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Graphs are mathematical structures that provide natural means for complex-data representation. Graphs capture the structure and thus help modeling a wide range of complex real-life data in various domains. Moreover graphs are especially suitable for information visualization. Indeed the intuitive visualabstraction (dots and lines) they provide is intimately associated with graphs. Visualization paves the way to interactive exploratory data-analysis and to important goals such as identifying groups and subgroups among data and helping to understand how these groups interact with each other. In this paper, we present a graph drawing approach that helps to better appreciate the cluster structure in data and the interactions that may exist between clusters. In this work, we assume that the clusters are already extracted and focus rather on the visualization aspects. We propose an energy-based model for graph drawing that produces an esthetic drawing that ensures each cluster will occupy a separate zone within the visualization layout. This method emphasizes the inter-groups interactions and still shows the inter-nodes interactions. The drawing areas assigned to the clusters can be user-specified (prefixed areas) or automatically crafted (free areas). The approach we suggest also enables handling geographically-based clustering. In the case of free areas, we illustrate the use of our drawing method through an example. In the case of prefixed areas, we first use an example from citation networks and then use another example to compare the results of our method to those of the divide and conquer approach. In the latter case, we show that while the two methods successfully point out the cluster structure our method better visualize the global structure.

INTRODUCTION

Automatic graph drawing has been an active research area over the last decades. It has been boosted by the increasing interest for graph structures which provide natural and intuitive ways for complex-data representation. Indeed, Graphs have proven their effectiveness in many fields, such as social network [START_REF]Models and methods in social network analysis[END_REF], software engineering [START_REF] Gansner | An open graph visualization system and its applications to software engineering[END_REF], electronic circuit design [START_REF] Cancho | Topology of technology graphs: Small world patterns in electronic circuits[END_REF], database design [START_REF] Navathe | Vertical partitioning for database design: a graphical algorithm[END_REF] etc... More generally, graphs effortlessly and perfectly model data that can be seen as sets of objects sharing some relationships. The major benefit of such abstract representation is that it easily transforms into a meaningful drawing which can be the core of some information visualization approach and the beginning of some data exploratory analysis process. Visualization paves the way to interactive exploratory data-analysis and to one of its targeted goals: identifying groups and subgroups among data and allowing users to better understand how these groups interact with each other.

Many strategies have been used to draw graphs. Most popular algorithms are based on force-directed methods [START_REF] Fruchterman | Graph drawing by force-directed placement[END_REF][START_REF] Kamada | An algorithm for drawing general undirected graphs[END_REF]. They are rather simple but give satisfactory results for graph with few hundreds of nodes. Some methods are also scalable and demonstrate their ability to handle larger graphs [START_REF] Hachul | An Experimental Comparison of Fast Algorithms for Drawing General Large Graphs[END_REF]. These methods are effective to show the cluster structure of a graph when the clusters stem from the core graph structure; that is to say when it can be derived from the edges. However existing methods fail to represent the cluster structure of a graph when this structure is derived from extra-graph properties; for example from nodes attributes.

Finding effective visualization for clustered graphs depends on the application domains and the nature of the clustering. We can distinguish the cases when a prefixed visualization area is associated with each cluster and the cases when the visualization areas are computed. Indeed, in various cases, the spatial constraints are part of the model. This is for example the case of geographic graphs or electronic circuit boards that usually comprise a large number of components which have to fit geographic constraints. This is also the case when the user is asked to make this association.

In this paper, we propose an energy-based model for graph drawing that produces an esthetic drawing that ensures each cluster will occupy a separate zone within the visualization layout. In this work, we assume that the clusters are already calculated and known. Moreover, we consider that clusters can have been obtained independently from the core graphstructure (that is to say edges and nodes), for example from attribute data in an attributed graph or colored graph. We also hypothesize that the drawing areas assigned to the clusters can be user-specified (prefixed areas) or automatically crafted (free areas). Our method seeks good layout for clustered graphs for both prefixed and free areas. Good layouts are generally associated to esthetics and ergonomics [START_REF] Brandes | Layout of Graph Visualizations[END_REF]; our method aims at providing drawings that allow users to investigate and explore the data by properly apprehending the clusters and the inter-clusters interactions while still esthetically showing the internodes connections. We propose a new energy-based method to deal with this problem. Our method modifies the force system proposed in Fruchterman and Reingold [START_REF] Fruchterman | Graph drawing by force-directed placement[END_REF] and provides an approach that handles user-selected cluster areas.

The remaining of this paper is organized as follows. In section II we give an overview of graph drawing methods. In section III, we present the structure of clustered graphs, describe our main contributions and extend it to the case of prefixed cluster-areas. Section IV presents three use case examples. In the case of prefixed areas, we first use an example from citation networks [START_REF] Biedl | Graph-Drawing contest report[END_REF] and then use an example from [START_REF] Storey | Graph layout adjustment strategies[END_REF] to compare the results of our method to those of the divide and conquer approach. In the latter case, we show that while the two methods successfully point out the cluster structure our method better visualize the global structure.

II. RELATED WORKS

Graph drawing is a long-standing issue in mathematics and computer science. Indeed, this flourishing domain can be traced back to the sixties and the barycenter method of Tutte [START_REF] Tutte | How to draw a graph[END_REF] although it is in the early eighties that computerized graph drawing really emerged [START_REF] Di Battista | Graph Drawing: Algorithms for the Visualization of Graphs[END_REF] [START_REF] Kobourov | Force-Directed Drawing Algorithms[END_REF]. Different strategies have been proposed to answer the challenge of drawing graphs. Some of these strategies are suitable for general graph structures e.g. orthogonal layout methods [START_REF] Görg | Dynamic graph drawing of sequences of orthogonal and hierarchical graphs[END_REF], circular layout methods [START_REF] Dogrusöz | Circular Layout in the Graph Layout Toolkit[END_REF] while others are only suitable for specific structures such as trees or hierarchy [START_REF] Melancon | Circular drawings of rooted trees[END_REF].

Eades [START_REF] Eades | A heuristic for graph drawing[END_REF] popularized one of the most used general drawing strategies -namely energy-based layout. Energy-based methods view the graph as a mechanical system in which each vertex is seen as a steel ring and each edge as a spring connecting the vertices -rings-at its endpoints. The induced attractive and repulsive forces drive the graph to a minimal energy state. This heuristic paved the way for one of most popular force-directed algorithms [START_REF] Kamada | An algorithm for drawing general undirected graphs[END_REF] [START_REF] Fruchterman | Graph drawing by force-directed placement[END_REF]. Kamada and Kawai [START_REF] Kamada | An algorithm for drawing general undirected graphs[END_REF] use adaptable spring forces. The force of each spring is proportional to the graph theoretic distance (shortest-path length) between its endpoints. Fruchterman and Reingold adds electrical charges to each vertex and ends with electrical repulsion forces between vertices [START_REF] Fruchterman | Graph drawing by force-directed placement[END_REF]. The authors also add the notion of "cooling temperature" that lowers the amounts of vertices' displacement as the layout becomes finer. Further propositions such as multi-level or multi-scale approaches followed mainly to address the scalability problem. For example [START_REF] Gajer | GRIP: Graph Drawing with Intelligent Placement[END_REF] proposes a multi-scale method based on a vertex filtration, [START_REF] Harel | A fast multi-scale method for drawing large graphs[END_REF] quickly draw a graph in a very high dimensional space plunge it into a 2D or 3D space using principal components analysis. Moreover, [START_REF] Walshaw | A Multilevel Algorithm for Force-Directed Graph Drawing[END_REF] induces a coarser graph by recursively clustering the original graph and draws the obtained graphs in inverse order of the previous clustering process.

The problem of visualizing clustered graphs can be divided into two problems depending on the nature of the clustering. Indeed, algorithms dealing with clustered graphs must differ one from another depending if the graphical areas associated to each cluster are pre-defined (user-defined) or if they are defined by the visualization algorithm it-self.

Many works consider self-organizing cluster areas. The most significant of them [21][22][23] [START_REF] Noack | An Energy Model for Visual Graph Clustering[END_REF][25] [START_REF] Eades | Navigating Clustered Graphs Using Force-Directed Methods[END_REF] either modify the energy function or add 'dummy' nodes and related edges to lay out a "nice" drawing that enhances the visual identification of clusters by ensuring that the nodes belonging to a given cluster are always placed close to each other. Some energy based approaches use more sophisticated strategies to achieve the separation of clusters. For instance, [START_REF] Truong | An energy model for the drawing of clustered graphs[END_REF] use a constraint optimization technique to keep nodes strictly inside non-overlapping rectangular boundaries. IPSep-Cola [START_REF] Dwyer | IPSep-CoLa: An incremental procedure for separation constraint layout of graphs[END_REF] allows separation constraints, which enforce a minimum horizontal or vertical separation between nodes -or clusters. However the underlying linear constraints present some limitations due to the mandatory rectangular shape that the clusters must fit which may end in space waste. Another limitation is related to the decoupling of intra and inter-clusters visualizations which obviously favors the local drawings and prevents appreciating the influence of inter-clusters edges. [START_REF] Noack | An Energy Model for Visual Graph Clustering[END_REF] sets up an approach that clearly displays different clusters of graph by using a new energy model called LinLog which use a cut ratio as a measure for the coupling of two disjoint sets of vertices. Noack proves that a graph having the minimum energy according to LinLog has its clusters properly displayed: each cluster is separated from the remaining graph vertices. The distance of each cluster from each of the remaining graph vertices is inversely proportional to the "coupling". [START_REF] Balzer | Level-of-detail visualization of clustered graph layouts[END_REF] proposes a method based on the "level of detail visualization" to draw a clustered graph where the clusters are created in the hierarchical way. The approach allows users to change their view from a very abstracted to a very detailed visualization. It only modifies the visual representation of the graph without altering its structure. Alternatively, rather than been selforganized, the cluster areas can be geographically constrained as in [START_REF] Rodgers | Graph drawing techniques for geographic visualization[END_REF] What distinguishes the energy-based approach we propose in this paper from the works represented above is how clusters are defined -or uncovered. Many approaches consider clusters as sets of vertices with many internal edges and few edges to outside vertices: the clusters are graph relationship dependent. Under this assumption, clusters are often dense and stronglyconnected graphs components. In other words, the density of clusters is generally greater than the one of the entire graph. This is a quite restricting definition since graph vertices can group together and form clusters not only according to the graph binary relationship but also according to some exogenous or attribute based information . For example, in a collaboration or citation graph, the clusters may be built in relation to gender, age, geography or other similarity relationship among vertices that has nothing to do with the citation or the collaboration relationship. The approaches from the literature do not apply well to this kind of clustered graphs.

Our motivation is to propose a method for drawing clustered graph where clusters can be any set of vertices. Under these assumptions, a cluster can be any set of graph vertices. It is even possible to consider clusters containing only pairwise disconnected nodes.

III. CONTRIBUTION

Before describing our method, we provide some definitions we will be using in the paper.

A. Definitions and notations 1) Graphs

A graph consists of a set of nodes and a binary relationship between the nodes that induces a set of edges. A graph ܩ is then a couple ሺܸ, ܧሻ, where ܸ is a finite set of vertices and ܧ ⊆ ܸ ൈ ܸ a finite set of edges. 

2) Clustered graphs

3) Further notations

If ܺ is a set, |ܺ| represents the number of elements of ܺ.

If ܺ is a vector ‖|ܺ|‖ represents the Euclidian norm of ܺ.

B. Defining our drawing models

When building a force-directed or energy-based model for graph drawing, one must define its three major components: the initial nodes positioning, the force system that controls how the graph vertices move to meet their final positions and, since the drawing is an iterative process, the stop condition that determines when the system reaches stability).

As said before, the problem deals with finding the best drawing for a clustered graph. This mainly includes that all vertices belonging to the same cluster must be placed in a restricted and exclusive area. The areas associated to the clusters can either be automatically determined or be chosen by the user. The resulting drawing must meet these placement constraints while still optimizing the graph global layout as well as the clusters' local-layouts.

Whatever the types of areas (pre-defined and self-defined areas), the methods we propose for drawing clustered graphs are based on the force directed placement model proposed by Fruchterman and Reingold [START_REF] Fruchterman | Graph drawing by force-directed placement[END_REF]. For this reason, we briefly present this algorithm.

1) Fruchterman and Reingold ' algorithm

The force directed placement model proposed in [START_REF] Fruchterman | Graph drawing by force-directed placement[END_REF] is one of the most popular methods for graph drawing.

Fruchterman and Reingold ' approach begins with a random initial positioning of the graph vertices. Then, it iterates two steps that consist in 1) computing the attraction and repulsion forces exerted on each vertex and 2) positioning adjustment of vertices that follows this computing. Each couple of vertices v ୧ and v ୨ , exerts on each other two opposite repulsive forces of the same intensity.
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is the repulsive force that v ୧ exerts on v ୨ . K is a constant that depends on the visualization-space size and on the number of displayed vertices K ←ට surface || . K is the optimal distance connected nodes.

Only related vertices (for example v ୧ and v ୨ ) exert attractive and opposite forces of the same intensity on each other (see Fig. 2).
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is the repulsive force that v ୧ exerts on v ୨ . A temperature model is used and a cooling function ensures that the displacement of each vertex is majored by a maximum displacement value that decreases over time. This traduces the idea that, as the layout becomes better the amount and need for adjustment becomes smaller.

The stopping condition is based on energy minimization but rather than computing the energy and finding its minimum or a local minimum, most algorithms perform a fixed number of iterations. ݂ ሺݔሻ: 2) Clustered-graph drawing :the case of self-defined cluster areas.

݊ݎݑݐ݁ݎ ቆ ݔ ଶ ݇ ቇ ݂ ሺݔሻ: ݊ݎݑݐ݁ݎ ቆ ݇ ଶ ݔ ቇ ݐ ൌ ݐ ; ݁ݏ݈݅ܽ݅ݐ݅݊݅# ݁ݎݑݐܽݎ݁݉݁ݐ ݐ
In this section, we focus on the case when areas associated to clusters are defined by the drawing algorithm it-self. When dealing with clustered-graph drawing, the main goal is to find a way to draw vertices from a given cluster near to each other; while vertices from different clusters must be drawn as far as possible from each other. When the clustering is performed directly using the graph relationships (edges), the clusters are generally sets of vertices that form dense sub-graphs [START_REF] Noack | An Energy Model for Visual Graph Clustering[END_REF] relatively to the entire graph. In force-based model such as in [START_REF] Fruchterman | Graph drawing by force-directed placement[END_REF], these vertices exert naturally attractive forces on each other making them close in the final graph drawing. The edges relating vertices from different clusters are infrequent which tends to separate the clusters in the final drawing. Since we are also interested in clusters that do not stems from the graph relationship, the force system has to be revisited to create attractive forces between the vertices that compose a given clusters in order to make them closer in the final drawing. Unlike the methods proposed in [EH00, FT04] that create a 'dummy' node for each cluster, we rather add "invisible" edges -that lead to additional attractive forces-between nonconnected nodes of the same cluster. This is intended to keep the nodes of a given cluster close together in the visualization space. We consider that the layout of a cluster is good if it resembles to some extend the layout of that cluster when it is considered as a separated graph. The forces generated by the additional edges must be lowered to prevent them from over affecting the internal layout of clusters. In other words, we want these extra edges to help creating homogenous and separated clusters without over-modifying the relative placement of the cluster nodes. To do so, we adjust the intensity of the additional attractive forces relatively to the one of real edges.

The main differences with the approach used in [START_REF] Fruchterman | Graph drawing by force-directed placement[END_REF] are:

1) we distinguish two types of spring forces and add attractive forces between non-connected nodes of a same cluster (some kind of invisible edges) and 2) we increase the repulsive forces between vertices from different clusters. Indeed, our force model is built as a combination of three types of springs and an electrical force (in the next algorithm we will add another electrical force):

-Real springs that link adjacent nodes from a same given cluster, -Invisible springs that link non adjacent nodes from a same cluster (they correspond to invisible links that represents the other criteria making the nodes belonging to the same cluster). These springs are weakened, using an attenuation function ,݊݅_݁ܿݑ݀݁ݎ in order to produce attenuated forces and store less energy, -Real springs that link adjacent nodes from different clusters. These springs link are also weakened, in a different manner using an attenuation function ,ݐݑ_݁ܿݑ݀݁ݎ to produce a different force comparing to real springs that link adjacent nodes from a same cluster, -The repulsive forces that concern vertices from two different clusters are amplified using the function ݄݁݊ܽ݊ܿ݁.

Fig. 4 illustrates the force system we propose. The colors help distinguishing the different kinds of force.

It is Attractive and repulsive forces depend on whether v i and v j belong or not to the same cluster # Reduce the temperature t ൌ coolሺtሻ; Fig. 5. Algorithm 2 : our algorithm for self-defined areas, based on [START_REF] Fruchterman | Graph drawing by force-directed placement[END_REF].

3) Clustered-graph drawing : the case of predefined cluster areas

In this section, we examine the case of user pre-defined areas: each area is associated to a graph cluster. We believe that this is an important issue and to the best of our knowledge, it has not been addressed as a force placement problem in previous works. In our model, the visualization area associated with each cluster is a convex polygon. Nodes of clusters will be placed according to inter-cluster forces and extra-cluster forces. Two types of forces -attractive and repulsive-are defined the same way as in the previous case and the concept of optimal distance is personalized to each cluster. In our model, we distinguish two types of distance: one between vertices belonging to two different clusters -optDist. The other is relevant to vertices of a same cluster -optDistCluster. We hypothesize that the optimal distance between vertices of a given cluster must be smaller than the global optimal distance. We argue that the size the area occupied by a cluster is obviously smaller than the one of the total drawing area. In addition, the density of a cluster is generally higher than the whole graph density. For the reason, we define the ratio between optDist and optDistCluster as larger than 1.

The idea behind the use of two different optimal distances is to preserve a "satisfactory" display inside the area related to one given cluster. In fact, we consider that the layout of a cluster is "satisfactory" if it almost resembles the layout of that cluster when it is considered separately from the rest of the graph nodes while it still shows the influence of those nodes. When having optDistCluster < optDist, the influence of internal-nodes are considered as more important than the one of external-nodes. Note that we could have proposed a more personalized optimal distance computation so that each cluster ܥ would have its own optimal distance ܭ ൌ ට ௌ௨ | | . However, this latter idea is not optimal as the distances between nodes in different clusters cannot be easily compared. Instead, we use only two different values one for the global graph and one for the clusters. We use

ݐݏ݅ܦݐ ൌ ܭ ீ ൌ ඨ ݂݁ܿܽݎݑܵ |ܸ| and ݎ݁ݐݏݑ݈ܥݐݏ݅ܦݐ ൌ ܭ ൌ 1 |ܲ| ඨ ݂݁ܿܽݎݑܵ ܥ ܥ| |
ܭ is obtained averaging ܭ

We also offer another way to differentiate the influence of intra and extra-cluster vertices by enhancing intra-cluster interactions and by reducing extra-cluster ones. We achieve this goal using the functions: ݊݅_݁ܿݑ݀݁ݎሺሻ, ‪ሺሻݐݑ_݁ܿݑ݀݁ݎ and ݄݁݊ܽ݊ܿ݁ሺሻ.

Moreover, to actively keep nodes of clusters inside their cluster area, we define repulsive forces between nodes and the border of the cluster area they belong to. We call these forces frontier forces (݂ ). The strength of such repulsive forces is formulated according to the distance between the nodes and the border of the clusters they belong to. It must be sufficiently strong when the distance to the border is small. In order to achieve this goal, we consider that the nodes are charged particles and that the borders of a visualization area are also electrically charged. The induced repulsive forces follow the electrical force principles. There is no need that this kind of force operates beyond a considered strip along the cluster border. In our model, the maximum displacement possible for a vertex is governed by the temperature and the cooling function. The width of the strip we consider is then two times this maximum displacement, that is to say (2 * ݐሻ.

Still, because of the discrete placement of nodes, in some special cases, the strength of cumulative forces exercised on a given node may push it outside the cluster frontier. We use the same strategy as in Fruchterman and Reingold model to return the vertex to its associated area.

In this context of fixed and none porous areas, it is no more necessary to add the "invisible" edges to stick together the vertices of a given cluster. However, we maintained them in the proposed solution to better handle the incidence of extracluster influences. We also consider that this force has to be rapidly lowered to reach and stick to zero as the vertex reaches a distance of 2 times the value of the threshold.

Let ݂ be the frontier force and ݀ the distance between a node and the border of its cluster. ݂ is defined as:

݂ ሺ݀ሻ ൌ ൝ 0 ݂ܫ ݀ 2 ݄ݐ ݇ ݀ ଶ
where ݄ݐ ൌ ‪ሻݐ‪݈ሺܿ is the maximum possible displacement for any vertex, ݇ is the optimal distance in cluster context.

For simplification reasons, the frontier force exercised on a given node is determined by its nearest frontier point.

The Fig. 7 shows the principle of our model. The distance between two vertices belonging to two different clusters is split in three parts: ݀ ଵ , ݀ ଶ and ݀ ଷ . ݀ ଶ which is the distance between the two clusters is handled differently from the two other distances. We use a function to alter this distance (lower it) in order to manage the attractive force that depends on. In some sort, we curve the space between clusters zones so that we can handle the strength of inter-clusters forces. This is suitable when the clusters are too far from each other for example in geographic visualization. Note that this strength reduction is also the reason of using a multilevel optimal distance. 

IV. EVALUATION AND RESULTS

In this section, we provide and discuss three examples to show the practicability of our models.

A. First example: a clustered collaboration network

This first example presents a collaboration network where the vertices represent researchers that have been associated to eight different clusters. How these clusters have been obtained is out of the scope. First we perform a drawing of the related graph using Fruchterman and Reingold algorithm (Fig. 3). As we can see, the resulting drawing is quite pleasant but it does not clearly show the clustered structure of the graph in eight clusters. The two next figures (Fig. 10 and Fig. 11) present the resulting drawing for the same graph when using our methods. Fig. 10 shows the results when the self-defined area approach is applied (Algorithm 2 in Fig 5 ) while Fig. 11 is related to predefined-area approach (Algorithm 3 Fig. 8). As we can see the cluster structure is clearly presented and the global aesthetic of the two graphs is still quite pleasant. 

B. Second example: a citation network

This second example is intended to show that the predefined area drawing we suggest can be used to help appreciating the correlation between the clustering and the binary relationships inherent to the graph structure. The graph we present in this section represents the citations network in the context of graph drawing [START_REF] Biedl | Graph-Drawing contest report[END_REF]. The graph consists in 311 vertices and 647 edges. Each vertex represents a paper published in the International Symposium on Graph Drawing from 1994 to 2000.

We perform an authority analysis [START_REF] Dkaki | Passage Retrieval Using Graph Vertices Comparison[END_REF][30] [START_REF] Blondel | A measure of similarity between graph vertices[END_REF] and obtain an authority score for each vertex. Table 1 shows the top authority scores. This authority score is used to generate eight clusters. Each cluster is composed of papers that have similar authority scores. Actually, the clustering results from the fragmentation of the authority scores into eight segments of the same amplitude. Each cluster is then associated to a prefixed area where the areas are organized as horizontal strips or layers of the same width and positioned on the top of each other's. Clusters on the top of the drawing correspond to nodes that have best authority scores. The resulting drawing (Fig. 12) confirms that citations mainly go from nodes in lower layers to nodes in higher layers. It also shows that papers that obtain high authority scores do not cite each other's. C. third example: a short comparison This third example is intended to compare the results of our method to those of a divide-and-conquer approach.

[10] presents a divide-and-conquer approach to generate visually structured layouts for clustered graphs. The proposed algorithm partitions a graph into sub graphs and composes them to form the resulting layout. To position each vertex, the divide-and-conquer approach uses a composite force that includes intra-forces, progressively increasing inter-cluster forces and gradually decreasing meta forces. The authors propose an example and draw it as follows: Fig. 14 shows the drawing our method outputs.

The two drawings presented in Fig. 13 and Fig. 14 show that while the two methods successfully point out the cluster structure, our method better acknowledges the global structure of the graph. The results we obtained show the potential of our model in dealing with metric values such as authority scores. This work can also help dealing with geographic graph visualization when graphs vertices are grouped according to some of their geographic properties such as the authors' countries or locations in scientific citation networks. Such graph drawing approach will help to understand the implications -if any-of geographic characteristics over the vertices relationships.

  A clustered graph ܩ is a triplet ܩሺܸ, ,ܧ ܲሻ where V is a finite set of vertices, ܧ ⊆ ܸ ൈ ܸ a finite set of edges and ܲ is a partition over ܸ. ܲ⊂c ሺܸሻ the power set of V, ⋃ ܥ ൌ ܸ and ∀ ܥ , ܥ two elements of ܸ, ܲ ܥ ∩ ܥ ൌ ∅ The number of elements in ܲ corresponds to the number of clusters in .ܩ The Fig. 1 illustrates the structure of clustered graphs -the graph in this figure contains three clusters.
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 1 Fig. 1. Illustration of the structure of a clustered graph
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 2 Fig. 2. The sets of attractive and repulsive forces exercised within a graph of three vertices and two edges. Attractive forces are in green and repulsive ones are in red
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 3 Fig.3shows a pseudo code of Fruchterman and Reingold ' algorithm.
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 3 Fig. 3. Algorithm 1 : Fruchterman and Reingold ' algorithm.
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 4 Fig. 4. Attractive and repulsive forces depend on whether vi and vj belong or not to the same cluster
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 6 Fig. 6. The strength of frontier forces over the distance to the frontier. This strength rapidly decrease as the distance separating a vertex from its cluster-frontier reach 2*t
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 8 Fig.8. Algorithm 3: Our algorithm in the case of pre-defined areas based on[START_REF] Fruchterman | Graph drawing by force-directed placement[END_REF] 
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 9110 Fig. 9. Graph drawing based on algorithm 1
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 12 Fig. 12. Drawing of the citation network where vertices are grouped according to their authority score and placed into corresponding layers
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 13 Fig.[START_REF] Kobourov | Force-Directed Drawing Algorithms[END_REF]. The grah example as it have been drawn by the divide-and-conquer methode in[START_REF] Storey | Graph layout adjustment strategies[END_REF] 
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 14 Fig. 14. The grah example given in [10] as it have been drawn our prefixed areas related method V. CONCLUSION In this paper, we have introduced a new energy-based model for clustered graph drawing. Two aspects of the drawing corresponding to self-defined and pre-defined cluster related drawing areas have been addressed; a distinct solution has been proposed for each one of them.
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	GD 96, 139 Eades,	
	...	

Two Algorithms for Three Dimensional Orthogonal Graph Drawing. GD 94, 1 Cohen, ... Three-Dimensional Graph Drawing