ = f̃ξ, (2.33)

which is the Fourier-series counterpart of equation (2.4).
Comparing equations (2.30) and (2.31) at the microscopic level with equa-

tions (2.32) and (2.33) at the effective one, it becomes clear what Willis effective
behavior is about. It keeps the same set of kinematical degrees of freedom, unre-
duced, called {ũξ}ξ∈R∗ in the microscopic description and {Ũξ}ξ∈R∗ in the effective
one, and substitutes/approximates the coupled system (2.31) with the decoupled
one (2.31) by extracting the diagonal of the microscopic representation equa-
tion (2.30) in order to yield the effective one (2.32). Such extraction procedure has
the benefit of yielding a homogeneous substitution medium. However, decoupling
degrees of freedom is not always legitimate at least for two reasons.

On one hand, it leads to violating our generalized version of Hill-Mandel lemma
unless the first homogenizability condition is respected. Recall that this first
condition does reduce the kinematical degrees of freedom and only allows for a
restricted set of wavenumbers (see condition (2.8) and in particular (2.10)).

On the other hand, given a free wave of the form (2.29), the components ũξ
shape one another through (2.31) with f̃ζ = 0. However, the effective components
Ũξ are completely independent as can be seen from (2.33). The effective components
can be weighted (since body forces are null) and combined by linearity in order to
yield an infinite number of effective free-wave solutions only one of which can be
said to be physical while all the others are artifacts of the homogenization method.
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The physical effective free wave can be selected as discussed when introducing the
third homogenizability condition in § 2.4.3.

It becomes clear then that there is no escaping some homogenizability condition
that should reduce, or guide the selection of, the effective kinematical degrees of
freedom for the extraction procedure to avoid the mentioned inconsistencies.

3. An application: 1D discrete systems

Hereafter, we introduce a 1D discrete periodic model which can be viewed as a
variant of Born’s model for sodium chloride considered by Brillouin in his famous
work (Brillouin, 1953). This model is studied here as an example to illustrate and
to gain insight into the general elastodynamic homogenization theory presented in
the foregoing section for periodic media.

3.1. Problem set-up
From now on, Ω is a discrete medium embedded in a 1D space, and correspond-

ingly R reduces to a 1D lattice defined by {ab, a ∈ Z} with b being the only basis
vector. For simplicity, Ω is taken to be a periodic lattice of which a unit cell T is
formed of two different masses and two springs of distinct stiffnesses but of the
same length as shown in figure 4.

h1 h2
m1 m2

b

Figure 4: The model unit cell T .

In the situation under consideration, the space variable x is discrete. Given
the characteristic length ` = |T |/2 = ‖b‖/2 of the unit cell T , all positions can be
specified by x = n` with n ∈ Z. With no loss of generality, we take ` to be the unit
length, and refer to position x with the integer n. Masses m and stiffnesses h are
functions of n ∈ Z. The periodicity of the system dictates that for every position n
in Z, mn+2 = mn and hn+2 = hn. The displacement u, velocity v and momentum
p are defined pointwisely only for the masses while the strain ε and stress σ make
sense only for the springs. Concerning these quantities, we have

εn(t) = un+1(t)− un(t),
pn(t) = mnvn(t),
σn(t) = hnεn(t).
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The motion equation reduces to

σn(t)− σn−1(t) + fn(t) = ṗn(t)

where fn(t) is a concentrated force applied to mass number n.

3.2. Discrete operators and notations
As explained in the previous section, a generic field φn(t) appropriately defined

over Ω can be expanded into harmonic Bloch waves φ̃nei(kn+ωt) where φ̃n = φ̃n+2
is said to be 2-periodic. From now on, we can restrict our study to a given mode
(k, ω) and to a unit cell containing two consecutive masses, say mass 1 and mass 2
(as depicted in figure 4). Thus, φ̃n can be identified with a 2D vector:

φ̃n 7→
[
φ̃1
φ̃2

]
.

The motion equation can be written in the simple matrix form

|T |
[
K
] [
ũ
]
≡
[
−ω2m1 + h1 + h2 −h1e

ik − h2e
−ik

−h2e
ik − h1e

−ik −ω2m2 + h1 + h2

] [
ũ1
ũ2

]
=
[
f̃

f̃

]
.

The inverse of the above rigidity-like matrix K, namely G = K−1, is the discrete
equivalent of the Green operator g. Recall that K and G depend on the frequency ω
and wavenumber k.

To derive the effective properties, we apply formulae (2.28). For this, some
remarks are useful. The medium under consideration is 1D, so that no distinction
is needed between simple contraction (·), double contraction (:) and symmetric
tensorial product⊗s. In addition, all operators must be replaced by their discrete
1D equivalent version. In particular, the following substitutions are to be made:

U(x) 7→ ũ1 + ũ2

2 eikn,

g(x, y) 7→
[
G
]
,

〈〈g〉〉 7→ 〈〈G〉〉 ≡ G11 +G12 +G21 +G22

4 ,

g⊗s(∇x − ik) : C 7→
[
G
] [−1 e−ik

e−ik −1

] [
h1 0
0 h2

]
,

〈C〉 7→ h1 + h2

2 .
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3.3. Effective constitutive relation
Accounting for the above modifications made for the 1D system under inves-

tigation, it is straightforward to obtain from formulae (2.28) its Willis effective
constitutive relation as follows10[

Σ
P

]
=
[
Ce S1

S2 ρe

]
k,ω

[
E
V

]

where

Ce
k,ω =

4 cos2
(
k
2

)
− ω2

〈
〈m〉
h

〉
4 cos2

(
k
2

)
− ω2 〈m〉

〈h〉

〈1
h

〉−1

,

ρek,ω =
4 cos2

(
k
2

)
− ω2

〈
〈h〉
m

〉−1

4 cos2
(
k
2

)
− ω2 〈m〉

〈h〉

〈m〉 ,

S1
k,ω =

iω∆m∆h cos
(
k
2

)
4 cos2

(
k
2

)
− ω2 〈m〉

〈h〉

eik/2

2 〈h〉 ≡ iωŜ1
k,ω,

S2
k,ω =

iω∆m∆h cos
(
k
2

)
4 cos2

(
k
2

)
− ω2 〈m〉

〈h〉

e−ik/2

2 〈h〉 ≡ iωŜ2
k,ω

with ∆m = m1 −m2 and ∆h = h1 − h2.
As ω goes toward zero, the effective stiffness Ce approaches its static limit 〈1/h〉−1

and the effective mass approaches the static effective mass 〈m〉. At the same time,
the coupling terms S1 and S2 vanish for ω = 0 as expected. This also guarantees
that no stress is generated from a change of the Galilean frame of reference. It is
therefore more correct to say that stresses are coupled with acceleration and not
velocity. In the same manner, momenta are coupled with strain rate and not strain.
Explicitly, this writes[

Σ
P

]
=
[
Ce 0
0 ρe

] [
E
V

]
+
[

0 Ŝ1

Ŝ2 0

] [
Ė
V̇

]
.

At last, if the masses m or the stiffnesses h were uniform, the coupling terms would
vanish as well. If both masses and stiffnesses are uniform, the initial classical
constitutive relation is recovered.

10We underline the fact that here, unlike the general continuous case, Σ is homogeneous to
a force, P to a momentum and not to a momentum density, E to a length and V to a velocity.
The dimensions of the effective parameters change therefore accordingly.
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It is remarkable that the effective medium, of our mass-spring lattice, is also
discrete. In fact, the effective motion equation is

(eik − 1)Σk,ω + fk,ω = iωPk,ω

which transforms to the harmonic discrete motion equation in the real (integer)
space variable n

Σn − Σn−1 + fn = iωPn.

In addition, the effective constitutive parameters are 2π-periodic functions in
the wavenumber k. The corresponding convolution kernels are inverse Fourier
transforms with respect to k and have therefore a discrete support of step 1 (i.e.,
the set of integers Z). This is similar to the known fact that Fourier transform of a
periodic function has a discrete support (hence the use of Fourier series).

Two singularities may appear in the calculations leading to the above expressions
of the effective parameters. Indeed, the formulae (2.28) are valid only under two
invertibility conditions equivalent to those discussed in (Norris et al., 2012) and
reduce, in our discrete case under investigation, to

detK 6= 0, 〈〈G〉〉 6= 0.

Let us call an eigenmode, a couple (k, ω) satisfying the dispersion relation provided
by

detK = 0.
Eigenmodes allow for non null displacement solutions u even when f is null. Such
solutions correspond to free waves. To calculate the effective properties, we may
start by avoiding eigenmodes, and then extrapolate by continuity. Hence, we
assume that K is invertible11 so as to satisfy the first invertibility requirement.
This singularity does appear in neither of the denominators of Ce, ρe, S1 nor S2

which confirms that it is a “removable” singularity as expected.
As for the second condition, the averaged representation equation (2.19) with

γ = 0 reduces to
〈ũ〉 = 〈〈G〉〉 f̃ .

If 〈〈G〉〉 = 0 for a couple (k, ω), then 〈ũ〉 and the effective displacement U are null
even when the microscopic solution ũ is non-null. In fact, the effective properties
can be said to be divergent for such couples in the sense that the material does not
respond to the solicitation f as if it had an infinite inertia. This singularity is not
“removable” and is visible in the common denominator of the expressions of Ce, ρe,
S1 and S2.

11This is equivalent to avoiding the singularities of g in the continuous case.
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It will be useful to define some dimensionless parameters. As k is measured in
`−1 unit, it can be considered as being dimensionless. Let ω◦ be the characteristic
frequency defined by

ω2
◦ = 4

〈
〈m〉
h

〉−1

and let be introduced the normalized frequency ν = ω/ω◦. At last, define the
following structural dimensionless parameters

δm = 1
〈m〉 〈1/m〉 , δh = 1

〈h〉 〈1/h〉 and δ = δhδm.

Then, for example, the effective stiffness and effective mass can be simply and
compactly written as

Ce
k,ω =

cos2
(
k
2

)
− ν2

cos2
(
k
2

)
− δhν2

〈1
h

〉−1

and ρek,ω =
cos2

(
k
2

)
− δν2

cos2
(
k
2

)
− δhν2

〈m〉 .

3.4. Effective impedance and dispersion curves
Determination of the effective displacement response U to a solicitation f does

not entail knowing the whole effective properties. Indeed, a direct relation between
U and f such as

zk,ωU = f

can be found, where z = 〈〈G〉〉−1 is an effective impedance given by

zk,ω = |eik − 1|2Ce + iω(e−ik − 1)S1 + iω(eik − 1)S2 − ω2ρe

which can be further specified as

zk,ω = 2m1m2ω
4 − 2(h1 + h2)(m1 +m2)ω2 + 8h1h2 sin2(k)
4(h1 + h2) cos2

(
k
2

)
− (m1 +m2)ω2

.

In terms of the dimensionless parameters k and ν, we have

zk,ω =
〈1
h

〉−1 4δν4 − 4ν2 + sin2(k)
cos2

(
k
2

)
− δhν2

. (3.1)

The impedance z is always real for similar 1D lattices with |T | > 2 and, in this
particular case |T | = 2, the contributions of S1 and of S2 annihilate each other and
disappear in the above expression. The coupling terms still affect effective stress
and momentum. However, one must consider more complex situations (|T | > 2) or
more general loadings (γ 6= 0) to study their effect on the motion equation.
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Effective eigenmodes are points of the curve {zk,ω = 0} while microscopic
eigenmodes are points of the curve {detKk,ω = 0}. We have proved that microscopic
solutions are transformed into effective solutions under the same loading. Therefore,
a point (k, ω) of {detKk,ω = 0} indicates the existence of a microscopic non-null
free wave solution u which is transformed into an effective free wave solution U
meaning that (k, ω) is a point of {zk,ω = 0} except when U = 0. This is: except
when (k, ω) satisfies also 〈〈Gk,ω〉〉 = 0. To sum up, we have

{zk,ω = 0} = {detKk,ω = 0}\{〈〈Gk,ω〉〉 = 0}.

Given the effective dispersion curve, one can recover the microscopic dispersion
curve by continuous extrapolation unless {detKk,ω = 0} and {〈〈Gk,ω〉〉 = 0}
coincide12 over a non-empty open subset of T ∗.

The dispersion relation is characterized by〈
〈h〉
m

〉−1

ω4 − 4ω2 + 4
〈
〈m〉
h

〉−1

sin2(k) = 0

which can be written
4δν4 − 4ν2 + sin2(k) = 0. (3.2)

The solutions of this equation parametrized by δ are plotted in figure 5. The
parameter δ can be interpreted as a measure of the heterogeneity contrast in the
medium. In fact, the arithmetic and harmonic inequalities imply that

1/ 〈1/h〉 ≤ 〈h〉 , 1/ 〈1/m〉 ≤ 〈m〉

with the equality attained in the first inequality (or the second inequality) if and
only if stiffnesses (or masses) are uniform. Therefore, δ is comprised between 0
and 1 with δ = 0 for an extremely high contrast medium (one mass is infinite for
example) and δ = 1 only for a homogeneous medium.

12In our case, this intersection has in it a single point at most.

27



k
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ν
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δ=1

δ=0,9

δ=0,8

δ=0,7

δ=0,6

Figure 5: Dispersion curve family (equation (3.2)) indexed by δ (decreasing with the arrows).
Since the homogeneous medium (δ = 1) is treated as a 2-periodic medium, its dispersion curve is
folded into the first Brillouin zone of a 2-periodic medium and has only one branch. All other
curves have two branches: an acoustic one of low frequency ν, and an optical one of higher
frequency ν.

Over the frequency domain or ν-space, there are two prohibited zones which
prevent free waves from propagating (see figure 6):

• beyond a cut-off frequency νc defined by

ν2
c = 1

δ

which corresponds to

ω2
c = ω2

◦
δ

= 4
〈
〈h〉
m

〉
.

For a homogeneous medium, we recover νc = 1 which is the classical cut-off
frequency

ω = ω◦ = 2
√
h

m
.

• Over a bounded range (a “bandgap”, see (Quéré, 1988) in the context of solid
state physics) between the frequencies νlow and νhigh given by

ν2
low = 1−

√
1− δ

2δ ,

ν2
high = 1 +

√
1− δ

2δ .
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The higher the contrast is, the wider the bandgap is. For a homogeneous
medium, the bandgap disappears.

k
π
2

ν

νc

νhigh − νlow

Figure 6: Bandgap and cut-off frequency (δ = 0.7).

It is known and easy to see that, at low frequencies, the effective mass is the
arithmetic mean of masses. Let us then investigate, through direct analysis, the
high frequency behavior of the effective mass through two examples ν = νc and
ν →∞.

• The exact solution for the eigenmode (k = 0, ν = νc) is u(x, t) = ũ(x)eiωt.
Since ũ is 2-periodic, the eigenmode (0, νc) decouples the medium into two
rigid subsystems (even indexed masses and odd indexed masses) connected
by two springs and oscillating in two opposite directions (so as not to violate
Newton’s first law, see figure 7). It is easy then to see that E = 0 since k = 0,
that P = 0 since u1/u2 = −m2/m1 and that V 6= 0 for m1 6= m2. Therefore,
ρek=0,ν=νc

= 0.

• For even higher frequencies ν → ∞, no free waves can propagate meaning
that, given a force field f̃ , masses will oscillate as if independent of each other.
We then have −ω2m1ũ1 = −ω2m2ũ2 = f̃ meaning that iω 〈ũ〉 = 〈1/m〉 f̃/iω
and ρek,ν→∞ = 1/ 〈1/m〉.

These two examples, along with the quasi-static case, show that the time nonlocality
which is caused by the ω or ν-dependency of the effective mass, among others, can
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be interpreted as the effect, over effective mass, of changing modes of oscillation
(in/out of phase for example) of internal degrees of freedom.

h1 h2 h1
m1 m2 m1 m2

m1 m2

h1

h2

Figure 7: The mode (k = 0, ν = νc) (top) and the two-body problem that it reduces to (bottom).
The arrows illustrate the direction of the velocity at a given time.

Finally, remark that the dispersion curve for δh = 1 where stiffnesses are uniform
is nothing else than the dispersion curve calculated by Brillouin for Born’s model
in (Brillouin, 1953).

3.5. Homogenizability conditions illustrated
For the 1D discrete medium under consideration, the second homogenizability

condition (2.10) is simply
−π2 < k <

π

2 .

As the gradient operator is replaced by its discrete version, the third homogeniz-
ability condition becomes

ω2 . 4 max
(
h

m

)
sin2

(
k

2

)

or, in terms of the reduced frequency ν,

ν2 .

〈
〈m〉
h

〉
max

(
h

m

)
sin2

(
k

2

)
.

Now, we can easily check that〈
〈m〉
h

〉
max

(
h

m

)
≤
〈
〈m〉
h

〉
max(h)
min(m) ≤

〈
〈m〉
h

〉
〈h〉

〈 1
m

〉
= δ−1

which leads to
δν2 . sin2

(
k

2

)
.
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Finally, solving the dispersion equation (3.2) for sin2(k/2), we obtain

δ
(

1 +
√

1 + 4ν2(δν2 − 1)
)
. 2(1− δν2) (3.3)

under both eigenmodes existence conditions previously discussed, i.e.,

ν2 ≤ 1/δ and 4ν2(1− δν2) ≤ 1. (3.4)

This means that ν must be below the cut-off frequency and outside the bandgap.
The above inequalities are illustrated in figure 8. The homogenizable frequency
domain covers the whole first branch of the dispersion curve and the low-frequency
part of the second branch. As this simple 1D medium has no internal resonances,
the first optical branch is not homogenizable which agrees with the observation
made by Srivastava and Nemat-Nasser (2014). Borrowing Brillouin’s interpretation,
the combined homogenizability conditions state that consecutive masses should not
oscillate in an obvious out-of-phase fashion.
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ν

1/2

δ
1δ◦A

B
νlow(δ◦)

C
νhigh(δ◦)

D

homogenizability limit for δ = δ◦

E

νc(δ◦)

Figure 8: The homogenizability condition (3.3) in the (δ, ν)-space. Starting from point A at
(ν = 0, δ = δ◦) and following the increasing ν, we scan the acoustic branch of the dispersion curve,
then we meet point B where the bandgap begins. At point C the bandgap ends and the optical
branch starts. The point D indicates the end of the homogenizable frequency domain. Finally,
the cut-off frequency is attained at point E. The inequalities (3.4) are satisfied between A and B
and between C and E while the homogenizability condition (3.3) is satisfied between A and D.

Figure 9 shows an example of an exact high frequency free wave solution where
a macroscopic description appears to be out of context. Therein, the effective
wavelength satisfies the second homogenizability condition. The large difference
between the amplitudes of the effective and microscopic waves indicates that the
dominant component is the short-wavelength one. This is due to the chosen high
frequency that violates the third homogenizability condition. In figure 10 is given an
example of an exact low frequency free wave solution where the macroscopic behavior
is rather obvious. The dominant component is clearly the effective long-wavelength
one due to the low frequency setting in agreement with the third homogenizability
condition. For these examples, details (masses, stiffnesses, time, . . . ) which are not
important from the physical standpoint are not specified.
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x

u

Figure 9: In small circles, an exact high frequency free wave solution: the (real) displacement of
100 consecutive masses. The continuous line draws the corresponding effective plane wave.

x

u

Figure 10: In small circles, an exact low frequency free wave solution: the (real) displacement of
100 consecutive masses. The continuous line draws the corresponding effective plane wave.

4. Concluding remarks

The elastodynamic homogenization theory of composites, initiated by J.R.
Willis more than thirty years ago, escaping due attention during a long period,
and developed recently by him and other researchers, has been carefully and
systematically revisited in the present work for periodic media. The theory of
Willis is general and exact, leading to an effective elastodynamic constitutive law
which is nonlocal in time and space and takes a form quite different from and
much more complicated than the usual constitutive laws in classical elastodynamics.
Many important questions concerning this theory and its applications remain

33



open. In the present paper, three ones have been addressed and studied. First,
in spite of its mathematical generality and exactness, the corresponding physical
validity (or suitableness) domain remains far from being clarified. Aiming mainly
at giving an answer to this important question, the present work has established
three necessary conditions for the application of that theory to be physically sound.
Second, even though the theory of Willis has recently been numerically studied
and applied to some relatively simple periodic cases (see, e.g., papers by Nemat-
Nasser and Srivastava (2011) and Srivastava and Nemat-Nasser (2011)), other
general, more robust, numerical methods are still lacking for its implementation
and applications in more involved periodic situations. This observation has led us
to express the frequency- and wavenumber-dependent parameters characterizing
the effective constitutive law in the spirit of micromechanics and in an explicit way,
so that a versatile numerical method, such as the finite element one, can be directly
constructed and applied to compute them. Third, the physical complicatedness and
implications of the theory of Willis appear to be far from being fully understood.
For this reason, in the present work, a very simple periodic discrete system has
been analytically, exactly and exhaustively investigated to get insights into that
theory.

Among other open questions concerning the elastodynamic homogenization
theory of Willis for composites, the following ones appear to be particularly
significant:

1. In the literature, several approaches based on asymptotic analysis have been
proposed to study elastodynamic homogenization (Andrianov et al., 2008;
Auriault and Bonnet, 1985; Auriault and Boutin, 2012; Boutin, 1996; Boutin
and Auriault, 1993; Craster et al., 2010). What are the relations of the theory
of Willis to these approaches? This fundamental problem has recently been
investigated by us and the results obtained will be presented in a forthcoming
paper.

2. The elastodynamic homogenization theory proposed by Willis holds formally
both for linear elasticity and linear viscoelasticity (Willis, 2009, 2011). Up to
now, all the detailed studies and numerical examples reported in the literature
to develop and illustrate this theory have however been limited to linear
elasticity. How to concretely apply the theory to the more complex case of
linear viscoelasticity remains a basic question to be answered.

3. The theory of Willis is formally valid for both periodically and randomly
inhomogeneous materials (Willis, 2009, 2011). Nevertheless, due to the fact
that randomly inhomogeneous materials are much more complicated than
periodically inhomogeneous ones, all the relevant detailed studies carried out
in the literature have restricted themselves to the periodic situation. The
more involved case of randomly inhomogeneous materials remains largely to
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be studied and explored. Such a study should be done in a near future owing
to the theoretical and practical importance of random composites.

4. The extension of Willis’ theory to nonlinear composites, even to very simple
ones, seems to have never been done. This extension appears to be very
challenging and difficult both from the conceptual and technical standpoints.
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Appendix A. Bloch theorem by a scattering analysis

The Bloch form (2.1) is not surprising and arises naturally in the following
analysis. Let f be some plane wave loading of Ω. The field f can be thought of as
a body force, some incident wave or any other loading of the medium. Let kI ∈ E ∗

be its wavenumber. By R-periodicity of the microstructure, the perturbation f
will interact with the scatterer (an inclusion or an interface for example) placed at
point x◦ ∈ T in the same manner it does with all scatterers placed at x◦ + r for
all r ∈ R. The same amplitude ukS

(x◦) is then scattered in the direction kS ∈ E ∗

from all points {x◦ + r, r ∈ R} with a corresponding phase shift of

kS · (x◦ + r − x◦)− kI · (x◦ + r − x◦) = (kS − kI) · r.

The scattered field, from the set of scatterers {x◦+r, r ∈ R}, in the direction kS is
then the sum over r ∈ R of ukS

(x◦)e(kS−kI)·r which interferes destructively unless
kS − kI is a reciprocal lattice wavenumber: kS − kI = ξ ∈ R∗. Therefore, at a
given point x, u(x) is a sum of contributions from all scatterers x◦ ∈ T coming
from directions kS = kI + ξ, for ξ ∈ R∗ (since the contribution of other directions
sums to zero):

u(x) =
∑
ξ∈R∗

∫
T
ukS

(x◦)ekS ·(x−x◦) dx◦

=
∑
ξ∈R∗

∫
T
ukS

(x◦)e(kI+ξ)·(x−x◦) dx◦

=
 ∑
ξ∈R∗

(∫
T
ukS

(x◦)e−(kI+ξ)·x◦ dx◦
)
eξ·x

 ekI ·x,
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which is nothing else than the Fourier series expansion of some R-periodic field
multiplied by an exponential factor of ekI ·x for some “incident” wavenumber kI ∈ E ∗,
i.e., a Bloch wave.
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