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ON FANO MANIFOLDS OF PICARD NUMBER ONE

LAURENT MANIVEL

Abstract. Küchle classified the Fano fourfolds that can be obtained as zero
loci of global sections of homogeneous vector bundles on Grassmannians. Sur-
prisingly, his classification exhibits two families of fourfolds with the same
discrete invariants. Kuznetsov asked whether these two types of fourfolds are
deformation equivalent. We show that the answer is positive in a very strong
sense, since the two families are in fact the same! This phenomenon happens
in higher dimension as well.

1. Introduction

The classification of smooth Fano threefolds by Iskhovskih, Mori and Mukai has
been one of the highlights of 20th century’s algebraic geometry. Many interesting
cases from that classification, and especially among the prime Fano manifolds of
index one, are obtained by taking suitable sections (mostly linear sections) of certain
rational homogeneous spaces, and Mukai wrote a wonderful series of papers about
their astonishing geometry (see for example [5], and the more general reference [2]).

It is a general fact that rational homogeneous spaces are a rich source of interest-
ing Fano manifolds, obtained as zero-loci of global sections of vector bundles, and
especially homogeneous vector bundles of low rank. In dimension four, O. Küchle
[4] began the classification of these Fano manifolds by focusing on Fano fourfolds
of index one obtained as subvarieties of Grassmannians, and defined as zero-loci of
semisimple homogeneous vector bundles. He obtained a list of fourfolds which, as
recently stressed by A. Iliev, are potentially a rich source of nice geometry. In par-
ticular some of these varieties have special Hodge structures, that could be relevant
in the quest for new hyperkähler manifolds. More precisely, they seem to be good
candidates for the ideas of [1] to be implemented successfully.

Recently, A. Kuznetsov obtained nice structural results about the Küchle four-
folds whose Picard number is bigger than one. He also observed that among those
whose Picard group is cyclic, there are two families with the very same discrete
invariants. He asked whether this coincidence could be explained by the possibility
that the two types of Fano fourfolds are deformation equivalent [3, Question 1.1].

The main result of this short note is that this is indeed the case, and that much
more is true: the two families are in fact the same one! Moreover, this phenomenon
happens in arbitrary dimension: there are two families of prime Fano n-folds of
index one, that look different at first sight but in fact coincide. The first one
is that of (n + 2)-codimensional linear sections of the Grassmannian G(2, n + 3).
The second one is that of zero-loci of sections of the twisted quotient bundle on
G(2, n + 2). We prove in Theorem 3.1 that these two types of varieties are the
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same up to projective equivalence. Meanwhile we provide a few elements about the
geometry of these Fano manifolds, that would probably deserve further study.
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2. Two families of Fano manifolds of index one

We will denote by Gn the Grassmannian G(2, n + 2) parametrizing planes in a
complex vector space Vn+2 of dimension n + 2. This is a smooth Fano variety of
dimension 2n, Picard number one and index n + 2. The very ample generator of
the Picard group defines the Plücker embedding of Gn, with respect to which its
degree is equal to the Catalan number cn = 1

n+1

(

2n
n

)

.

2.1. Linear sections of Grassmannians. Any smooth linear section X of Gn+1

of codimension n + 2 is again a Fano variety, of dimension n, Picard number one
and index one. This will be our first family of smooth Fano manifolds. Note that
for n = 2 we get a del Pezzo surface of degree five, and for n = 3 a prime Fano
threefold of genus eight.

There is a moduli space for these manifolds, that we can construct as the GIT
quotient of an open subset of the Grassmannian G(n+2,∧2V ∗

n+3) by the reductive

group PGLn+3. The dimension of this moduli space is N = (n + 1)(n + 2)2/2 −
(n + 2)(n + 4) = (n + 3)(n2 − 4)/2. Locally around a point in the moduli space
corresponding to a given X , deformations are unobstructed: recall this is the case
for any Fano manifold, as a consequence of the Kodaira-Akizuki-Nakano vanishing
theorem. The tangent space H1(TX) to the local Kuranishi space can be computed
fom the normal exact sequence, which yields a long exact sequence of cohomology
groups on X :

H0(TX) → H0(TGn+1|X) → H0(OX(1))n+2 → H1(TX) → H1(TGn+1|X).

Indeed, using the Koszul resolution of OX and Bott’s theorem on Gn+1, one checks
that H1(TGn+1|X) = 0 and H0(TGn+1|X) = H0(TGn+1) = sln+3. Moreover

H0(TX) = 0, or equivalently:

Proposition 2.1. For n ≥ 4, any smooth X has a finite automorphism group.

Proof. Since X has index one, H0(TX) = H0(Ωn−1
X (1)). Taking the (n − 1)-th

wedge power of the conormal exact sequence, we get that this cohomology group is
zero as soon as

Hk(X,Ωn−1−k
Gn+1|X

(1 − k)) = 0 ∀0 ≤ k ≤ n− 1.

Using the Koszul resolution of the structure sheaf of X , we get that this vanishing
will hold as soon as

Hk+ℓ(Gn+1,Ω
n−1−k
Gn+1

(1 − k − ℓ)) = 0 ∀0 ≤ ℓ ≤ n+ 2.

If k+ℓ ≥ 2, this follows from the Kodaira-Akizuki-Nakano vanishing theorem, since
(k+ ℓ)+ (n− 1−k) = n− 1+ ℓ is smaller than the dimension of Gn+1. If k+ ℓ ≥ 1,
we get H1(Ωn−1

Gn+1
) and H1(Ωn−2

Gn+1
), which are both zero for n ≥ 4 since Hq(Ωp

Gn+1
)
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is always zero for p 6= q. Finally if k + ℓ ≥ 0, we get H0(Ωn−1
Gn+1

(1)) = 0 by [6,

Theorem 2.3].

Remark. It would be interesting to have closed formulas for the Hodge numbers of
linear sections of Grassmannians. In the case we are interested in, the Lefschetz
hyperplane theorem gives hp,q(X) = hp,q(Gn+1) for p + q < n. Hence hp,q(X) =

δp,q
⌈

p+1

2

⌉

under this condition.
The case p + q = n is more difficult. It would be enough to compute the

holomorphic Euler characteristic of the bundles of p-forms for p ≤ n, which can be
done by standard techniques from Schubert calculus but remains computationally
hard. Even the topological Euler characteristic seems difficult to compute. If we
try to use the Gauss-Bonnet formula e(X) =

∫

X
cn(TX) we can obtain the Chern

class of the tangent bundle from the normal exact sequence. We deduce that if

Pn(x, y) =

n+1
∑

k=0

pn,kx
2ky2n+2−2k =

[ xn+2

(1 + x)n+2

(1 + x+ y2)n+3

1− x2 + 4y2

]

2n+2

the degree 2n+ 2 part of the Taylor expansion of this rational function, then

e(X) =

n+1
∑

k=0

pn,kck.

We can deduce the missing Betti number bn = bn(X) for X of small dimension n:
b2 = 5, b3 = 10, b4 = 69, b5 = 380, b6 = 2321, b7 = 9442.

2.2. Zero loci of the twisted quotient bundle. Recall that the Grassmannian
Gn is endowed with two natural vector bundles, the tautological rank two bundle
U , and the quotient bundle Q, which has rank n. Moreover det(U∗) = det(Q) =
OGn

(1), the very ample generator of the Picard group. The quotient bundle Q
is generated by global sections, and the zero locus of a non zero section is just a
projective space. More interesting are the zero loci of global sections of the twisted
quotient bundle Q(1). Since det(Q(1)) = OGn

(n+1), the zero locus Y of a general
global section of Q(1) is a smooth Fano manifold of dimension n and index one.
This is our second family of such manifolds.

In classical langage, Y defines a congruence of lines in P(Vn+2) = P
n+1. Recall

that the order of such a congruence is defined as the number of lines from Y passing
through a general point in P

n+1.

Proposition 2.2. The congruence of lines defined by Y has order n+ 1.

Proof. The set of lines passing through a point in P
n+1 is isomorphic to P

n, and
the restriction of Q(1) to this projective space is R(1), if R denotes the tautological
quotient bundle on P

n. The order of the congruence is the number of zeroes of the
induced section of R(1) = TPn. For Y general and a general point in P

n+1 we get a
general vector field on P

n, and we deduce that the order is cn(TP
n) = e(Pn) = n+1.

�

The space of global sections of Q(1) = Q⊗ det(U∗) is

Sn := S10···0−1−1Vn+2 = Ker(Vn+2 ⊗ ∧2V ∗
n+2 −→ V ∗

n+2)

(the latter morphism being the natural contraction map), as follows from the Borel-
Weil theorem. Its dimension is n(n+ 2)(n+ 3)/2.
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We would be tempted to think of our family of Fano manifolds Y , as the quotient
of an open subset of P(Sn) by PGLn+2. This is not correct. Indeed, an unusual
phenomenon happens: H0(TGn|Y ) is bigger than the sln+2 we would have expected.
In fact,

H0(TGn|Y ) = sln+2 ⊕ Vn+2.

This means that there are more linear isomorphisms beteween these varieties than
those coming from PSLn+2. We will explain the appearance of that extra factor
in the next section.

Note that Q(1) = Hom(∧2U,Q), and Sn ⊂ Hom(∧2Vn+2, Vn+2). Hence, for any
ω ∈ Sn, the zero locus of the associated section of Q(1) is

Yω = {〈a, b〉 ∈ G(2, Vn+2), ω(a, b) ∈ 〈a, b〉}.

Note that this makes sense for any ω ∈ Hom(∧2Vn+2, Vn+2) = Sn ⊕ V ∗
n+2; but the

component on V ∗
n+2 is in fact unsignificant, since for any v∗ ∈ V ∗

n+2, v
∗(a, b) =

v∗(b)a− v∗(a)b always belongs to 〈a, b〉.
More interestingly, the previous description shows that Yω has a natural rational

map to P(Vn+2), that we denote by Ω. By definition

Ω(〈a, b〉) = [ω(a, b)].

Proposition 2.3. The rational map Ω is a birational isomorphism with a deter-

minantal hypersurface of degree n+ 1 in P
n+1.

Proof. Let Z = Ω(Y ). A point [c] of P(Vn+2) belongs to Z if and only if there exists
an independant vector d such that ω(c, d) = 0 belongs to c⊥. Otherwise said, the
induced map from Vn+2/〈c〉 → (c⊥)∗ must not be injective. Note that there is a
natural duality between c⊥ and Vn+2/〈c〉. Globally, we can therefore describe Z as
the first degeneracy locus of a morphism between vector bundles

ω̄ : R(−1) −→ R.

This implies that [Z] = c1(Hom(R(−1), R)) is n + 1 times the hyperplane class,
so Z is a hypersurface of degree n+ 1. Moreover the fiber of σ over any point can
be identified with the kernel of ω̄, in particular it is always a linear space, and it
reduces to a single point for the general point of Z.

Let Ȳ ⊂ F (1, 2, Vn+2) be the variety parametrizing incident lines and planes
〈c〉 ⊂ 〈c, d〉 such that ω(c, d) belongs to 〈c〉. The two projections yield a diagram

Ȳ
p1ւ ցp2

G(2, Vn+2) ⊃ Y Z ⊂ P(Vn+2)

It is easy to see that for ω generic, the variety Ȳ is the zero-locus of a generic
section of a globally generated vector bundle, hence a smooth variety. Moreover its
projection to Y is birational. More precisely, this projection is the blow-up of the
smooth subvariety Sω defined as

Sω = {〈a, b〉 ∈ G(2, Vn+2), ω(a, b) = 0}.

Note that Sω is a Calabi-Yau variety, of codimension two in Y .
The projection to Z fails to be an isomorphism over the locus where ω̄ drops

rank. For ω generic, this occurs on a codimension three subvariety C ⊂ Z which is
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also the singular locus of Z. The projection from Ȳ to Z has fibers over the general
points of C which are lines, in particular this projection is a small morphism. �

Remark. For n = 2, the surface Y is a del Pezzo surface of degree five and Ȳ is its
blow-up at two points. The projection to the cubic surface Z is an isomorphism.

For n = 3, the threefold Y is a prime Fano threefold of genus eight, and Ȳ is
obtained by blowing-up the elliptic curve E = Sω. The projection to the quartic
determinantal threefold Z contracts 25 lines to the 25 singular points of Z.

Remark. As Kuznetsov points it out, ω ∈ Hom(∧2Vn+2, Vn+2) might be considered
as defining a bracket [a, b] = ω(a, b), although not a Lie bracket in general since the
Jacobi identity has no reason to hold. Then Yω parametrizes the planes in Vn+2 on
restriction to which the bracket defines a Lie algebra structure: each plane in Yω

is required to be stable under the bracket, and the Jacobi identity automatically
holds for dimensional reasons. Moreover the codimension two subvariety Sω can be
interpreted as parametrizing the two-dimensional abelian subalgebras.

3. And their coincidence

Let X be a smooth linear section of Gn+1, defined by an (n + 2)-dimensional
space of linear forms Hn+2 ⊂ ∧2V ∗

n+3. We suppose in this section that Hn+2 is
generic.

Fix a decomposition Vn+3 = Vn+2 ⊕ 〈vn+3〉, yielding a decomposition

∧2V ∗
n+3 = ∧2V ∗

n+2 ⊕ v∗n+3 ∧ V ∗
n+2,

where the linear form v∗n+3 has kernel Vn+2. Generically, the projection on the
second factor of this decomposition yields an isomorphism Hn+2 ≃ V ∗

n+2. The

variety X is thus defined by a monomorphism ω ∈ Hom(V ∗
n+2,∧

2V ∗
n+2) (we use the

same notation for ω and its transpose): it is cut out by the space of linear forms
defined as the graph

Hn+2 = {ω(u) + v∗n+3 ∧ u, u ∈ V ∗
n+2}.

Since ω is injective, X does not contain any line passing through [vn+3]. Any line
in X is of the form 〈a, b + χ(b)vn+3〉 for some non zero vectors a, b ∈ Vn+2, with
the condition that

χ(b)u(a) = ω(u)(a, b) ∀u ∈ V ∗
n+2.

This implies that ω(u)(a, b) = 0 for all u ∈ a⊥, while the remaining equation
determines χ(b). This means in particular that the linear projection from ∧2Vn+3

to ∧2Vn+2, which induces a rational map

Gn+1 = G(2, Vn+3) 99K Gn = G(2, Vn+2) ≃ G(2, Vn+3/〈vn+3〉),

restricts to a well-defined map fromX to the subvariety Yω ofGn, which is moreover
injective.

The inverse mapping can be described as follows. Note that ω(a, b) is the vector
c ∈ Vn+2 defined by the identity u(c) = ω(u)(a, b) for all u ∈ V ∗

n+2. The equations
defining X reduce to the condition that c = χ(b)a. The line 〈a, b + χ(b)vn+3〉 is
thus represented by

[a ∧ (b+ χ(b)vn+3)] = [a ∧ b+ c ∧ vn+3] = [a ∧ b+ ω(a, b) ∧ vn+3].

This concludes the proof of our main result:
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Theorem 3.1. X ⊂ Gn+1 and Yω ⊂ Gn are projectively equivalent.

Remark. In order to identify X with the subvariety Yω of Gn, we started from a
decomposition Vn+3 = Vn+2 ⊕ 〈vn+3〉. Note that if we choose another hyperplane
Vn+2, or equivalently if we change the defining linear form v∗n+3 into v∗n+3 − e∗ for

some e∗ ∈ V ∗
n+2, then ω is changed into the morphism from V ∗

n+2 to ∧2V ∗
n+2 that

sends u to ω(u) + e∗ ∧ u. In particular the class of ω in Sn is not affected.
On the contrary, changing the line 〈vn+3〉 has a non trivial effect on the class

of ω (that could easily be expressed explicitely), but does not affect Y = Yω up to
projective equivalence. This is precisely what explains the extra factor Vn+2 inside
H0(TGn|Y ).

Remark. The Calabi-Yau two codimensional subvariety S of Y can be seen directly
in X as the intersection of G(2, Vn+2) ⊂ G(2, Vn+3) with the linear space that
definesX . Of course there is a whole family of such Calabi-Yau‘s in Y , parametrized
by an open subset of the projective space of hyperplanes in Vn+3. In particular, for
n = 2 we get a four dimensional family of K3 surfaces covering Y .

Question. As we have seen, our two families of Fano manifolds of index one coincide
generically. An intriguing question is to decide whether they coincide stricto sensu:
can any smooth member of each family be described as a member of the second
family? A negative answer would be particularly interesting, as a new example of
the pathological behaviors of the moduli spaces of Fano varieties.
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