
HAL Id: hal-01112124
https://hal.science/hal-01112124v1

Submitted on 2 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OMEN: Faster Password Guessing Using an Ordered
Markov Enumerator

Markus Duermuth, Fabian Angelstorf, Claude Castelluccia, Daniele Perito,
Abdelberi Chaabane

To cite this version:
Markus Duermuth, Fabian Angelstorf, Claude Castelluccia, Daniele Perito, Abdelberi Chaabane.
OMEN: Faster Password Guessing Using an Ordered Markov Enumerator. International Symposium
on Engineering Secure Software and Systems, Mar 2015, milan, Italy. �hal-01112124�

https://hal.science/hal-01112124v1
https://hal.archives-ouvertes.fr

OMEN: Faster Password Guessing Using an

Ordered Markov Enumerator

Markus Dürmuth1, Fabian Angelstorf1, Claude Castelluccia2, Daniele Perito2,
and Abdelberi Chaabane2

1 Ruhr-University Bochum, Germany
markus.duermuth@rub.de

2 INRIA, France
{claude.castelluccia | daniele.perito}@inria.fr

Abstract. Passwords are widely used for user authentication, and will
likely remain in use in the foreseeable future, despite several weaknesses.
One important weakness is that human-generated passwords are far from
being random, which makes them susceptible to guessing attacks. Under-
standing the adversaries capabilities for guessing attacks is a fundamental
necessity for estimating their impact and advising countermeasures.
This paper presents OMEN, a new Markov model-based password cracker
that extends ideas proposed by Narayanan and Shmatikov (CCS 2005).
The main novelty of our tool is that it generates password candidates
according to their occurrence probabilities, i.e., it outputs most likely
passwords first. As shown by our extensive experiments, OMEN signifi-
cantly improves guessing speed over existing proposals.
In particular, we compare the performance of OMEN with the Markov
mode of John the Ripper, which implements the password indexing func-
tion by Narayanan and Shmatikov. OMEN guesses more than 40% of
passwords correctly with the first 90 million guesses, while JtR-Markov
(for T = 1 billion) needs at least eight times as many guesses to reach
the same goal, and OMEN guesses more than 80% of passwords correctly
at 10 billion guesses, more than all probabilistic password crackers we
compared against.

Keywords: Authentication, Password guessing, Markov models

1 Introduction

Password-based authentication is the most widely used form of user authenti-
cation, both online and offline. Despite their weaknesses, passwords will likely
remain the predominant form of authentication for the foreseeable future, due to
a number of advantages: passwords are highly portable, easy to understand for
laypersons, and easy to implement for the operators. In fact, while alternative
forms of authentication can replace passwords in specific scenarios, they have
not been able, so far, to replace them on a large scale [3].

In this work, we concentrate on offline guessing attacks, in which the attacker
can make a number of guesses bounded only by the time and resources she is
willing to invest. While such attacks can be improved by increasing the resource
with which an attacker can generate and verify guesses (e.g., by using special-
ized hardware and large computing resources [9, 8]), we concentrate here on
techniques to reduce the number of guesses required to crack a password. Hence,
our approach reduces the attack time independently of the available resources.

Tools commonly used for password cracking, such as John the Ripper (JtR)
in dictionary mode, exploit regularities in the structure of password by applying
mangling rules to an existing dictionary of words (e.g., by replacing the letter a
with @ or by appending a number). This is used to generate new guesses from
an existing corpus of data, like a dictionary or a previously leaked password
database. Weir et al. [24] demonstrated how to use probabilistic context-free
grammars (PCFG) to automatically extract such mangling rules from a corpus
of leaked passwords, and Narayanan et al. [16] showed that Markov models,
which are known to closely represent natural language, can also be used to guess
passwords efficiently. We will demonstrate that, while these attacks already have
a good guessing efficiency against passwords, the performance can be substan-
tially improved.

This paper presents OMEN, a new Markov model-based password cracker
that generates password candidates according to their occurrence probabilities,
i.e., it outputs most likely passwords first. As shown by our extensive experi-
ments, OMEN significantly improves guessing speed over existing proposals.

1.1 Related Work

One of the main problems with passwords is that many users choose weak pass-
words. These passwords typically have a rich structure and thus can be guessed
much faster than with brute-force guessing attacks. Best practice mandates that
only the hash of a password is stored on the server, not the password, in order
to prevent leaking plain-text when the database is compromised.

In this work we consider offline guessing attacks, where an attacker has gained
access to this hash and tries to recover the password pwd . The hash function
is frequently designed for the purpose of slowing down guessing attempts [20].
This means that the cracking effort is strongly dominated by the computation

of the hash function making the cost of generating a new guess relatively small.
Therefore, we evaluate all password crackers based on the number of attempts
they make to correctly guess passwords.

John the Ripper: John the Ripper (JtR) [17] is one of the most popular pass-
word crackers. It proposes different methods to generate passwords. In dictionary

mode, a dictionary of words is provided as input, and the tool tests each one of
them. Users can also specify various mangling rules. Similarly to [6], we discover
that for relatively small number of guesses (less than 108), JtR in dictionary
mode produces best results. In Incremental mode (JtR-inc) [17], JtR tries pass-
words based on a (modified) 3-gram Markov model.

2

Password Guessing with Markov Models: Markov models have proven
very useful for computer security in general and for password security in par-
ticular. They are an effective tool to crack passwords [16], and can likewise be
used to accurately estimate the strength of new passwords [5]. Recent indepen-
dent work [14] compared different forms of probabilistic password models and
concluded that Markov models are better suited for estimating password prob-
abilities than probabilistic context-free grammars. The biggest difference to our
work is that they only approximate the likelihood of passwords, which does not
yield a password guesser which outputs guesses in the correct order, the main
contribution of our work.

The underlying idea of Markov models is that adjacent letters in human-
generated passwords are not independently chosen, but follow certain regulari-
ties (e.g., the 2-gram th is much more likely than tq and the letter e is very
likely to follow the 2-gram th). In an n-gram Markov model, one models the
probability of the next character in a string based on a prefix of length n − 1.
Hence, for a given string c1, . . . , cm, a Markov model estimates its probability
as P (c1, . . . , cm) ≈ P (c1, . . . , cn−1) ·

∏m

i=n P (ci|ci−n+1, . . . , ci−1). For password
cracking, one basically learns the initial probabilities P (c1, . . . , cn−1) and the
transition probabilities P (cn|c1, . . . , cn−1) from real-world data (which should
be as close as possible to the distribution we expect in the data that we attack),
and then enumerates passwords in order of descending probabilities as estimated
by the Markov model. To make this attack efficient, we need to consider a num-
ber of details: Limited data makes learning these probabilities challenging (data
sparseness) and enumerating the passwords in the optimal order is challenging.

Probabilistic Grammars-based Schemes: A scheme based on probabilistic
context-free grammars (PCFG) [24] bases on the idea that typical passwords
have a certain structure. The likeliness of different structures are extracted from
lists of real-world passwords, and these structures are later used to generate
password guesses.

Password Strength Estimation: A problem closely related to password guess-
ing is that of estimating the strength of a password, which is of central importance
for the operator of a site to ensure a certain level of security. In the beginning,
password cracking was used to find weak passwords [15]. Since then, much more
refined methods have been developed. Typically, so-called pro-active password
checkers are used to exclude weak passwords [22, 11, 1, 18, 4]. However, most pro-
active password checkers use relatively simple rule-sets to determine password
strength, which have been shown to be a rather bad indicator of real-world pass-
word strength [23, 12, 5]. The influence of password policies on password strength
is studied in [10], and [2] proposes new methods for measuring password strength
and applies them to a large corpus or passwords. More recently, Schechter et
al. [21] classified password strength by limiting the number of occurrences of a
password in the password database. Finally, Markov models have been shown to
be a good predictor of password strength while being provably secure [5].

3

1.2 Paper organization

In Section 2 we describe the Ordered Markov ENumerator (OMEN) and provide
several experiments for selecting adequate parameters. Section 3 gives details
about OMEN’s cracking performance, including a comparison with other pass-
word guessers. We conclude the paper with a brief discussion in Section 4.

2 OMEN: An Improved Markov Model Password Cracker

In this section we present our implementation of password enumeration algo-
rithm, enumPwd(), based on Markov models. Our implementation improves pre-
vious work based on Markov models by Narayanan et al. [16] and JtR [17]. We
then present how OMEN, our new password cracker, uses it in practice.

2.1 An Improved Enumeration Algorithm (enumPwd())

Narayanan et al.’s indexing algorithm [16] has the disadvantage of not outputting
passwords in order of decreasing probability. However, guessing passwords in the
right order can substantially speed up password guessing (see the example in
Section 3). We developed an algorithm, enumPwd(), to enumerate passwords
with (approximately) decreasing probabilities.

On a high level, our algorithm discretizes all probabilities into a number of
bins, and iterates over all those bins in order of decreasing likelihood. For each
bin, it finds all passwords that match the probability associated with this bin and
outputs them. More precisely, we first take the logarithm of all n-gram probabili-
ties, and discretize them into levels (denoted η) similarly to Narayanan et al. [16],
according to the formula lvl i = round (log(c1 · probi + c2)) , where c1 and c2 are
chosen such that the most frequent n-grams get a level of 0 and that n-grams
that did not appear in the training are still assigned a small probability. Note
that levels are negative, and we adjusted the parameters to get the desired num-
ber of levels (nbLevel), i.e., the levels can take values 0,−1, . . . ,−(nbLevel−1)
where nbLevel is a parameter. The number of levels influences both the accuracy
of the algorithm as well as the running time: more levels means better accuracy,
but also a longer running time.

For a specific length ℓ and level η, enumPwd(η, ℓ) proceeds as follows3:

1. It computes all vectors a = (a2, . . . , aℓ) of length ℓ− 1, such that each entry
ai is an integer in the range [0, nbLevel−1], and the sum of all elements is η.
Note that the vectors have ℓ− 1 elements as, when using 3-grams, we need
ℓ− 2 transition probabilities and 1 initial probability to determine the prob-
ability for a string of length ℓ. For example, the probability of the password
“password” of size ℓ = 8 is computed as follows:

P (password) = P (pa)P (s|pa)P (s|as)P (w|ss)P (o|sw)P (r|wo)P (d|or).

3 To ease presentation, we only describe the estimation algorithm for 3-grams. The
generalization to n-grams is straightforward.

4

Algorithm 1 Enumerating passwords for level η and length ℓ (here for ℓ = 4).4

function enumPwd(η, ℓ)
1. for each vector (ai)2≤i≤ℓ with

∑
i
ai = η

and for each x1x2 ∈ Σ2 with L(x1x2) = a2

and for each x3 ∈ Σ with L(x3 | x1x2) = a3

and for each x4 ∈ Σ with L(x4 | x2x3) = a4:
(a) output x1x2x3x4

2. For each such vector a, it selects all 2-grams x1x2 whose probabilities match
level a2. For each of these 2-grams, it iterates over all x3 such that the 3-gram
x1x2x3 has level a3. Next, for each of these 3-grams, it iterates over all x4

such that the 3-gram x2x3x4 has level a4, and so on, until the desired length
is reached. In the end, this process outputs a set of candidate passwords of
length ℓ and level (or “strength”) η.

A more formal description is presented in Algorithm 1. It describes the algo-
rithm for ℓ = 4. However, the extension to larger ℓ is straightforward.

Example: We illustrate the algorithm with a brief example. For simplicity, we
consider passwords of length ℓ = 3 over a small alphabet Σ = {a, b}, where the
initial probabilities have levels

L(aa) = 0, L(ab) = −1,
L(ba) = −1, L(bb) = 0,

and transitions have levels

L(a|aa) = −1 L(b|aa) = −1
L(a|ab) = 0 L(b|ab) = −2
L(a|ba) = −1 L(b|ba) = −1
L(a|bb) = 0 L(b|bb) = −2.

– Starting with level η = 0 gives the vector (0, 0), which matches to the pass-
word bba only (the prefix “aa” matches the level 0, but there is no matching
transition with level 0).

– Level η = −1 gives the vector (−1, 0), which yields aba (the prefix “ba” has
no matching transition for level 0), as well as the vector (0,−1), which yields
aaa and aab).

– Level η = −2 gives three vectors: (−2, 0) yields no output (because no initial
probability matches the level −2), (−1,−1) yields baa and bab, and (0,−2)
yields bba.

– and so one for all remaining levels.

2.2 The OMEN Algorithm

As presented previously, the enumeration algorithm, enumPwd(η, ℓ) uses two
parameters. These two parameter need to be set properly. The selection of ℓ (i.e.

4 L(xy) and L(z|xy) are the levels of initial and transition probabilities, respectively.

5

the length of the password to be guessed) is challenging, as the frequency with
which a password length appears in the training data is not a good indicator
of how often a specific length should be guessed. For example, assume that are
as many passwords of length 7 and of length 8, then the success probability of
passwords of length 7 is larger as the search-space is smaller. Hence, passwords
of length 7 should be guessed first. Therefore, we use an adaptive algorithm that
keeps track of the success ratio of each length and schedules more passwords to
guess for those lengths that were more effective.

More precisely, our adaptive password scheduling algorithm works as follows:

1. For all n length values of ℓ (we consider lengths from 3 to 20, i.e. n =
17), execute enumPwd(0, ℓ) and compute the success probability spℓ,0. This
probability is computed as the ratio of successfully guessed passwords over
the number of generated password guesses of length ℓ.

2. Build a list L of size n, ordered by the success probabilities, where each
element is a triple (sp, level , length). (The first element L[0] denotes the
element with the largest success probability.)

3. Select the length with the highest success probability, i.e., the first element
L[0] = (sp0, level0, length0) and remove it from the list.

4. Run enumPwd(level0−1, length0), compute the new success probability sp∗,
and add the new element (sp∗, level0 − 1, length0) to L.

5. Sort L and go to Step 3 until L is empty or enough guesses have been made.

2.3 Selecting parameters

In this section we discuss several parameters choices and examine the necessary
trade-off between accuracy and performance. The three central parameters are:
n-gram size, alphabet size and the number of levels for enumerating passwords.

n-gram size: The parameter with the greatest impact on accuracy is the size of
the n-grams. A larger n generally gives better results as larger n-grams provide
a more accurate approximation to the password distribution. However, it implies
a larger runtime, as well as larger memory and storage requirements. Note also
that the amount of training data is crucial as only a significant amount of data
can accurately estimate the parameters (i.e., the initial probabilities and the
transition probabilities). We evaluated our algorithm with n = 2, 3, 4, results
are depicted in Figure 1 (top).

As expected, the larger n is, the better the results are. We have conducted
limited experiments with 5-grams, which are not depicted in this graph, but
show slightly better results than for 4-grams. As 5-grams require substantially
larger running time and memory requirements, for a small performance increase,
we decided using n = 4.

Alphabet size: The size of the alphabet is another factor that has the potential
to substantially influence the characteristics of the attack. Larger alphabet size
means that more parameters need to be estimated and that the runtime and
memory requirements increase. In the opposite, a small alphabet size means
that not all passwords can be generated.

6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Guesses 1e10

20

30

40

50

60

70

80

90

C
D
F
cr
a
ck
e
d
 p
a
ss
w
o
rd

Omen2G: RY-t/RY-e

Omen3G: RY-t/RY-e

Omen4G: RY-t/RY-e

0.0 0.2 0.4 0.6 0.8 1.0
Guesses 1e9

0

20

40

60

80

100

C
D
F
cr
a
ck
e
d
 p
a
ss
w
o
rd

Omen4G/Alphabet=20

Omen4G/Alphabet=30

Omen4G/Alphabet=40

Omen4G/Alphabet=50

Omen4G/Alphabet=62

Omen4G/Alphabet=72

Omen4G/Alphabet=92

0.0 0.2 0.4 0.6 0.8 1.0
Guesses 1e9

0

20

40

60

80

100

C
D
F
cr
a
ck
e
d
 p
a
ss
w
o
rd

Omen4G/5_levels

Omen4G/10_levels

Omen4G/20_levels

Omen4G/30_levels

Fig. 1: Comparing different n-gram sizes (top), alphabet sizes (middle), and dif-
ferent number of levels (bottom), for the RockYou dataset.

7

We tested several alphabet sizes by setting k = 20, 30, 40, 50, 62, 72, 92, where
the k most frequent characters of the training set form the alphabet. The results
are given in Figure 1 (middle). We clearly see an increase in the accuracy from
an alphabet size k from 20 to 62. Further increasing k does not noticeable in-
crease the cracking rate. This is mainly explained by the alphabet used in the
RockYou dataset where most users favor password with mostly alphanumeric
characters rather than using a large number of special characters. To be data
independent, we opted for the 72 character alphabet. Note that datasets that
use different languages and/or alphabets, such as Chinese Pinyins [13], will have
to set different OMEN parameters.

Number of levels: A third important parameter is the number of levels that
are used to enumerate password candidates. As for previous parameters, higher
number of levels can potentially increase accuracy, but it also increases runtime.
The results are shown in Figure 1 (bottom). We see that increasing the number
of levels from 5 to 10 substantially increases accuracy, but further increasing to
20 and 30 does not make a significant difference.

Selected parameters: Unless otherwise stated, in the following we use OMEN
with 4-grams, an alphabet size of 72, and 10 levels.

3 Evaluating OMEN performance

In this section, we present a comparison between our improved Markov model
password cracker and previous state-of-the-art solutions.

3.1 Datasets

We evaluate the performance of our password guesser on multiple datasets. The
largest password list publicly available is the RockYou list (RY), consisting of
32.6 million passwords that were obtained by an SQL injection attack in 2009.
This list has two advantages: first, its large size gives well-trained Markov models;
second, it was collected via an SQL injection attack therefore affecting all the
users of the compromised service. We randomly split the RockYou list into two
subsets: a training set (RY-t) of 30 million and a testing set (RY-e) of the
remaining 2.6 million passwords.

The MySpace list (MS) contains about 50 000 passwords (different versions
with different sizes exist, most likely caused by different data cleansing algo-
rithms or leaked from the servers at different points in time). The passwords
were obtained in 2006 by a phishing attack.

The Facebook list (FB) was posted on the pastebin website (http://pastebin.
com/) in 2011. This dataset contains both Facebook passwords and associated
email addresses. It is unknown how the data was obtained by the hacker, but
most probably was collected via a phishing attack.

Ethical Considerations: Studying databases of leaked password has arguably
helped the understanding of users real world password practices and as such,

8

Algorithm Training Set #guesses
Testing Set

RY-e MS FB

Omen
RY-t 10 billion 80.40% 77.06% 66.75%
RY-t 1 billion 68.7% 64.50% 59.67%

PCFG [24] RY-t 1 billion 32.63% 51.25% 36.4%

JtR-Markov [16]
RY-t 10 billion 64% 53.19% 61%
RY-t 1 billion 54.77% 38.57% 49.47%

JtR-Inc RY-t 10 billion 54% 25.17% 14.8%

Table 1: Summary table indicating the percentage of cracked passwords for 1
billion guesses, or 10 billion when specified.

have been used in numerous studies [24, 23, 5]. Also, these datasets are already
available to the public. Nevertheless we treat these lists with the necessary pre-
cautions and release aggregated results only that reveal next to no information
about the actual passwords (c.f. [7]).

3.2 Comparing OMEN and JtR’s Markov Mode

Figure 2 (top) shows the comparison of OMEN and the Markov mode of JtR,
which implements the password indexing function by Narayanan et al. [16]. Both
models are trained on the RockYou list (RY-t). Then, for JtR-Markov, we fix
a target number of guesses T (1 billion or 10 billion), and compute the corre-
sponding level (η) to output T passwords, as required by JtR-Markov.

The curve shows the dramatic improvement in cracking speed given by our
improved ordering of the password guesses. In fact, JtR-Markov outputs guesses
in no particular order which implies that likely passwords can appear “randomly”
late in the guesses. This behavior leads to the near-linear curves shown in Fig-
ure 2 (top). One may ask whether JtR-Markov would surpass OMEN after the
point T ; the answer is no as the results do not extend linearly beyond the point T ;
and larger values of T lead to a flatter curve. To demonstrate this claim, we show
the same experiment with T equals to 10 billion guesses (instead of 1 billion).
Figure 3 shows the results for 1 billion guesses (left) as well as 10 billion guesses
(right), and we see that the linear curve becomes flatter.

To show the generality of our approach, we compare the cracking performance
on three different datasets: RY-e, FB and MS. The ordering advantage allows
OMEN to crack more than 40% of passwords (independently of the dataset) in
the first 90 million guesses while JtR-Markov cracker needs at least eight times
as many guesses to reach the same goal. For the RockYou dataset the results
most pronounced: For instance, OMEN cracks 45.2% of RY-e passwords in the
first 10 million guesses (see Figure 3 (right)) while JtR-Markov achieves this
result after more than 7 billion guesses (for T = 10 billion).

In the above comparison, OMEN uses 4-grams (c.f. Section 2.3), while JtR-
Markov uses 2-grams. To see the effects that this difference has, we provide an
additional comparison of OMEN using 2-grams with JtR-Markov, this is given in
Figure 4. The results are as expected: JtR-Markov still gives a straight line, which

9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Guesses 1e9

0

20

40

60

80

100

C
D
F

cr
a
ck

e
d
 p

a
ss

w
o
rd

Omen4G: RY-t/RY-e

Omen4G: RY-t/FB

Omen4G: RY-t/MS

JtR-Markov: RY-t/RY-e
JtR-Markov: RY-t/FB
JtR-Markov: RY-t/MS

0.0 0.2 0.4 0.6 0.8 1.0
Guesses 1e9

0

10

20

30

40

50

60

70

80

C
D
F
cr
a
ck
e
d
 p
a
ss
w
o
rd

Omen4G: RY-t/RY-e

Omen4G: RY-t/FB

Omen4G: RY-t/MS

pcfg: RY-t/RY-e
pcfg: RY-t/FB
pcfg: RY-t/MS

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Guesses 1e10

0

20

40

60

80

100

C
D
F
cr
a
ck
e
d
 p
a
ss
w
o
rd

Omen4G: RY-t/RY-e

Omen4G: RY-t/FB

Omen4G: RY-t/MS

JtR-inc: RY-t/RY-e
JtR-inc: RY-t/FB
JtR-inc: RY-t/MS

Fig. 2: Comparing OMEN with the JtR Markov mode at 1B guesses (top), with
the PCFG guesser (middle), and with JtR incremental mode (bottom).

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Guesses 1e9

0

20

40

60

80

100

C
D
F

cr
a
ck

e
d
 p

a
ss

w
o
rd

Omen4G: RY-t/RY-e

Omen4G: RY-t/FB

Omen4G: RY-t/MS

JtR-Markov: RY-t/RY-e
JtR-Markov: RY-t/FB
JtR-Markov: RY-t/MS

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Guesses 1e10

0

20

40

60

80

100

C
D
F

cr
a
ck

e
d
 p

a
ss

w
o
rd

Omen4G: RY-t/RY-e

Omen4G: RY-t/FB

Omen4G: RY-t/MS

JtR-Markov: RY-t/RY-e
JtR-Markov: RY-t/FB
JtR-Markov: RY-t/MS

Fig. 3: Comparing OMEN with the JtR Markov mode at 1 billion guesses (left),
and at 10 billion guesses (right).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Guesses 1e10

0

10

20

30

40

50

60

70

80

C
D
F

cr
a
ck

e
d
 p

a
ss

w
o
rd

Omen2G: RY-t/RY-e JtR-Markov: RY-t/RY-e

Fig. 4: Comparing OMEN using 2-grams with JtR Markov mode.

11

means that OMEN has a better cracking speed. The speed advantage of OMEN
can be seen at 1 billion guesses where OMEN cracks 50% of all passwords while
JtR-markov cracks less than 10%. At the point T , i.e., when JtR-Markov stops,
both algorithms perform roughly the same. Note that since not all parameters
(i.e., alphabet size, number of levels etc.) of both models are identical, we have
a small difference in the cracking rate at the point T .

3.3 Comparing OMEN and PCFG

Figure 2 (middle) compares OMEN to the PCFG password guesser of Weir et
al. [24], based on the code available at [19]. We run it using the configuration as
described in the paper: we use RY-t to extract the grammar and the dictionary
dict-0294 [25] to generate candidate passwords.

Figure 2 shows that OMEN outperforms the PCFG guesser. After 0.2 billion
guesses, OMEN cracks 20% more passwords than PCFG for both RY-e and FB
datasets and 10% more for MS. It is interesting to see the impact of the training
set on PCFG performance: PCFG performs much better on MS than on FB
and RY-e. We believe the reason is that the grammar for PCFG is trained on
a subset of the MS list, and thus the approach is better adapted for guessing
passwords from the MS list. OMEN achieves roughly the same results for all
datasets which proofs the robustness of the learning phase. Finally, note that
PCFG mostly plateaus after 0.3 billion guesses and results hardly improve any
more, whereas OMEN still produces noticeable progress.

3.4 Comparing OMEN and JtR’s Incremental Mode

We also compare OMEN to JtR in incremental mode, see Figure 2 (bottom). Sim-
ilarly to the previous experiments, both crackers were trained on the RockYou
training set of 30 million passwords and tested on RY-e, MS and FB datasets.
Clearly, JtR incremental mode produces worse guesses than OMEN.

4 Discussion and Conclusion

In this work, we have presented an efficient password guesser (OMEN) based
on Markov models, which outperforms all publicly available password guessers.
For common password lists we found that we can guess more than 80% of pass-
words with 10 billion guesses. While Markov models were known [16] to be an
effective tool in password guessing, previous work was only able to output the
corresponding guesses in an order dictated by algorithm internals (and pretty
much unrelated to their real frequency), OMEN can output guesses in order of
(approximate) decreasing frequency and thus dramatically improves real-world
guessing speed. Moreover, we performed a number of experiments to assess the
impact of different parameters on the accuracy of the algorithm and find optimal
parameters. We believe that OMEN can be useful as a preventive measure by
organizations to verify that their members do not select “weak” passwords.

12

References

1. M. Bishop and D. V. Klein. Improving system security via proactive password
checking. Computers & Security, 14(3):233–249, 1995.

2. J. Bonneau. The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In Proc. IEEE Symposium on Security and Privacy. IEEE, 2012.

3. J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano. The quest to replace
passwords: A framework for comparative evaluation of web authentication schemes.
In Proc. IEEE Symposium on Security and Privacy. IEEE, 2012.

4. W. E. Burr, D. F. Dodson, and W. T. Polk. Electronic authentication guideline:
NIST special publication 800-63, 2006.

5. C. Castelluccia, M. Dürmuth, and D. Perito. Adaptive password-strength meters
from Markov models. In Proc. Network and Distributed Systems Security Sympo-
sium (NDSS). The Internet Society, 2012.

6. M. Dell’Amico, P. Michiardi, and Y. Roudier. Password strength: an empirical
analysis. In Proc. 29th conference on Information communications, INFOCOM’10,
pages 983–991, Piscataway, NJ, USA, 2010. IEEE Press.

7. S. Egelman, J. Bonneau, S. Chiasson, D. Dittrich, and S. Schechter. It’s not
stealing if you need it: A panel on the ethics of performing research using public
data of illicit origin. In Financial Cryptography and Data Security. Springer Berlin
Heidelberg, 2012.

8. HashCat. OCL HashCat-Plus, 2012. http://hashcat.net/oclhashcat-plus/.

9. G. Kedem and Y. Ishihara. Brute force attack on unix passwords with SIMD
computer. In Proc. 8th conference on USENIX Security Symposium - Volume 8,
SSYM’99. USENIX Association, 1999.

10. P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer,
N. Christin, L. F. Cranor, and J. Lopez. Guess again (and again and again): Mea-
suring password strength by simulating password-cracking algorithms. In Proc.
IEEE Symposium on Security and Privacy. IEEE, 2012.

11. D. V. Klein. Foiling the cracker: A survey of, and improvements to, password
security. In Proc. USENIX UNIX Security Workshop, 1990.

12. S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek, L. Bauer, N. Christin,
L. F. Cranor, and S. Egelman. Of passwords and people: Measuring the effect
of password-composition policies. In CHI 2011: Conference on Human Factors in
Computing Systems, 2011.

13. Z. Li, W. Han, and W. Xu. A large-scale empirical analysis of chinese web pass-
words. In Proc. 23rd USENIX Security Symposium (USENIX Security), Aug. 2014.

14. J. Ma, W. Yang, M. Luo, and N. Li. A study of probabilistic password models. In
Proc. IEEE Symposium on Security and Privacy. IEEE Computer Society, 2014.

15. R. Morris and K. Thompson. Password security: a case history. Communications.
ACM, 22(11):594 – 597, 1979.

16. A. Narayanan and V. Shmatikov. Fast dictionary attacks on passwords using time-
space tradeoff. In Proc. 12th ACM conference on Computer and communications
security (CCS), pages 364–372. ACM, 2005.

17. OpenWall. John the Ripper, 2012. http://www.openwall.com/john.

18. The password meter. Online at http://www.passwordmeter.com/.

19. PCFG Password Cracker implementation. Matt Weir, 2012. https:

//sites.google.com/site/reusablesec/Home/password-cracking-tools/

probablistic_cracker.

13

20. N. Provos and D. Mazières. A future-adaptive password scheme. In Proc. An-
nual conference on USENIX Annual Technical Conference, ATEC ’99. USENIX
Association, 1999.

21. S. Schechter, C. Herley, and M. Mitzenmacher. Popularity is everything: a new
approach to protecting passwords from statistical-guessing attacks. In Proc. 5th
USENIX conference on Hot topics in security, pages 1–8. USENIX Association,
2010.

22. E. H. Spafford. Observing reusable password choices. In Proc. 3rd Security Sym-
posium, pages 299–312. USENIX, 1992.

23. M. Weir, S. Aggarwal, M. Collins, and H. Stern. Testing metrics for password
creation policies by attacking large sets of revealed passwords. In Proc. 17th ACM
conference on Computer and communications security (CCS 2010), pages 162–175.
ACM, 2010.

24. M. Weir, S. Aggarwal, B. de Medeiros, and B. Glodek. Password cracking using
probabilistic context-free grammars. In Proc. IEEE Symposium on Security and
Privacy, pages 391–405. IEEE Computer Society, 2009.

25. Word list Collection, 2012. http://www.outpost9.com/files/WordLists.html.

14

