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Abstract— Graphs are mathematical structures that provide 

natural means for complex-data representation. Graphs capture 

the structure and thus help modeling a wide range of complex 

real-life data in various domains. Moreover graphs are especially 

suitable for information visualization. Indeed the intuitive visual-

abstraction (dots and lines) they provide is intimately associated 

with graphs. Visualization paves the way to interactive 

exploratory data-analysis and to important goals such as 

identifying groups and subgroups among data and helping to 

understand how these groups interact with each other. In this 

paper, we present a graph drawing approach that helps to better 

appreciate the cluster structure in data and the interactions that 

may exist between clusters. In this work, we assume that the 

clusters are already extracted and focus rather on the 

visualization aspects. We propose an energy-based model for 

graph drawing that produces an esthetic drawing that ensures 

each cluster will occupy a separate zone within the visualization 

layout. This method emphasizes the inter-groups interactions and 

still shows the inter-nodes interactions. The drawing areas 

assigned to the clusters can be user-specified (prefixed areas) or 

automatically crafted (free areas). The approach we suggest also 

enables handling geographically-based clustering. In the case of 

free areas, we illustrate the use of our drawing method through 

an example. In the case of prefixed areas, we first use an example 

from citation networks and then use another example to compare 

the results of our method to those of the divide and conquer 

approach. In the latter case, we show that while the two methods 

successfully point out the cluster structure our method better 

visualize the global structure. 

Keywords—graphs; clusterd graphs; graph drawing; 

visualization; 

I.  INTRODUCTION 

Automatic graph drawing has been an active research area 
over the last decades. It has been boosted by the increasing 
interest for graph structures which provide natural and intuitive 
ways for complex-data representation. Indeed, Graphs have 
proven their effectiveness in many fields, such as social 
network [1], software engineering [2], electronic circuit design 
[3], database design [4] etc... More generally, graphs 
effortlessly and perfectly model data that can be seen as sets of 
objects sharing some relationships. The major benefit of such 
abstract representation is that it easily transforms into a 
meaningful drawing which can be the core of some information 

visualization approach and the beginning of some data 
exploratory analysis process. Visualization paves the way to 
interactive exploratory data-analysis and to one of its targeted 
goals: identifying groups and subgroups among data and 
allowing users to better understand how these groups interact 
with each other.  

Many strategies have been used to draw graphs. Most 
popular algorithms are based on force-directed methods [5, 6]. 
They are rather simple but give satisfactory results for graph 
with few hundreds of nodes. Some methods are also scalable 
and demonstrate their ability to handle larger graphs [7]. These 
methods are effective to show the cluster structure of a graph 
when the clusters stem from the core graph structure; that is to 
say when it can be derived from the edges. However existing 
methods fail to represent the cluster structure of a graph when 
this structure is derived from extra-graph properties; for 
example from nodes attributes. 

Finding effective visualization for clustered graphs depends 
on the application domains and the nature of the clustering. We 
can distinguish the cases when a prefixed visualization area is 
associated with each cluster and the cases when the 
visualization areas are computed. Indeed, in various cases, the 
spatial constraints are part of the model. This is for example the 
case of geographic graphs or electronic circuit boards that 
usually comprise a large number of components which have to 
fit geographic constraints. This is also the case when the user is 
asked to make this association. 

In this paper, we propose an energy-based model for graph 
drawing that produces an esthetic drawing that ensures each 
cluster will occupy a separate zone within the visualization 
layout. In this work, we assume that the clusters are already 
calculated and known. Moreover, we consider that clusters can 
have been obtained independently from the core graph-
structure (that is to say edges and nodes), for example from 
attribute data in an attributed graph or colored graph. We also 
hypothesize that the drawing areas assigned to the clusters can 
be user-specified (prefixed areas) or automatically crafted (free 
areas). Our method seeks good layout for clustered graphs for 
both prefixed and free areas. Good layouts are generally 
associated to esthetics and ergonomics [8]; our method aims at 
providing drawings that allow users to investigate and explore 
the data by properly apprehending the clusters and the inter-



clusters interactions while still esthetically showing the inter-
nodes connections. We propose a new energy-based method to 
deal with this problem. Our method modifies the force system 
proposed in Fruchterman and Reingold [5] and provides an 
approach that handles user-selected cluster areas. 

The remaining of this paper is organized as follows. In 
section II we give an overview of graph drawing methods. In 
section III, we present the structure of clustered graphs, 
describe our main contributions and extend it to the case of 
prefixed cluster-areas. Section IV presents three use case 
examples. In the case of prefixed areas, we first use an example 
from citation networks [9] and then use an example from [10] 
to compare the results of our method to those of the divide and 
conquer approach. In the latter case, we show that while the 
two methods successfully point out the cluster structure our 
method better visualize the global structure. 

II. RELATED WORKS 

Graph drawing is a long-standing issue in mathematics and 
computer science. Indeed, this flourishing domain can be 
traced back to the sixties and the barycenter method of Tutte 
[11] although it is in the early eighties that computerized graph 
drawing really emerged [12][13]. Different strategies have 
been proposed to answer the challenge of drawing graphs. 
Some of these strategies are suitable for general graph 
structures e.g. orthogonal layout methods [14], circular layout 
methods [15] while others are only suitable for specific 
structures such as trees or hierarchy [16]. 

Eades [17] popularized one of the most used general 
drawing strategies –namely energy-based layout. Energy-based 
methods view the graph as a mechanical system in which each 
vertex is seen as a steel ring and each edge as a spring 
connecting the vertices –rings- at its endpoints. The induced 
attractive and repulsive forces drive the graph to a minimal 
energy state. This heuristic paved the way for one of most 
popular force-directed algorithms [6][5]. Kamada and Kawai 
[6] use adaptable spring forces. The force of each spring is 
proportional to the graph theoretic distance (shortest-path 
length) between its endpoints. Fruchterman and Reingold adds 
electrical charges to each vertex and ends with electrical 
repulsion forces between vertices [5]. The authors also add the 
notion of “cooling temperature” that lowers the amounts of 
vertices’ displacement as the layout becomes finer. Further 
propositions such as multi-level or multi-scale approaches 
followed mainly to address the scalability problem. For 
example [18] proposes a multi-scale method based on a vertex 
filtration, [19] quickly draw a graph in a very high dimensional 
space plunge it into a 2D or 3D space using principal 
components analysis. Moreover, [20] induces a coarser graph 
by recursively clustering the original graph and draws the 
obtained graphs in inverse order of the previous clustering 
process. 

The problem of visualizing clustered graphs can be divided 
into two problems depending on the nature of the clustering.  
Indeed, algorithms dealing with clustered graphs must differ 
one from another depending if the graphical areas associated to 
each cluster are pre-defined (user-defined) or if they are 
defined by the visualization algorithm it-self.  

Many works consider self-organizing cluster areas. The 
most significant of them [21][22][23][24][25][26] either 
modify the energy function or add 'dummy' nodes and related 
edges to lay out a “nice” drawing that enhances the visual 
identification of clusters by ensuring that the nodes belonging 
to a given cluster are always placed close to each other. Some 
energy based approaches use more sophisticated strategies to 
achieve the separation of clusters. For instance, [25] use a 
constraint optimization technique to keep nodes strictly inside 
non-overlapping rectangular boundaries. IPSep-Cola [23] 
allows separation constraints, which enforce a minimum 
horizontal or vertical separation between nodes -or clusters. 
However the underlying linear constraints present some 
limitations due to the mandatory rectangular shape that the 
clusters must fit which may end in space waste. Another 
limitation is related to the decoupling of intra and inter-clusters 
visualizations which obviously favors the local drawings and 
prevents appreciating the influence of inter-clusters edges. [24] 
sets up an approach that clearly displays different clusters of 
graph by using a new energy model called LinLog which use a 
cut ratio as a measure for the coupling of two disjoint sets of 
vertices. Noack proves that a graph having the minimum 
energy according to LinLog has its clusters properly displayed: 
each cluster is separated from the remaining graph vertices. 
The distance of each cluster from each of the remaining graph 
vertices is inversely proportional to the "coupling". [27] 
proposes a method based on the “level of detail visualization” 
to draw a clustered graph where the clusters are created in the 
hierarchical way. The approach allows users to change their 
view from a very abstracted to a very detailed visualization. It 
only modifies the visual representation of the graph without 
altering its structure. Alternatively, rather than been self-
organized, the cluster areas can be geographically constrained 
as in [28]  

What distinguishes the energy-based approach we propose 
in this paper from the works represented above is how clusters 
are defined -or uncovered. Many approaches consider clusters 
as sets of vertices with many internal edges and few edges to 
outside vertices: the clusters are graph relationship dependent. 
Under this assumption, clusters are often dense and strongly-
connected graphs components. In other words, the density of 
clusters is generally greater than the one of the entire graph. 
This is a quite restricting definition since graph vertices can 
group together and form clusters not only according to the 
graph binary relationship but also according to some 
exogenous or attribute based information . For example, in a 
collaboration or citation graph, the clusters may be built in 
relation to gender, age, geography or other similarity 
relationship among vertices that has nothing to do with the 
citation or the collaboration relationship. The approaches from 
the literature do not apply well to this kind of clustered graphs.  

Our motivation is to propose a method for drawing 
clustered graph where clusters can be any set of vertices. Under 
these assumptions, a cluster can be any set of graph vertices. It 
is even possible to consider clusters containing only pairwise 
disconnected nodes. 



III. CONTRIBUTION 

Before describing our method, we provide some definitions 
we will be using in the paper.  

A. Definitions and notations 

1) Graphs 
A graph consists of a set of nodes and a binary relationship 

between the nodes that induces a set of edges. A graph � is 
then a couple ��, ��, where � is a finite set of vertices and �	⊆	� � � a finite set of edges.  

2) Clustered graphs 

A clustered graph � is a triplet ���, �, 	� where V is a 
finite set of vertices, �	⊆	� � � a finite set of edges and 	 is a 
partition over �.  

	⊂c	��� the power set of V, ⋃ ��  �	�  and ∀	��, �� 		two 

elements of �, 		�� ∩ ��  ∅ 

The number of elements in 	 corresponds to the number of 
clusters in �.  

The Fig. 1 illustrates the structure of clustered graphs –the 
graph in this figure contains three clusters. 

 

Fig. 1. Illustration of the structure of a clustered graph 

3) Further notations 

If � is a set, |�| represents the number of elements of �. 

If � is a vector ‖|�|‖ represents the Euclidian norm of �. 

B. Defining our drawing models 

When building a force-directed or energy-based model for 
graph drawing, one must define its three major components: 
the initial nodes positioning, the force system that controls how 
the graph vertices move to meet their final positions and, since 
the drawing is an iterative process, the stop condition that 
determines when the system reaches stability). 

As said before, the problem deals with finding the best 
drawing for a clustered graph. This mainly includes that all 
vertices belonging to the same cluster must be placed in a 
restricted and exclusive area. The areas associated to the 
clusters can either be automatically determined or be chosen by 
the user. The resulting drawing must meet these placement 
constraints while still optimizing the graph global layout as 
well as the clusters' local-layouts. 

Whatever the types of areas (pre-defined and self-defined 
areas), the methods we propose for drawing clustered graphs 

are based on the force directed placement model proposed by 
Fruchterman and Reingold [5]. For this reason, we briefly 
present this algorithm. 

1) Fruchterman and Reingold ‘ algorithm 
The force directed placement model proposed in [5] is one 

of the most popular methods for graph drawing.  

Fruchterman and Reingold ’ approach begins with a 
random initial positioning of the graph vertices. Then, it 
iterates two steps that consist in 1) computing the attraction and 
repulsion forces exerted on each vertex and 2) positioning 
adjustment of vertices that follows this computing. Each couple 
of vertices v� and v�, exerts on each other two opposite 

repulsive forces of the same intensity. f�  ��
���� !!!!!!!!"� ��� !!!!!!!!"���� !!!!!!!!"� is the 

repulsive force that v� exerts on v�. K is a constant that depends 

on the visualization-space size and on the number of displayed 

vertices K ←$surface |%| . K is the optimal distance connected 

nodes.	
Only related vertices (for example v� and v�) exert attractive 

and opposite forces of the same intensity on each other (see 
Fig. 2). 

f&  ���� !!!!!!!!"��
� ��� !!!!!!!!"���� !!!!!!!!"� is the repulsive force that v� exerts on v�. 

 

Fig. 2. The sets of attractive and repulsive forces exercised within a graph of 

three vertices and two edges. Attractive forces are in green and repulsive 

ones are in red 

A temperature model is used and a cooling function ensures 
that the displacement of each vertex is majored by a maximum 
displacement value that decreases over time. This traduces the 
idea that, as the layout becomes better the amount and need for 
adjustment becomes smaller. 

The stopping condition is based on energy minimization 
but rather than computing the energy and finding its minimum 
or a local minimum, most algorithms perform a fixed number 
of iterations.  

Fig. 3 shows a pseudo code of Fruchterman and Reingold ’ 

algorithm.  

  

C1 C2 C3

P



surface	←W	*	L;			#	W	and	L	are	the	width	and	length	of	the	frame	
G	←�V,E�;									#	The	vertices	are	assigned	random	initial	positions	
k	←Csurface	|�| ;	
DEFGHIJF	KL�M�:
				OPQROSTMU

V W  

		DEFGHIJF	KX�M�:
				OPQROSTVU

M W  

Q  QY; 																													#ZSZQZ[\Z]P	QP^_PO[QROP	Q	
for	i	←	0		to		SabQPO[QZcS]:	#	Compute	the	repulsive	forces	on	vertices					for	v	in	V:																														#	Each	vertex	is	associated	two	2D	vectors:	 																													#	position	�pos�	and	displacement	�disp�										v.disp	←�0,0�;								for	u	in	V:												if	�R	 i 	j: �																											#	δ	is	the	difference	vector																	l←v.pos	-	u.pos;	
															v.disp	←	v.disp	n	 l‖l‖ 	*	KX�‖l‖�;	
			#	Compute	the	attractive	forces	on	vertices					for	e	in	E:												#	u	an	v	are	the	endpoint	vertices	of	e											δ←e.v.pos	-	e.u.pos;	
									e.v.disp	←e.v.disp	-	 l‖l‖ 	*	KL�‖l‖�;	
									e.u.disp	←e.u.disp	n	 l‖l‖ 	*	KL�‖l‖�;			#	Limit	the	max	displacement		using	tenperature 		#	and	keep	them	inside	the	frame					for	v	in	V:	
							v.pos	←v.posn j. oZ]_‖j. oZ]_‖ 	*	min�v.disp	,	t�;	
				v.pos.x	←min�W/2,	max�-W/2,	v.pos.x��;					v.pos.y	←min�L/2,	max�-L/2,	v.pos.y��;																			#	Reduce	the	temperature							t		cool�t�;	

Fig. 3. Algorithm 1 : Fruchterman and Reingold ’ algorithm. 

2) Clustered-graph drawing :the case of self-defined 

cluster areas. 
In this section, we focus on the case when areas associated 

to clusters are defined by the drawing algorithm it-self. When 
dealing with clustered-graph drawing, the main goal is to find a 
way to draw vertices from a given cluster near to each other; 
while vertices from different clusters must be drawn as far as 
possible from each other. When the clustering is performed 
directly using the graph relationships (edges), the clusters are 
generally sets of vertices that form dense sub-graphs [24] 
relatively to the entire graph. In force-based model such as in 
[5], these vertices exert naturally attractive forces on each other 
making them close in the final graph drawing. The edges 
relating vertices from different clusters are infrequent which 
tends to separate the clusters in the final drawing. Since we are 
also interested in clusters that do not stems from the graph 
relationship, the force system has to be revisited to create 
attractive forces between the vertices that compose a given 
clusters in order to make them closer in the final drawing. 
Unlike the methods proposed in [EH00, FT04] that create a 

‘dummy’ node for each cluster, we rather add “invisible” edges 
-that lead to additional attractive forces- between non-
connected nodes of the same cluster. This is intended to keep 
the nodes of a given cluster close together in the visualization 
space. We consider that the layout of a cluster is good if it 
resembles to some extend the layout of that cluster when it is 
considered as a separated graph. The forces generated by the 
additional edges must be lowered to prevent them from over 
affecting the internal layout of clusters. In other words, we 
want these extra edges to help creating homogenous and 
separated clusters without over-modifying the relative 
placement of the cluster nodes. To do so, we adjust the 
intensity of the additional attractive forces relatively to the one 
of real edges. 

The main differences with the approach used in [5] are: 

1) we distinguish two types of spring forces and add 
attractive forces between non-connected nodes of a same 
cluster (some kind of invisible edges) and  

2) we increase the repulsive forces between vertices from 
different clusters.  

Indeed, our force model is built as a combination of three 
types of springs and an electrical force (in the next algorithm 
we will add another electrical force): 

- Real springs that link adjacent nodes from a same 
given cluster, 

- Invisible springs that link non adjacent nodes from a 
same cluster (they correspond to invisible links that 
represents the other criteria making the nodes 
belonging to the same cluster). These springs are 
weakened, using an attenuation function OPoRsP_ZS, in 
order to produce attenuated forces and store less 
energy, 

- Real springs that link adjacent nodes from different 
clusters. These springs link are also weakened, in a 
different manner using an attenuation function OPoRsP_cRQ, to produce a different force comparing to 
real springs that link adjacent nodes from a same 
cluster, 

- The repulsive forces that concern vertices from two 
different clusters are amplified using the function PSu[SsP. 

Fig. 4 illustrates the force system we propose. The colors 
help distinguishing the different kinds of force. 

It is Attractive and repulsive forces depend on whether vi 
and vj belong or not to the same cluster  

 

Fig. 4. Attractive and repulsive forces depend on whether vi and vj belong or 

not to the same cluster 



The remaining of Fruchterman and Reingold algorithm 
components such as temperature and optimal distance are 
leaved unchanged in our algorithm. 

Algorithm 2 presents the algorithm we propose. 

surface	←W	*	L;			#	W	and	L	are	the	width	and	length	of	the	frame	
G	←�V,E,P�;				#	The	vertices	are	assigned	random	initial	positions	
k	←Csurface	|�| ;	
DEFGHIJF	KL�M�:
				OPQROSTMU

V W  

		DEFGHIJF	KX�M�:
				OPQROSTVU

M W  

Q  QY; 																													#ZSZQZ[\Z]P	QP^_PO[QROP	Q	
for	i	←	0		to		SabQPO[QZcS]:	#	Compute	the	repulsive	forces	on	vertices					for	v	in	V:																														#	Each	vertex	is	associated	two	2D	vectors:	 																													#	position	�pos�	and	displacement	�disp�										v.disp	←�0,0�;								for	u	in	V:						 												l←v.pos	-	u.pos;								#	δ	is	the	difference	vector													if	�R	 i 	j�: 																	if�u	in	cluster�v��: 
																									v.disp	←	v.disp	n	 l‖l‖ 	*	KX�‖l‖�	; 																	else: 
																										v.disp	←	v.disp	n	 l‖l‖ 	*	PSu[SsP�KX�‖l‖��	;	
			#	Compute	the	attractive	forces	on	vertices					for	e	in	E:												#	u	an	v	are	the	endpoint	vertices	of	e											δ←e.v.pos	-	e.u.pos; 										if�u	in	cluster�v��:	
																			e.v.disp	←e.v.disp	-	 l‖l‖ 	*	KL�‖l‖�;	
																				e.u.disp	←e.u.disp	n	 l‖l‖ 	*	KL�‖l‖�; 										else: 
																				e.v.disp	←e.v.disp	-	 l‖l‖ 	*	OPoRsP_cRQ�KL�‖l‖��;	
																		e.u.disp	←e.u.disp	n	 l‖l‖ 	*	OPoRsP_cRQ�KL�‖l‖��; 
				for	v	in	V:				 															#	case	of	non-related	vertices	of	the	same	cluster	 										for	u	in	cluster�v�	and	�u,v�	not	in	E:				 																	δ←e.v.pos	-	e.u.pos; 
																						e.v.disp	←e.v.disp	-	 l2 ∗ ‖l‖ 	*	OPoRsP_ZS�KL�‖l‖��;	
																				e.u.disp	←e.u.disp	n	 l2 ∗ ‖l‖ 	*	OPoRsP_ZS�KL�‖l‖��; 		#	Limit	the	max	displacement		using	tenperature 		#	and	keep	them	inside	the	frame					for	v	in	V:	
							v.pos	←v.posn j. oZ]_‖j. oZ]_‖ 	*	min�v.disp	,	t�;	
				v.pos.x	←min�W/2,	max�-W/2,	v.pos.x��;					v.pos.y	←min�L/2,	max�-L/2,	v.pos.y��;																			#	Reduce	the	temperature							t		cool�t�;	

Fig. 5. Algorithm 2 : our algorithm for self-defined areas, based on [5]. 

3) Clustered-graph drawing : the case of predefined 

cluster areas 
In this section, we examine the case of user pre-defined 

areas: each area is associated to a graph cluster. We believe 
that this is an important issue and to the best of our knowledge, 
it has not been addressed as a force placement problem in 
previous works. In our model, the visualization area associated 
with each cluster is a convex polygon. Nodes of clusters will be 
placed according to inter-cluster forces and extra-cluster forces. 
Two types of forces –attractive and repulsive- are defined the 
same way as in the previous case and the concept of optimal 
distance is personalized to each cluster. In our model, we 
distinguish two types of distance: one between vertices 
belonging to two different clusters –optDist. The other is 
relevant to vertices of a same cluster -optDistCluster. We 
hypothesize that the optimal distance between vertices of a 
given cluster must be smaller than the global optimal distance. 
We argue that the size the area occupied by a cluster is 
obviously smaller than the one of the total drawing area. In 
addition, the density of a cluster is generally higher than the 
whole graph density. For the reason, we define the ratio 
between optDist and optDistCluster  as larger than 1. 

The idea behind the use of two different optimal distances 
is to preserve a “satisfactory” display inside the area related to 
one given cluster. In fact, we consider that the layout of a 
cluster is “satisfactory” if it almost resembles the layout of that 
cluster when it is considered separately from the rest of the 
graph nodes while it still shows the influence of those nodes. 
When having optDistCluster < optDist, the influence of 
internal-nodes are considered as more important than the one 
of external-nodes. Note that we could have proposed a more 
personalized optimal distance computation so that each cluster 

�� would have its own optimal distance x�  $yzX{L|}	~�|~�|  . 

However, this latter idea is not optimal as the distances 
between nodes in different clusters cannot be easily compared. 
Instead, we use only two different values one for the global 
graph and one for the clusters. We use   

c_Q�Z]Q  x� 	 C�ROK[sP|�| 	 
and 

c_Q�Z]Q�\R]QPO  x~  1|	|�C�ROK[sP	��|��|�
 

x~  is obtained averaging x� 
We also offer another way to differentiate the influence of 

intra and extra-cluster vertices by enhancing intra-cluster 
interactions and by reducing extra-cluster ones. We achieve 
this goal using the functions: OPoRsP_ZS��, OPoRsP_cRQ�� and PSu[SsP��. 

Moreover, to actively keep nodes of clusters inside their 
cluster area, we define repulsive forces between nodes and the 
border of the cluster area they belong to. We call these forces 
frontier forces (K{). The strength of such repulsive forces is 

formulated according to the distance between the nodes and the 
border of the clusters they belong to. It must be sufficiently 



strong when the distance to the border is small. In order to 
achieve this goal, we consider that the nodes are charged 
particles and that the borders of a visualization area are also 
electrically charged. The induced repulsive forces follow the 
electrical force principles. There is no need that this kind of 
force operates beyond a considered strip along the cluster 
border. In our model, the maximum displacement possible for a 
vertex is governed by the temperature and the cooling function. 
The width of the strip we consider is then two times this 
maximum displacement, that is to say (2 ∗ Q�.  

Still, because of the discrete placement of nodes, in some 
special cases, the strength of cumulative forces exercised on a 
given node may push it outside the cluster frontier. We use the 
same strategy as in Fruchterman and Reingold model to return 
the vertex to its associated area.  

In this context of fixed and none porous areas, it is no more 
necessary to add the “invisible” edges to stick together the 
vertices of a given cluster. However, we maintained them in 
the proposed solution to better handle the incidence of extra-
cluster influences. 

 

 

Fig. 6. The strength of frontier forces over the distance to the frontier. This 

strength  rapidly decrease as the distance separating a vertex from its 

cluster-frontier reach 2*t 

We also consider that this force has to be rapidly lowered to 
reach and stick to zero as the vertex reaches a distance of 2 
times the value of the threshold.  

Let K{ be the frontier force and o the distance between a 

node and the border of its cluster. K{is defined as: 

K{�o�  �0	bK	o � 2	QuV~oU  

where Qu	  	scc\�Q� is the maximum possible 
displacement for any vertex,  

V| is the optimal distance in cluster context. 

For simplification reasons, the frontier force exercised on a 
given node is determined by its nearest frontier point. 

The Fig. 7 shows the principle of our model. The distance 
between two vertices belonging to two different clusters is split 
in three parts: o�, oU and o�. oU which is the distance between 
the two clusters is handled differently from the two other 

distances. We use a function to alter this distance (lower it) in 
order to manage the attractive force that depends on. In some 
sort, we curve the space between clusters zones so that we can 
handle the strength of inter-clusters forces. This is suitable 
when the clusters are too far from each other for example in 
geographic visualization. Note that this strength reduction is 
also the reason of using a multilevel optimal distance. 

 

Fig. 7. The sets of exercised attractive (green) and repulsive (red)  and 

frontier (black) 

Fig. 8 presents the algorithm we propose. 
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 for	i	←	0		to		SabQPO[QZcS]:	#	Compute	the	repulsive	forces	on	vertices					for	v	in	V:	
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																													#	Each	vertex	is	associated	two	2D	vectors:	 																													#	position	�pos�	and	displacement	�disp�										v.disp	←�0,0�; 								l ← Qc_KOcSQ�j�: 
								v.disp	←	v.disp	n	 l|l| 	*K{X����|l|�	;		
							for	u	in	V:	 																	if	�R	 i 	j�: 																		l←∆�u,v�							#	δ	is	the	difference	vector																		if�u	in	cluster�v��: 
																											v.disp	←	v.disp	n	 l|l| 	*KX�|l|, x~�	; 																else: 
																									v.disp	←	v.disp	n	 l|l| 	*	PSu[SsP�KX�|l|, x���	;	
			#	Compute	the	attractive	forces	on	vertices					for	e	in	E:												#	u	an	v	are	the	endpoint	vertices	of	e											δ←∆�e.u,e.v�							 										if�u	in	cluster�v��:	

													e.v.disp	←e.v.disp	-		 l|l| 	*	KL�|l|, x~�; 
																e.u.disp	←e.u.disp	n		 l|l| 	*	KL�l, x~�; 										else: 

																e.v.disp	←e.v.disp	-	 l|l| 	*	OPoRsP_cRQ�KL�|l|, x���;	
															e.u.disp	←e.u.disp	n	 l|l| 	*	OPoRsP_cRQ�KL�|l|, x���; 
				for	v	in	V	and	�u,v�	not	in	E:	:				 															#	case	of	non-related	vertices	of	the	same	cluster	 										for	u	in	cluster�v�:				 																	δ←∆�e.u,e.v�	 																	e.v.disp	←e.v.disp	-	 
																																			 l2 ∗ |l| 	*		OPoRsP_ZS�KL�|l|, x~��; 																			e.u.disp	←e.u.disp	n 

																																				 l2 ∗ |l| 	*	OPoRsP_ZS�KL�|l|, x~��; 		#	Limit	the	max	displacement		using	tenperature 

		#	and	keep	them	inside	the	frame					for	v	in	V: 														w←s\R]QPO�j�.�; 														l←s\R]QPO�j�. \; 														n←s\R]QPO�j�. S; 														� ← s\R]QPO�j�. _c]_M	 														� ← s\R]QPO�j�. _c]_M 

														v.pos	←v.posn j. oZ]_|j. oZ]_| 	*	min�v.disp	,	t�;	
															v.pos.x	←Xnmin�w/2,	max�-w/2,	v.pos.x-X��;																v.pos.y	←Ynmin�l/2,	max�-l/2,	v.pos.y-Y��;																			#	Reduce	the	temperature							t		cool�t�;	

Fig. 8. Algorithm 3: Our algorithm in the case of pre-defined areas based on 

[5] 

IV. EVALUATION AND RESULTS 

In this section, we provide and discuss three examples to 
show the practicability of our models.  

A. First example: a clustered collaboration 

network 

This first example presents a collaboration network where 
the vertices represent researchers that have been associated to 
eight different clusters. How these clusters have been obtained 
is out of the scope. First we perform a drawing of the related 
graph using Fruchterman and Reingold algorithm (Fig. 3). As 
we can see, the resulting drawing is quite pleasant but it does 
not clearly show the clustered structure of the graph in eight 
clusters. The two next figures (Fig. 10 and Fig. 11) present the 
resulting drawing for the same graph when using our methods. 
Fig. 10 shows the results when the self-defined area approach 
is applied (Algorithm 2 in Fig 5) while Fig. 11 is related to 
predefined-area approach (Algorithm 3 Fig. 8). As we can see 
the cluster structure is clearly presented and the global aesthetic 
of the two graphs is still quite pleasant. 

 

Fig. 9. Graph drawing based on algorithm 1 



 

Fig. 10. Graph drawing based on algorithm 2 – Self-defined drawing areas 

 

Fig. 11. Graph drawing based on algorithm 3 – Pre-defined drawing areas 



 

B. Second example: a citation network 

This second example is intended to show that the 
predefined area drawing we suggest can be used to help 
appreciating the correlation between the clustering and the 
binary relationships inherent to the graph structure. The graph 
we present in this section represents the citations network in 
the context of graph drawing [9]. The graph consists in 311 
vertices and 647 edges. Each vertex represents a paper 
published in the International Symposium on Graph Drawing 
from 1994 to 2000. 

We perform an authority analysis [29][30][31] and obtain 
an authority score for each vertex. Table 1 shows the top 
authority scores. This authority score is used to generate eight 
clusters. Each cluster is composed of papers that have similar 
authority scores. Actually, the clustering results from the 
fragmentation of the authority scores into eight segments of the 
same amplitude. Each cluster is then associated to a prefixed 
area where the areas are organized as horizontal strips or layers 
of the same width and positioned on the top of each other’s. 
Clusters on the top of the drawing correspond to nodes that 
have best authority scores.  

TABLE I.  AUTHORITY SCORES OF GD PAPERS 1994-2000  

Paper Paper title 

GD 96, 139 Eades, 

... 

Two Algorithms for Three Dimensional Orthogonal 

Graph Drawing. 

GD 94, 1 Cohen, ... Three-Dimensional Graph Drawing 

GD 95, 254 

Foessmeier, ... 

Drawing High Degree Graphs with Low Bend 

Numbers 

GD 94, 286 Garg, .... On the Compuational Complexity of Upward and 

Rectilinear Planarity Testing 

GD 95, 419 

Papakostas, ... 

Issues in Interactive Orthogonal Graph Drawing 

GD 95, 99 Bruss, ... Fast Interactive 3-D Graph Visualization 

GD 94, 388 Frick, ... A Fast Adaptive Layout Algorithm for Undirected 

Graphs 

GD 95, 8 Alt, ... Universal 3-Dimensional Visibility Representations 

for Graphs 

GD 97, 52 

Papakostas, ... 

Incremental Orthogonal Graph Drawing in Three 

Dimensions 

GD 95, 234 Fekete, 

... 

New Results on a Visibility Representation of Graphs 

in 3D 

Top authority papers from the International Symposium on Graph Drawing from 1994 to 2000  

The resulting drawing (Fig. 12) confirms that citations 
mainly go from nodes in lower layers to nodes in higher layers. 
It also shows that papers that obtain high authority scores do 
not cite each other’s. 

 
Fig. 12. Drawing of the citation network where vertices are grouped according 

to their authority score and placed into corresponding layers  

C. third example: a short comparison 

This third example is intended to compare the results of our 
method to those of a divide-and-conquer approach. 

[10] presents a divide-and-conquer approach to generate 
visually structured layouts for clustered graphs. The proposed 
algorithm partitions a graph into sub graphs and composes 
them to form the resulting layout. To position each vertex, the 
divide-and-conquer approach uses a composite force that 
includes intra- forces, progressively increasing inter-cluster 
forces and gradually decreasing meta forces. The authors 
propose an example and draw it as follows: 

 

Fig. 13. The grah example as it have been drawn by the divide-and-conquer 

methode in [10] 

Fig. 14 shows the drawing our method outputs. 

The two drawings presented in Fig. 13 and Fig.14 show 
that while the two methods successfully point out the cluster 
structure, our method better acknowledges the global structure 
of the graph. 



 

Fig. 14.  The grah example given in [10] as it have been drawn our prefixed 

areas related method 

V. CONCLUSION 

In this paper, we have introduced a new energy-based 
model for clustered graph drawing. Two aspects of the drawing 
corresponding to self-defined and pre-defined cluster related 
drawing areas have been addressed; a distinct solution has been 
proposed for each one of them.  

The results we obtained show the potential of our model in 
dealing with metric values such as authority scores. This work 
can also help dealing with geographic graph visualization when 
graphs vertices are grouped according to some of their 
geographic properties such as the authors' countries or 
locations in scientific citation networks. Such graph drawing 
approach will help to understand the implications –if any- of 
geographic characteristics over the vertices relationships. 
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