
HAL Id: hal-01112000
https://hal.science/hal-01112000

Submitted on 2 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Isthmus-based Parallel and Asymmetric 3D Thinning
Algorithms

Michel Couprie, Gilles Bertrand

To cite this version:
Michel Couprie, Gilles Bertrand. Isthmus-based Parallel and Asymmetric 3D Thinning Algorithms.
Discrete Geometry for Computer Imagery, Sep 2014, Siena, Italy. pp.51-62. �hal-01112000�

https://hal.science/hal-01112000
https://hal.archives-ouvertes.fr


Isthmus-based Parallel and Asymmetri
 3DThinning S
heme and AlgorithmsMi
hel Couprie and Gilles BertrandUniversité Paris-Est, LIGM, Équipe A3SI, ESIEE Paris, Fran
e⋆⋆e-mail: mi
hel.
ouprie�esiee.fr, gilles.bertrand�esiee.frAbstra
t. Criti
al kernels 
onstitute a general framework settled in the
ontext of abstra
t 
omplexes for the study of parallel thinning in anydimension. We take advantage of the properties of this framework, topropose a generi
 thinning s
heme for obtaining �thin� skeletons fromobje
ts made of voxels. From this s
heme, we derive algorithms thatprodu
e 
urvilinear or surfa
e skeletons, based on the notion of 1D or2D isthmus.1 Introdu
tionWhen dealing with skeletons, one has to fa
e twomain problems: topology preser-vation, and preservation of meaningful geometri
al features. Here, we are inter-ested in the skeletonization of obje
ts that are made of voxels (unit 
ubes) in aregular 3D grid, i.e., in a binary 3D image. In this 
ontext, topology preservationis usually obtained through the iteration of thinning steps, provided that ea
hstep does not alter the topologi
al 
hara
teristi
s. In sequential thinning algo-rithms, ea
h step 
onsists of dete
ting and 
hoosing a so-
alled simple voxel, thatmay be 
hara
terized lo
ally (see [1,2℄), and removing it. Su
h a pro
ess usuallyinvolves many arbitrary 
hoi
es, and the �nal result may depend, sometimesheavily, on any of these 
hoi
es. This is why parallel thinning algorithms aregenerally preferred to sequential ones. However, removing a set of simple voxelsat ea
h thinning step, in parallel, may alter topology. The framework of 
riti
alkernels, introdu
ed by one of the authors in [3℄, provides a 
ondition under whi
hwe have the guarantee that a subset of voxels 
an be removed without 
hangingtopology. This 
ondition is, to our knowledge, the most general one among therelated works. Furthermore, 
riti
al kernels indeed provide a method to designnew parallel thinning algorithms, in whi
h the property of topology preservationis built-in, and in whi
h any kind of 
onstraint may be imposed (see [4,5℄).Among the di�erent parallel thinning algorithms that have been proposedin the literature, we 
an distinguish symmetri
 from asymmetri
 algorithms.Symmetri
 algorithms (see e.g. [6,7,8℄) (also known as fully parallel algorithms)produ
e skeletons that are invariant under 90 degrees rotations. They 
onsist ofthe iteration of thinning steps that are made of 1) the identi�
ation and sele
tion
⋆⋆ This work has been partially supported by the �ANR-2010-BLAN-0205 KIDICO�proje
t.



of a set of voxels that satisfy 
ertain 
onditions, independently of orientation orposition in spa
e, and 2) the removal, in parallel, of all sele
ted voxels fromthe obje
t. Symmetri
 algorithms, on the positive side, produ
e a result thatis uniquely de�ned: no arbitrary 
hoi
e is needed. On the negative side, theygenerally produ
e thi
k skeletons, see Fig. 1.
(a) (b) (
) (d)Fig. 1. Di�erent types of skeletons. (a): Curvilinear skeleton, symmetri
. (b):Curvilinear skeleton, asymmetri
. (
): Surfa
e skeleton, symmetri
. (d): Surfa
eskeleton, asymmetri
.Asymmetri
 skeletons, on the opposite, are preferred when thinner skeletonsare required. The pri
e to pay is a 
ertain amount of arbitrary 
hoi
es to be made.In all existing asymmetri
 parallel thinning algorithms, ea
h thinning step isdivided into a 
ertain number of substeps. In the so-
alled dire
tional algorithms(see e.g. [9,10,11℄), ea
h substep is devoted to the dete
tion and the deletion ofvoxels belonging to one �side� of the obje
t: all the voxels 
onsidered during thesubstep have, for example, their south neighbor inside the obje
t and their northneighbor outside the obje
t. The order in whi
h these dire
tional substeps areexe
uted is set beforehand, arbitrarily. Subgrid (or sub�eld) algorithms (see e.g.[12,13℄) form the se
ond 
ategory of asymmetri
 parallel thinning algorithms.There, ea
h substep is devoted to the dete
tion and the deletion of voxels thatbelong to a 
ertain subgrid, for example, all voxels that have even 
oordinates.Considered subgrids must form a partition of the grid. Again, the order in whi
hsubgrids are 
onsidered is arbitrary.Subgrid algorithms are not often used in pra
ti
e be
ause they produ
e ar-tifa
ts, that is, waving skeleton bran
hes where the original obje
t is smooth orstraight. Dire
tional algorithms are the most popular ones. Most of them areimplemented through sets of masks, one per substep. A set of masks is used to
hara
terize voxels that must be kept during a given substep, in order to 1) pre-serve topology, and 2) prevent 
urves or surfa
es to disappear. Thus, topologi
al
onditions and geometri
al 
onditions 
annot be easily distinguished, and theslightest modi�
ation of any mask involves the need to make a new proof of thetopologi
al 
orre
tness.



Our approa
h is radi
ally di�erent. Instead of 
onsidering single voxels, we
onsider 
liques. A 
lique is a set of mutually adja
ent voxels. Then, we identifythe 
riti
al kernel of the obje
t, a

ording to some de�nitions, whi
h is a unionof 
liques. The main theorem of the 
riti
al kernels framework [3,5℄ states thatwe 
an remove in parallel any subset of the obje
t, provided that we keep at leastone voxel of every 
lique that 
onstitutes the 
riti
al kernel, and this guaranteestopology preservation. Here, as we try to obtain thin skeletons, our goal is tokeep, whenever possible, exa
tly one voxel in every su
h 
lique. This leads us topropose a generi
 parallel asymmetri
 thinning s
heme, that may be enri
hed byadding any sort of geometri
al 
onstraint. For example, we de�ne the notions of1D and 2D isthmuses. A 1D (resp. 2D) isthmus is a voxel that is �lo
ally likea pie
e of 
urve� (resp. surfa
e). From our generi
 s
heme, we easily derive, byadding the 
onstraint to preserve isthmuses, spe
i�
 algorithms that produ
e
urvilinear or surfa
e skeletons.2 Voxel ComplexesIn this se
tion, we give some basi
 de�nitions for voxel 
omplexes, see also [14,1℄.Let Z be the set of integers. We 
onsider the families of sets F
1
0, F

1
1, su
h that

F
1
0 = {{a} | a ∈ Z}, F

1
1 = {{a, a + 1} | a ∈ Z}. A subset f of Z

n, n ≥ 2, thatis the Cartesian produ
t of exa
tly d elements of F
1
1 and (n − d) elements of F

1
0is 
alled a fa
e or an d-fa
e of Z

n, d is the dimension of f . In the illustrationsof this paper ex
ept Fig. 6, a 3-fa
e (resp. 2-fa
e, 1-fa
e, 0-fa
e) is depi
ted by a
ube (resp. square, segment, dot), see e.g. Fig. 4.A 3-fa
e of Z
3 is also 
alled a voxel . A �nite set that is 
omposed solely ofvoxels is 
alled a (voxel) 
omplex (see Fig. 2). We denote by V

3 the 
olle
tion ofall voxel 
omplexes.We say that two voxels x, y are adja
ent if x∩ y 6= ∅. We write N (x) for theset of all voxels that are adja
ent to a voxel x, N (x) is the neighborhood of x.Note that, for ea
h voxel x, we have x ∈ N (x). We set N ∗(x) = N (x) \ {x}.Let d ∈ {0, 1, 2}. We say that two voxels x, y are d-neighbors if x ∩ y is a
d-fa
e. Thus, two distin
t voxels x and y are adja
ent if and only if they are
d-neighbors for some d ∈ {0, 1, 2}.Let X ∈ V

3. We say that X is 
onne
ted if, for any x, y ∈ X , there exists asequen
e 〈x0, ..., xk〉 of voxels in X su
h that x0 = x, xk = y, and xi is adja
entto xi−1, i = 1, ..., k.3 Simple VoxelsIntuitively a voxel x of a 
omplex X is 
alled a simple voxel if its removal from
X �does not 
hange the topology of X�. This notion may be formalized with thehelp of the following re
ursive de�nition introdu
ed in [5℄, see also [15,16℄ forother re
ursive approa
hes for simpli
ity.
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d(a) (b)Fig. 2. (a) A 
omplex X whi
h is made of 8 voxels, (b) A 
omplex Y ⊆ X ,whi
h is a thinning of X .De�nition 1. Let X ∈ V
3.We say that X is redu
ible if either:i) X is 
omposed of a single voxel; orii) there exists x ∈ X su
h that N ∗(x)∩X is redu
ible and X \ {x} is redu
ible.De�nition 2. Let X ∈ V

3. A voxel x ∈ X is simple for X if N ∗(x) ∩ Xis redu
ible. If x ∈ X is simple for X , we say that X \ {x} is an elementarythinning of X .Thus, a 
omplex X ∈ V
3 is redu
ible if and only if it is possible to redu
e Xto a single voxel by iteratively removing simple voxels. Observe that a redu
ible
omplex is ne
essarily non-empty and 
onne
ted.In Fig. 2 (a), the voxel a is simple for X (N ∗(a) ∩ X is made of a singlevoxel), the voxel d is not simple for X (N ∗(d) ∩ X is not 
onne
ted), the voxel

h is simple for X (N ∗(h) ∩ X is made of two voxels that are 2-neighbors and isredu
ible).In [5℄, it was shown that the above de�nition of a simple voxel is equivalent to
lassi
al 
hara
terizations based on 
onne
tivity properties of the voxel's neigh-borhood [17,18,19,20,2℄. An equivalen
e was also established with a de�nitionbased on the operation of 
ollapse [21℄, this operation is a dis
rete analogue ofa 
ontinuous deformation (a homotopy), see also [15,3,2℄.The notion of a simple voxel allows one to de�ne thinnings of a 
omplex, seean illustration Fig. 2 (b).Let X, Y ∈ V
3. We say that Y is a thinning of X or that X is redu
ible to

Y , if there exists a sequen
e 〈X0, ..., Xk〉 su
h that X0 = X , Xk = Y , and Xi isan elementary thinning of Xi−1, i = 1, ..., k.Thus, a 
omplex X is redu
ible if and only if it is redu
ible to a single voxel.4 Criti
al KernelsLet X be a 
omplex in V
3. It is well known that, if we remove simultaneously(in parallel) simple voxels from X , we may �
hange the topology� of the originalobje
t X . For example, the two voxels f and g are simple for the obje
t X de-pi
ted Fig. 2 (a). Nevertheless X \{f, g} has two 
onne
ted 
omponents whereas

X is 
onne
ted.



In this se
tion, we re
all a framework for thinning in parallel dis
rete obje
tswith the warranty that we do not alter the topology of these obje
ts [3,4,5℄. Thismethod is valid for 
omplexes of arbitrary dimension.Let d ∈ {0, 1, 2, 3} and let C ∈ V
3. We say that C is a d-
lique or a 
lique if

∩{x ∈ C} is a d-fa
e. If C is a d-
lique, d is the rank of C.If C is made of solely two distin
t voxels x and y, we note that C is a d-
liqueif and only if x and y are d-neighbors, with d ∈ {0, 1, 2}.Let X ∈ V
3 and let C ⊆ X be a 
lique. We say that C is essential for X ifwe have C = D whenever D is a 
lique su
h that:i) C ⊆ D ⊆ X ; andii) ∩{x ∈ C} = ∩{x ∈ D}.Observe that any 
omplex C that is made of a single voxel is a 
lique (a3-
lique). Furthermore any voxel of a 
omplex X 
onstitutes a 
lique that isessential for X .In Fig. 2 (a), {f, g} is a 2-
lique that is essential for X , {b, d} is a 0-
liquethat is not essential for X , {b, c, d} is a 0-
lique essential for X , {e, f, g} is a1-
lique essential for X .De�nition 3. Let S ∈ V

3. The K-neighborhood of S, written K(S), is the setmade of all voxels that are adja
ent to ea
h voxel in S. We set K∗(S) = K(S)\S.We note that we have K(S) = N (x) whenever S is made of a single voxel x.We also observe that we have S ⊆ K(S) whenever S is a 
lique.De�nition 4. Let X ∈ V
3 and let C be a 
lique that is essential for X . We saythat the 
lique C is regular for X if K∗(C) ∩ X is redu
ible. We say that C is
riti
al for X if C is not regular for X .Thus, if C is a 
lique that is made of a single voxel x, then C is regular for

X if and only if x is simple for X .In Fig. 2 (a), the 
liques C1 = {b, c, d}, C2 = {f, g}, and C3 = {f, h} areessential for X . We have K∗(C1)∩X = ∅, K∗(C2)∩X = {e, h}, and K∗(C3)∩X =
{g}. Thus, C1 and C2 are 
riti
al for X , while C3 is regular for X .The following result is a 
onsequen
e of a general theorem that holds for
omplexes of arbitrary dimensions [3,5℄, see an illustration Fig. 2 (a) and (b)where the 
omplexes X and Y satisfy the 
ondition of Th. 5.Theorem 5. Let X ∈ V

3 and let Y ⊆ X.The 
omplex Y is a thinning of X if any 
lique that is 
riti
al for X 
ontains atleast one voxel of Y .5 A generi
 3D parallel and asymmetri
 thinning s
hemeOur goal is to de�ne a subset Y of a voxel 
omplex X that is guaranteed toin
lude at least one voxel of ea
h 
lique that is 
riti
al for X . By Th. 5, thissubset Y will be a thinning of X .



Let us 
onsider the 
omplex X depi
ted Fig. 3 (a). There are pre
isely three
liques that are 
riti
al for X :- the 0-
lique C1 = {b, c} (we have K∗(C1) ∩ X = ∅);- the 2-
lique C2 = {a, b} (we have K∗(C2) ∩ X = ∅);- the 3-
lique C3 = {b} (the voxel b is not simple).Suppose that, in order to build a 
omplex Y that ful�lls the 
ondition of Th.5, we sele
t arbitrarily one voxel of ea
h 
lique that is 
riti
al for X . Followingsu
h a strategy, we 
ould sele
t c for C1, a for C2, and b for C3. Thus, we wouldhave Y = X , no voxel would be removed from X . Now, we observe that the
omplex Y ′ = {b} satis�es the 
ondition of Th. 5. This 
omplex is obtained by
onsidering �rst the 3-
liques before sele
ting a voxel in the 2-, 1-, or 0 
liques.The 
omplex X of Fig. 3 (b) provides another example of su
h a situation.There are pre
isely three 
liques that are 
riti
al for X :- the 1-
lique C1 = {e, f, g, h} (we have K∗(C1) ∩ X = ∅);- the 1-
lique C2 = {e, d, g} (we have K∗(C2) ∩ X = ∅);- the 2-
lique C3 = {e, g} (K∗(C3) ∩ X is not 
onne
ted).If we sele
t arbitrarily one voxel of ea
h 
riti
al 
lique, we 
ould obtain the
omplex Y = {f, d, g}. On the other hand, if we 
onsider the 2-
liques beforethe 1-
liques, we obtain either Y ′ = {e} or Y ′′ = {g}. In both 
ases the result isbetter in the sense that we remove more voxels from X .This dis
ussion motivates the introdu
tion of the following 3D asymmetri
and parallel thinning s
heme AsymThinningS
heme(see also [4,5℄). The mainfeatures of this s
heme are the following:- Taking into a

ount the observations made through the two previous examples,
riti
al 
liques are 
onsidered a

ording to their de
reasing ranks (step 4). Thus,ea
h iteration is made of four sub-iterations (steps 4-8). Voxels that have beenpreviously sele
ted are stored in a set Y (step 8). At a given sub-iteration, we
onsider voxels only in 
riti
al 
liques in
luded in X \ Y (step 6).- Select is a fun
tion from V
3 to V 3, the set of all voxels. More pre
isely, Selectasso
iates, to ea
h set S of voxels, a unique voxel x of S. We refer to su
h afun
tion as a sele
tion fun
tion. This fun
tion allows us to sele
t a voxel in agiven 
riti
al 
lique (step 7). A possible 
hoi
e is to take for Select(S), the �rstpixel of S in the lexi
ographi
 order of the voxels 
oordinates.- In order to 
ompute 
urvilinear or surfa
e skeletons, we have to keep othervoxels than the ones that are ne
essary for the preservation of the topology ofthe obje
t X . In the s
heme, the set K 
orresponds to a set of features thatwe want to be preserved by a thinning algorithm (thus, we have K ⊆ X).This set K, 
alled 
onstraint set , is updated dynami
ally at step 10. SkelX isa fun
tion from X on {True, False} that allows us to keep some skeletal voxelsof X , e.g., some voxels belonging to parts of X that are surfa
es or 
urves. Forexample, if we want to obtain 
urvilinear skeletons, a popular solution is to set

SkelX(x) = True whenever x is a so-
alled end voxel of X : an end voxel is avoxel that has exa
tly one neighbor inside X ; see Fig. 7(a) a skeleton obtained inthis way. However, this solution is limited and does not permit to obtain surfa
eskeletons. Better propositions for su
h a fun
tion will be introdu
ed in se
tion 6.
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d(a) (b)Fig. 3. Two 
omplexes.By 
onstru
tion, at ea
h iteration, the 
omplex Y at step 9 satis�es the
ondition of Th. 5. Thus, the result of the s
heme is a thinning of the original
omplex X . Observe also that, ex
ept step 4, ea
h step of the s
heme may be
omputed in parallel.Algorithm 1: AsymThinningS
heme(X,SkelX)Data: X ∈ V
3, SkelX is a fun
tion from X on {True, False}Result: X

K := ∅;1 repeat2
Y := K;3 for d← 3 to 0 do4

Z := ∅;5 forea
h d-
lique C ⊆ X \ Y that is 
riti
al for X do6
Z := Z ∪ {Select(C)};7

Y := Y ∪ Z;8
X := Y ;9 forea
h voxel x ∈ X \K su
h that SkelX(x) = True do K := K ∪ {x};10 until stability ;11 Fig. 4 provides an illustration of the s
heme AsymThinningS
heme. Let us
onsider the 
omplex X depi
ted in (a). We suppose in this example that wedo not keep any skeletal voxel, i.e., for any x ∈ X , we set SkelX(x) = False.The tra
es of the 
liques that are 
riti
al for X are represented in (b), the tra
eof a 
lique C is the fa
e f = ∩{x ∈ C}. Thus, the set of the 
liques that are
riti
al for X is pre
isely 
omposed of six 0-
liques, two 1-
liques, three 2-
liques,and one 3-
lique. In (
) the di�erent sub-iterations of the s
heme are illustrated(steps 4-8):- when d = 3, only one 
lique is 
onsidered, the dark grey voxel is sele
tedwhatever the sele
tion fun
tion;- when d = 2, all the three 2-
liques are 
onsidered sin
e none of these 
liques
ontains the above voxel. Voxels that 
ould be sele
ted by a sele
tion fun
tionare depi
ted in medium grey;



(a) (b) (
)
(d) (e) (f)

(g) (h)Fig. 4. (a): A 
omplex X made of pre
isely 12 voxels. (b): The tra
es of the
liques that are 
riti
al for X . (
): Voxels that have been sele
ted by the algo-rithm. (d): The result Y of the �rst iteration. (e): The tra
es of the 4 
liquesthat are 
riti
al for Y . (f): The result of the se
ond iteration. (g) and (h): Twoother possible sele
tions at the �rst iteration.- when d = 1, only one 
lique is 
onsidered, a voxel that 
ould be sele
ted isdepi
ted in light grey;- when d = 0, no 
lique is 
onsidered sin
e ea
h of the 0-
liques 
ontains at leastone voxel that has been previously sele
ted.After these sub-iterations, we obtain the 
omplex depi
ted in (d). The �gures (e)and (f) illustrate the se
ond iteration, at the end of this iteration the 
omplexis redu
ed to a single voxel. In (g) and (h) two other possible sele
tions at the�rst iteration are given.Of 
ourse, the result of the s
heme may depend on the 
hoi
e of the sele
tionfun
tion. This is the pri
e to be paid if we try to obtain thin skeletons. Forexample, some arbitrary 
hoi
es have to be made for redu
ing a two voxels wideribbon to a simple 
urve.In the sequel of the paper, we take for Select(S), the �rst pixel of S in thelexi
ographi
 order of the voxels 
oordinates.Fig. 5 shows another illustration, on bigger obje
ts, of AsymThinningS
heme.Here also, for any x ∈ X , we have SkelX(x) = False (no skeletal voxel). Theresult is 
alled an ultimate asymmetri
 skeleton.



Fig. 5. Ultimate asymmetri
 skeletons obtained by using AsymThinningS
heme.6 Isthmus-based asymmetri
 thinningIn this se
tion, we show how to use our generi
 s
heme AsymThinningS
heme inorder to get a pro
edure that 
omputes either 
urvilinear or surfa
e skeletons.This thinning pro
edure preserves a 
onstraint set K that is made of �isthmuses�.Intuitively, a voxel x of an obje
t X is said to be a 1-isthmus (resp. a 2-isthmus) if the neighborhood of x 
orresponds - up to a thinning - to the one ofa point belonging to a 
urve (resp. a surfa
e) [5℄.We say that X ∈ V
3 is a 0-surfa
e if X is pre
isely made of two voxels x and

y su
h that x ∩ y = ∅.We say that X ∈ V
3 is a 1-surfa
e (or a simple 
losed 
urve) if:i) X is 
onne
ted; and ii) For ea
h x ∈ X , N ∗(x) ∩ X is a 0-surfa
e.De�nition 6. Let X ∈ V

3, let x ∈ X .We say that x is a 1-isthmus for X if N ∗(x) ∩ X is redu
ible to a 0-surfa
e.We say that x is a 2-isthmus for X if N ∗(x) ∩ X is redu
ible to a 1-surfa
e.We say that x is a 2+-isthmus for X if x is a 1-isthmus or a 2-isthmus for X .Our aim is to thin an obje
t, while preserving a 
onstraint set K that ismade of voxels that are dete
ted as k-isthmuses during the thinning pro
ess.We obtain 
urvilinear skeletons with k = 1, surfa
e skeletons with k = 2, andsurfa
e/
urvilinear skeletons with k = 2+. These three kinds of skeletons maybe obtained by using AsymThinningS
heme, with the fun
tion SkelX de�ned asfollows:
SkelX(x) =

{

True if x is a k-isthmus,
False otherwise,with k ∈ {1, 2, 2+}.



x x x

(a) (b) (c)Fig. 6. In this �gure, a voxel is represented by its 
entral point. (a): A voxel xand the set N (x)∩X (bla
k points). (b): A set S whi
h is a 1-surfa
e,N ∗(x)∩Xis redu
ible to S, thus x is a 2-isthmus. for X . (
): A voxel x and the setN (x)∩X(bla
k points). The voxel x is a 1-isthmus for X .Observe there is the possibility that a voxel belongs to a k-isthmus at a givenstep of the algorithm, but not at further steps. This is why previously dete
tedisthmuses are stored (see line 10 of AsymThinningS
heme).In Fig. 7(b-f), we show a 
urvilinear skeleton, a surfa
e skeleton and a sur-fa
e/
urvilinear skeleton obtained by our method from the same obje
t.7 Con
lusionWe introdu
ed an original generi
 s
heme for asymmetri
 parallel topology-preserving thinning of 3D obje
ts made of voxels, in the framework of 
riti-
al kernels. We saw that from this s
heme, one 
an easily derive several thin-ning operators having spe
i�
 behaviours, simply by 
hanging the de�nition ofskeletal points. In parti
ular, we showed that ultimate, 
urvilinear, surfa
e, andsurfa
e/
urvilinear skeletons 
an be obtained, based on the notion of 1D/2Disthmuses.A key point, in the implementation of the algorithms proposed in this paper,is the dete
tion of 
riti
al 
liques and isthmus voxels. In [5℄, we showed that it ispossible to dete
t 
riti
al 
liques thanks to a set of masks, in linear time. We alsoshowed that the 
on�gurations of 1D and 2D isthmuses may be pre-
omputed bya linear-time algorithm and stored in lookup tables. Finally, based on a breadth-�rst strategy, the whole method 
an be implemented to run in O(n) time, where
n is the number of voxels of the input 3D image.In an extended paper, in preparation, we will show how to deal with therobustness to noise issue thanks to the notion of isthmus persisten
e. We willalso 
ompare our method with all existing asymmetri
 parallel skeletonizationalgorithms a
ting in the 3D 
ubi
 grid.



(a) (b)

(
) (d)
(e) (f)Fig. 7. Asymmetri
 skeletons obtained by using AsymThinningS
heme. (a): thefun
tion SkelX is based on end voxels. (b,
,d): the fun
tion SkelX is based on

k-isthmuses, with k = 1, 2 and 2+ respe
tively. (e,f): detail of (
,d) respe
tively.
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