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Global existence for small data of the viscous
Green–Naghdi type equations

Dena Kazerani ∗†‡

February 1, 2015

Abstract

We consider the Cauchy problem for the Green–Naghdi equations with viscosity, for
small initial data. It is well-known that adding a second order diffusion term to a hyper-
bolic system leads to the existence of global smooth solutions, as soon as the hyperbolic
system is symmetrizable and the so-called Kawashima–Shizuta condition is satisfied. In
a previous work, we have proved that the Green–Naghdi equations can be written in a
symmetric form, using the associated Hamiltonian. This system being dispersive, in the
sense that it involves third order derivatives, the symmetric form is based on symmetric
differential operators. In this paper, we use this structure for an appropriate change of
variable to prove that adding viscosity effects through a second order term leads to global
existence of smooth solutions, for small data. We also deduce that constant solutions are
asymptotically stable.

Keywords : Green–Naghdi equations, viscosity, small solutions, symmetric structure, en-
ergy equality, global existence

1 Introduction
The Green–Naghdi system is a shallow water approximation of the water wave problem which
models incompressible flows. The vertical and horizontal speeds are averaged vertically.
Moreover, vertical acceleration is supposed too small to be considered [9]. In other words,
Green-Naghdi equations is one order higher in approximation compared to the Saint–Venant
(called also isentropic Euler) system [3]. To obtain the latter system, not only the vertical
acceleration but also the vertical speed are neglected. This leads to a hyperbolic system of
equations contrary to the Green–Naghdi equation which is dispersive due to the term αh2ḧ
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defined below. In this work, we focus on the Green–Naghdi type equation with a second order
viscosity: {

∂th+ ∂xhu = 0,

∂thu+ ∂xhu
2 + ∂x(gh

2/2 + αh2ḧ) = µ∂x(h∂xu)
(1)

We assume that h(x, t) > 0, α and µ are strictly positive and g is the gravity constant. The
unknown h represents the fluid height and u its average horizontal speed. Moreover, the
material derivative (̇) is defined by (̇) = ∂t() + u∂x().

Remark 1.1 Let us note that the α = 0 case gives us the Saint-Venant system. We can also
learn more about the derivation of the system in [17, 1, 11] for (µ, α) = (0, 1

3
), and in [6] for

(µ, α) = (0, 1
4
).

It is worth remarking that (1) admits the following energy equality [8, 6],

∂tE + ∂x (u(E + p)) = µu∂x(h∂xu), (2)

where
E(h, u) = gh2/2 + hu2/2 + αh3(∂xu)2/2,

and
p(h, u) = gh2/2 + αh2ḧ.

We can also check that (1) admits a family of energy conversation equality

∂tEhe,ue + ∂xPhe,ue = µ(u− ue)∂x(h∂xu). (3)

where
Ehe,ue(h, u) = g(h− he)2/2 + h(u− ue)2/2 + αh3(∂xu)2/2, (4a)

and

Phe,ue(h, u) = uEhe,ue(h, u) + (u− ue)p(h, u)− gh2
e

2
u. (4b)

for all he > 0 and ue ∈ R.

Remark 1.2 Let us assume that α = 0. Then, E(h, u) and Ehe,ue(h, u) are convex entropies
for Saint-Venant system.

The aim of this paper is to study the stability of the equilibrium based on the symmet-
ric structure of the system. The intuition comes from the Kawashima works on hyperbolic-
parabolic systems ([19] and [13]) and Hanouzet–Natalini and Yong ([10] and [20]) on entropy
dissipative symmetric hyperbolic systems. These studies can be physically sketched by the
stability of constant solutions of symmetric hyperbolic systems considering friction ([10] and
[20]) or viscosity ([19] and [13]) right hand side terms. All these results have been proved
using the symmetric structure of hyperbolic systems. A generalization of the symmetric struc-
ture for dispersive equations admitting an additional energy conversation law with a locally
convex energy integral is done in [14]. The symmetric structure used in this work to extend
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the symmetric hyperbolic equations’ technique to Green-Naghdi equation is recalled in Sub-
section 1.1.

Note that the higher order of this equation compared to hyperbolic systems makes us con-
sider right hand side terms of order 2. In fact, this result can not be generalized to the system
with friction in the absence of viscosity. This is due to the incoherence between the order of
a priori estimates and the estimation of the time integral of the norm of the solution. How-
ever, the coherence is guaranteed while we consider a second order viscosity. Likewise, if we
consider viscosities of order 4 or more, with or without any second order viscosity, we are
not able to generalize this method to estimate the time integral of the norm of the solution. A
viscous version of the system has been derived with a forth order viscosity in [6]. Therefore,
other techniques must be used to study this last system.

In all this work, partial derivatives with respect to x of any continuous function f are
presented by either fx or ∂xf . The differential of the application F at U is symbolized by
DUF (U). The adjoint of the operator A is denoted by A?.

1.1 Symmetric structure
Following Li’s notations in [17], we use the unknown U = (h,m) defined by a Sturm–
Liouville operator called L:

m = hu− α∂x(h3ux) = Lh(u).

Then, the system (1) is of the form

∂tU + ∂xF (U) = Q(U),

where

F (U) =

(
hL−1

h (m)
mL−1

h (m)− 2αh3(∂xL−1
h (m))2 + g

2
h2 − g

2
h2
e

)
, (5)

and

Q(U) =

(
0

µ∂x(hux)

)
(6)

Based on the structure presented in [17], it is easy to check that the unknown U enables us
to write (1) under a Hamiltonian structure with the Hamiltonian Hhe,ue defined by the energy
integral, Hhe,ue =

∫
REhe,ue . This unknown presents also another advantage. In fact, we can

recover the physical variable V = (h, u) from U using the interesting change of variable
V = (h, δmHhe,ue(U)), where δm denotes the variational derivative with respect to m 1 . This

1We have,

δmHhe,ue
(U) = g(h− he)−

u2 − u2e
2

− 3

2
αh2(ux)

2,

and
δhHhe,ue

(U) = u− ue.
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consideration, as suggested in the following theorem, enables us to symmetrize the system in
the physical variable with a diagonal locally definite positive operator (See Appendix A for
more details).

Theorem 1.3 [14]. Let Ve = (he, ue) be a constant solution of (1) with he > 0. Then,
there exists δ > 0 such that, while the solution is in Bs̄(Ve, δ), the system is equivalent to the
following symmetric form:

A0(V )∂tV +A1(V )∂xV =

(
0

µ∂x(hux)

)
(7)

where

A0(V ) = DVU
?(V )

(
δ2
UH
)
DVU(V ) (8)

=

(
g − 3αh(ux)

2 0
0 Lh

)
is a positive definite operator and

A1(V ) = DVU
?(V )

(
δ2
UH
)

(DUF (U))DVU(V ) (9)

=

(
gu− 3αhu(ux)

2 gh− 3αh2(ux)
2

gh− 3αh2(ux)
2 hu+ 2α(h3ux)x − α(h3u)x∂x − αh3u∂2

x

)
is a symmetric one.

Proof Let us consider the writing

∂tU + ∂xF (U) = Q(U).

Obviously, we have

DVU(V )∂tV +DUF (U)DVU(V )∂xV = Q(U).

The, acting DVU
?(V ) (δ2

UHhe,ue) on the system and considering the fact that Q(U) is an
invariant vector of DVU

?(V ) (δ2
UHhe,ue), we get the result (See Appendix A for more details).

�

Let us note that A0(V ) and A1(V ) are linear second order operators. Therefore, they can
be decomposed as

A0(V ) = A0
0(V ) +A1

0(V )∂x +A2
0(V )∂2

x (10)

A1(V ) = A0
1(V ) +A1

1(V )∂x +A2
1(V )∂2

x (11)

where the expressions of symmetric matrix Aji (V ) for i, j ∈ {0, 1, 2} are given by

A0
0(V ) =

(
g − 3αh(ux)

2 0
0 h

)
, A1

0(V ) =

(
0 0
0 −3αh2hx

)
, A2

0(V ) =

(
0 0
0 −αh3

)
,

A0
1(V ) =

(
gu− 3αhu(ux)

2 gh− 3αh2(ux)
2

gh− 3αh2(ux)
2 hu+ 2α(h3ux)x

)
, A1

1(V ) =

(
0 0
0 −α(h3u)x

)
,

A2
1(V ) =

(
0 0
0 −αh3u

)
.
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Remark 1.4 The definite positivity of a real matrix is equivalent to its coercivity. However,
this fact does not necessary hold true for definite positive operators i.e. some definite positive
operators are not coercive. It is important to point out that, as we will see in Section 3, what
lets us generalize the hyperbolic methods to our symmetric system is actually the coercivity
of A0(V ) for the convenient norm. This is to say that we would not be able to generalize the
method if A0(V ) was definite positive but not coercive.

1.2 Outline
We are going to see the global existence of solutions of Green–Naghdi equations for initial
data close enough to the equilibrium. A local well-posedness is proved in Appendix B. To
prove the global existence of the local solution, we will use the dissipative character of the
viscosity as well as the symmetric structure of the system. In fact, the first step of the proof
is initial estimates obtained taking the scalar product of the sth derivative of the equation with
the sth derivative of the solution. As it is exposed in Subsections 3.1 and 3.2, these estimates
are obtained by almost the same approach as in the hyperbolic case ([10] and [20]). Then,
the second step is to estimate the time integral of the norm of the solution. For hyperbolic
systems, this estimate is found using the Kawashima–Shizuta condition. This condition has
been introduced in [19] for computational necessities. It is based on the existence of a skew-
symmetric matrix such that its product with a definite positive matrix (equivalent to A0) is
skew-symmetric at equilibrium and the symmetric part of its product with the symmetric ma-
trix (equivalent to A) may become a definite positive matrix by modifying the components of
the down diagonal bloc. However, in the case of Green–Naghdi system, we have not been able
to find any operator generalization of the Kawashima–Shizuta condition. Hence, we must use
a slightly different approach to find a convenient estimate. Indeed, we can find a null diagonal
real matrix K such that KA1(Ve) is a symmetric definite positive matrix for all equilibrium Ve
such that ue = 0. However, KA0(Ve) is not a skew-symmetric operator. Therefore, we try to
extract a part from its associated terms which we know the time primitive of. We can see that
this extraction is suitable because we are able to control the remaining terms in a convenient
way. This is what is done in Subsection 3.3. Then, using a symmetry group of the system, we
can generalize the result to equilibriums Ve such that ue 6= 0.

This paper is organized on 5 sections. The global existence theorem and its corollaries
are presented in Section 2. Section 3 contains the steps of the proof. Then, in Section 4
we investigate the relevance of our approach when α = 0 or µ = 0. Some perspectives
are suggested in Section 5. The advantages of the symmetric structure used in this study are
explained in Appendix A. So we can see why this symmetric structure is more interesting than
others. Appendix B contains the proof of the local well-posedness theorem 2.1. Appendix
C highlights one of the other utilities of the symmetric structure. In fact, linear stability of
equilibrium of non viscous Green–Naghdi can be proved using this structure.
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2 Main results
The local well-posedness of (1) has been studied in [12] and [17] for the case µ = 0. We see
here that we can prove the local well-posedness of (1), around constant solutions, based on the
idea used for symmetric hyperbolic systems. To do so, we first note that the set of constant
solutions of (1) is

{Ve = (he, ue); he > 0, ue ∈ R}.

We may also call these solutions the equilibriums of the system.

We denote the norm associated with the affine space Xs̄(R) = (Hs̄(R)+he)× (Hs̄+1(R)+ue)
by

‖ (f, g) ‖2
Xs̄=‖ f ‖2

Hs̄ + ‖ g ‖2
Hs̄+1 .

Moreover, the s̄-neighborhood of radius δ and center Ve ∈ Xs̄(R) is presented by Bs̄(Ve, δ) =
{V ∈ Xs̄(R), ‖ V − Ve ‖2

Xs̄≤ δ} for all integer s̄ ∈ R.

We are now able to announce the local well-posedness theorem,

Theorem 2.1 Let s̄ ≥ 2 be an integer and consider the constant solution Ve of system (1).
Then, there exists δ > 0 such that for all initial data V0 ∈ Bs̄(Ve, δ), the system is locally
well-posed in Xs̄(R).

The proof of the theorem is given in Appendix B. The steps of the proof are the same as for
hyperbolic systems (see [7, 5] for instance). However, the necessary estimate to reach the final
result of each step, is obtained by the same technique used in Section 3.2. In fact, we can see
again in this part, how the generalized symmetric structure (7) of the system enables us to
generalize the techniques used for symmetric hyperbolic systems.

The main result of this study is the following theorem on the asymptotic stability of equi-
libriums.

Theorem 2.2 Let us consider the equilibrium Ve = (he, ue) of (1) and s̄ ≥ 2 an integer. Then,
there exists δ > 0 such that for all initial data V0 = (h0, u0) ∈ Bs̄(Ve, δ) , the solution V exists
for all time and converges asymptotically to Ve.
In other words, every constant solution Ve = (he, ue) of (1) is asymptotically stable.

Let us remark that we can prove Theorem 2.2 by considering ue = 0. This is due to the fact
that v = t∂x + ∂u is a infinitesimal generator of a symmetry group of (1). That is to say that

Vβ = (h(x− βt, t), u(x− βt, t) + β)

is also a solution of (1) for all solution V = (h, u) and all β ∈ R. This fact has been mentioned
in [16, 2] for the case µ = 0. It is easy to check that the second order viscosity right hand side
does not change this symmetry group. Hence, from now on, all the equilibriums considered
in this work are of the form

Ve = (he, 0).
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The key of this study is the following proposition which is a consequence of the primitive
estimates in Xs and the estimation of the time integral of the Hs−1 norm of hx obtained in
Section 3. In order to understand this study, let us mention that symbol CS(δ) stands for a
function of δ, defined by the elements of the set S, which converges to a limit strictly different
from zero while δ goes to 0. On the other hand, ΘS(δ) stands for a function, defined by the
elements of the set S, which converges to zero while δ goes to 0. Let us also mention that the
estimate suggested in Proposition 2.3 has a similar structure to the estimate given in Theorem
3.1 of [20].

Proposition 2.3 Let s̄ ≥ 2 be an integer and δ > 0 small enough such that (1) is locally
well-posed for the initial data V0 ∈ Bs̄(Ve, δ) with Ve = (he, 0). Assume also that there exists
T̄ > 0 such that the unique local solution V satisfies V (T ) ∈ Bs̄(Ve, δ) for all 0 ≤ T < T̄ .
Then, the following estimate holds true for all Tin[0, T̄ ),

(1−Θ{he,α}(δ)) ‖ V (T )− Ve ‖2
Xs̄ +C{he,µ}(δ)

∫ T

0

‖ ux ‖2
Hs̄ ≤ C{he,α}(δ) ‖ V (0)− Ve ‖2

Xs̄

+ Θ{he,µ,α}(δ)

∫ T

0

‖ ux ‖2
Hs̄

Now, we get the global existence theorem as a result. In fact, we have

Theorem 2.4 Let us consider the equilibrium Ve = (he, 0) of (1) and an integer s̄ ≥ 2. Then,
there exists ν > 0 such that for all initial data V0 = (h0, u0) ∈ Bs̄(Ve, ν) , the solution V
exists for all time.
In other words, the equilibrium solutions Ve = (he, 0) of (1) are stable.

Proof Let us first remark that if δ > 0 is small enough, we have

1−Θ{he,α}(δ) >
1

2
and

C{he,µ}(δ)−Θ{he,µ,α}(δ)

1−Θ{he,α}(δ)
> 0.

Let us also assume that δ satisfies the assumptions of Proposition 2.3. Then, as long as V ∈
Bs̄(Ve, δ), it satisfies

‖ V (T )− Ve ‖2
Xs̄ +

C{he,µ}(δ)−Θ{he,µ,α}(δ)

1−Θ{he,α}(δ)

∫ T

0

‖ ux ‖2
Hs̄≤ C{g,he,α}(δ) ‖ V0 − Ve ‖2

Xs̄

Therefore, while V ∈ Bs̄(Ve, δ),

‖ V (T )− Ve ‖2
Xs̄≤ L(δ) ‖ V0 − Ve ‖2

Xs̄

where L is a function of δ such that lim
δ→0

L(δ) = l > 0. Setting ν ≤ δ such that L(δ)ν ≤ δ/2,
we have

‖ V (T )− Ve ‖2
Xs̄≤ δ/2, while V (T ) ∈ Bs̄(Ve, δ).

This is to say that for V (0) ∈ Bs̄(Ve, ν), the local solution can not go out from Bs̄(Ve, δ/2)
for any time. Hence, the norm of the local solution does not blow up. Moreover, h stays away
from 0. Therefore, the unique local solution exists for all time. �
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Corollary 2.5 (Asymptotic stability of equilibrium solutions) Let us s̄ ≥ 2 be an integer
and consider the equilibrium Ve = (he, 0) of (1). Then, there exists δ > 0 such that for all
initial data V0 = (h0, u0) in Bs̄(Ve, δ) , the global solution V (x, t) in Xs̄(R) of (1) converges
asymptotically to Ve. In other words, lim

t→∞
V (x, t) = Ve for all x ∈ R.

Proof We use a similar logic to the one used in [20] for symmetric entropy dissipative hy-
perbolic systems satisfying the stability condition. In fact, we consider the system under the
form

∂tU + ∂xF (U) = Q(U), (12)

where F and Q are defined by (5) and (6). We then take the x derivative of (12), the time
integral on [t1, t2] and consider the H1 × L2 norm. This leads us to

‖ Ux(t2)− Ux(t1) ‖H1×L2=‖
∫ t2

t1

∂xxF (U) +

(
0

µ∂2
x(hux)

)
‖H1×L2 . (13)

Hence,

‖ Ux(t2)− Ux(t1) ‖H1×L2≤ |t2 − t1|
(

sup
t1≤t≤t2

‖ ∂xxF (U) ‖H1×L2 +µ sup
t1≤t≤t2

‖ ∂2
x(hux) ‖H1×L2

)
.

On the other hand, we have, by Proposition 2.3, that there exists a positive constant C such
that the ‖ Ux(t) ‖H1×L2≤ C for all time. This together with the continuity of F gives us a
C̃ > 0 such that we have for all t1, t2 positive,

| ‖ Ux(t1) ‖H1×L2 − ‖ Ux(t2) ‖H1×L2 | ≤‖ Ux(t2)− Ux(t1) ‖H1×L2≤ C̃|t2 − t1|.

Hence, t 7→‖ Ux(t) ‖H1×L2 is Lipschitz continuous. It is also L2 ([0,∞)) by the estimate of
the same proposition. Therefore, ‖ Ux(t) ‖H1×L2 converges to 0 at the limit t → ∞, so does
‖ Vx(t) ‖X1 . Then, the continuous embedding of Hs(R)→ L∞(R) for s ≥ 1 (the Gagliardo–
Nirenberg inequality) leads us to

lim
t→∞
‖ Vx(t) ‖L∞×L∞= 0.

In other words, Vx(x, t) converges uniformly to 0:

lim
t→∞

sup
x∈R
|Vx(x, t)| = 0.

Therefore, lim
t→∞

V (x, t) = β ∈ R for all x ∈ R. That is to say that

lim
t→∞

V (x, t) = lim
t→∞

lim
x′→∞

V (x′, t) = Ve ∀x ∈ R.

�
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3 A priori estimates
The main of this part is to obtain some a priori estimates of (1) similar to the estimate obtained
in [10, 20, 19, 13] for hyperbolic systems. To do so, we use the Hamiltonian dissipation to
find a 0th order estimate. We then take the sth order derivative of the symmetric equation
and consider the scalar product with the sth order spatial derivative of the solution for all
1 ≤ s ≤ s̄. Then, using the properties of the operators A0(V ) and A1(V ) especially the
coercivity of A0(V ) and their symmetry, we get a sth order primary estimate for the solution
V ∈ Bs̄(Ve, δ). Then, in Subsection 3.3, we get an estimation of

∫ T
0
‖ ∂sxh ‖2

L2 for all
1 ≤ s ≤ s̄ which together with the primary estimates leads us to Proposition (2.3). These
estimates are obtained by acting a hollow real matrix on the system. The equilibrium Ve we
consider in all this section is of the form Ve = (he, 0) and s̄ is an integer equal or greater than
2.

3.1 Estimate in X0

System (1) admits a global X0 estimation considering the dissipation of the integral Hhe,0 of
the energy Ehe,0 defined in Section 1. In fact, the following proposition holds true,

Proposition 3.1 . The local solution of (1) satisfies during its time existence:

‖ u(t) ‖2
H1≤

Hhe,0(h0, u0)

min{infx∈R h(t)/2, α infx∈R h3(t)/2}
, (14)

and
‖ h(t)− he ‖2

L2≤
2

g
Hhe,0(h0, u0) (15)

Proof We integrate the energy equality (3), for ue = 0, with respect to the spatial variable
x on R. Then, considering the fact that (h, u) ∈ (Hs̄(R) + he) × Hs̄+1(R), we have the
dissipation of the HamiltonianHhe,0 by a simple integration by part:

d

dt
Hhe,0(h, u) = −µ

∫
R
h(ux)

2 ≤ 0.

In other words,

Hhe(h(t), u(t))−Hhe,0(h(0), u(0)) = −µ
∫ t

0

∫
R
h(ux)

2 ≤ 0.

Now, using the definition of Hhe,0 =
∫
R g(h− he)2/2 + hu2/2 + αh3(ux)

2, we get the result.
�

Let us also remark that the Hamiltonian Hhe,0 is locally X0-quadratic on Ve, in the sense that
we have for all s̄ ≥ 2, δ > 0, V ∈ Bs̄(Ve, δ),

C{he}(δ) ‖ V − Ve ‖2
X0≤ Hhe,0(h, u) ≤ C{he}(δ) ‖ V − Ve ‖2

X0

This together with the dissipation of Hhe,0 gives us the following estimate of order 0 for
solutions close to equilibrium. In fact, we have,

9



Proposition 3.2 Let s̄ ≥ 2 be an integer and consider the equilibrium Ve and the initial data
V0 ∈ Xs̄(R). Then, there exists δ, T̄ > 0 such that the solution V of (1) satisfies V (T ) ∈
Bs̄(Ve, δ) for all 0 ≤ T < T̄ . Then, it satisfies for such T

‖ V (T )− Ve ‖2
X0 +C{he}(δ)

∫ T

0

‖ ux ‖2
L2≤ C{he}(δ) ‖ V (0)− Ve ‖2

X0 . (16)

3.2 Estimate in Xs

The main of this part is to obtain a convenient a priori estimate of sth order for all integer
s ∈ [1, s̄]. To do so, we take the sth derivate of the system (7) with respect to the spatial
variable, take the scalar product with ∂sxV and integrate on [0, T )× R:∫ T

0

∫
R
∂sx(A0(V )∂tV ) ·∂sxV +

∫ T

0

∫
R
∂sx(A1(V )∂xV ) ·∂sxV = µ

∫ T

0

∫
R
∂s+1
x (hux)∂

s
xu (17)

Then, using basic computations and the Leibniz formula, we remark that2∫
R
∂sx(A0(V )∂tV ) · ∂sxV =

1

2

d

dt

∫
R
A0(V )∂sxV · ∂sxV −

1

2

∫
R

(
A0

0t +A1
0t∂x +A2

0t∂
2
x

)
∂sxV · ∂sxV

+
s∑
i=1

(
s
i

)∫
R

(
A0

0i +A1
0i∂x +A2

0i∂
2
x

)
∂t∂

s−i
x V · ∂sxV,

where, Aj0i is another notation for ∂ix(A
j
0(V )), the ith spatial derivative of Aj0(V ), for all

j ∈ {0, 1, 2} and for any i ∈ N.
(
s
i

)
represents the number of i-combinations of s elements.

In other words,
(
s
i

)
= s!

i!(s−i)! . On the other hand, the integration by part and the symmetry

of A1 imply that∫
R
∂sx(A1(V )∂xV ) · ∂sxV =

(
s− 1

2

)∫
R

(
A0

1x +A1
1x∂x +A2

1x∂
2
x

)
∂sxV · ∂sxV

+
s∑
i=2

(
s
i

)∫
R

(
A0

1i +A1
1i∂x +A2

1i∂
2
x

)
∂s−i+1
x V · ∂sxV.

We have also∫
R
∂s+1
x (hux)∂

s
xu = −

∫
R
h(∂s+1

x u)2 −
s∑
i=1

(
s
i

)∫
R
(∂ixh)(∂s−i+1

x u)(∂s+1
x u).

Hence, (17) becomes∫
R
A0(V )∂sxV (T ) · ∂sxV (T ) + 2µ

∫ T

0

∫
R
h(∂s+1

x u)2 =

∫
R
A0(V )∂sxV (0) · ∂sxV (0)

2For sake of simplicity, we use sometimes A1 or A0 instead of A1(V ) or A0(V ).
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− 2
s∑
i=1

(
s
i

)∫ T

0

∫
R

(
A0

0i +A1
0i∂x +A2

0i∂
2
x

)
∂t∂

s−i
x V · ∂sxV

+

∫ T

0

∫
R

(
A0

0t +A1
0t∂x +A2

0t∂
2
x

)
∂sxV · ∂sxV

+ (1− 2s)

∫ T

0

∫
R

(
A0

1x +A1
1x∂x +A2

1x∂
2
x

)
∂sxV · ∂sxV

− 2
s∑
i=2

(
s
i

)∫ T

0

∫
R

(
A0

1i +A1
1i∂x +A2

1i∂
2
x

)
∂s−i+1
x V · ∂sxV

− 2µ
s∑
i=1

(
s
i

)∫
R
(∂ixh)(∂s−i+1

x u)(∂s+1
x u). (18)

The two following lemmas present two results that we will use several times in the rest of
this Section. The first one is on the X0-quadraticity of A0(V ):

Lemma 3.3 There exists δ > 0 such that A0(V ) is quadratic on Bs̄(Ve, δ). That is to say that
we have for all V ∈ Bs̄(Ve, δ) and all f = (f1, f2) ∈ X0(R),

C{he}(δ) ‖ f ‖X0≤
∫
R
A0(V )f · f ≤ C{he}(δ) ‖ f ‖X0 .

Proof Obviously we have∫
R
A0(V )f · f =

∫
R
(g − 3αh(ux)

2)f 2
1 + f2Lhf2.

Therefore, we have for δ small enough and V ∈ Bs̄(Ve, δ),

g ‖ f1 ‖2
L2

2
+ min{he − δ, α(he − δ)3} ‖ f2 ‖2

H1≤
∫
R
A0(V )f · f

≤ g ‖ f1 ‖2
L2 + max{he + δ, α(he + δ)3} ‖ f2 ‖2

H1 .

�

The second lemma is on the smallness of the L∞ norm (in time and space) of ht and ut and
some of their spatial derivatives as long as V ∈ Bs̄(Ve, δ). Actually, the following lemma
holds true,

Lemma 3.4 Let us assume that the solution V (t) of (1) belongs toBs̄(Ve, δ) for all t ∈ [0, T ).
Then, we have for all 0 ≤ j ≤ s̄− 1 and all 0 ≤ l ≤ s̄,

lim
δ→0

V ∈B(Ve,δ)

‖ ∂jx∂th ‖L∞= 0, lim
δ→0

V ∈B(Ve,δ)

‖ ∂lx∂tu ‖L∞= 0, (19)
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Proof The first equation of the system (1) gives us ht = −hux − uhx. Therefore,

‖ ∂jx∂th ‖L∞≤‖
j∑

k=0

∂kxh∂
j−k+1
x u ‖L∞ + ‖

j∑
k=0

∂kxu∂
j−k+1
x h ‖L∞≤ Θ{he}(δ)

Likewise, the second equation of the system can be written under the following form ( see
[12, 15]),

ut = −uux + L−1
h ∂x

(
gh2/2 + 2αh3(ux)

2 + µhux
)
. (20)

Then, the continuous embedding H1(R) in L∞(R) implies that there exists C > 0 such that

‖ ∂lx∂tu ‖L∞ ≤‖ ∂lx(uux) ‖L∞ + ‖ ∂lxL−1
h ∂x

(
gh2/2 + 2αh3(ux)

2 + µhux
)
‖L∞

≤ Θ(δ) + C ‖ ∂lxL−1
h ∂x

(
gh2/2 + 2αh3(ux)

2 + µhux
)
‖H1

≤ Θ(δ) + C ‖ L−1
h ∂x

(
gh2/2 + 2αh3(ux)

2 + µhux
)
‖Hl+1

≤ Θ(δ) + C{he,α}(δ) ‖ ∂x
(
gh2/2 + 2αh3(ux)

2 + µhux
)
‖Hl−1

≤ Θ(δ) + C{he,α}(δ) ‖ ∂x
(
gh2/2 + 2αh3(ux)

2 + µhux
)
‖Hs̄−1

≤ Θ(δ) + C{he,α}(δ)Θ{he,α,µ}(δ) ≤ Θ{he,α,µ}(δ).

�

All of these tools give us facilities to prove the following lemma which is the key step to
achieve the appropriate sth order estimate.

Lemma 3.5 Let us consider the solution V of (7) and assume that it belongs to Bs̄(Ve, δ) for
some δ > 0. Then, the following estimates hold true,∣∣∣∣∣

s∑
i=1

(
s
i

)∫
R
A0

0i∂
s−i
x ∂tV · ∂sxV

∣∣∣∣∣ ≤ Θ{he,α,µ}(δ)

(
s+1∑
j=1

‖ ∂jxu ‖2
L2 +

s∑
j=1

‖ ∂jxh ‖2
L2

)
. (21)∣∣∫

RA
0
0t∂

s
xV · ∂sxV

∣∣ ≤ Θ{he,α,µ}(δ)
(
‖ ∂sxu ‖2

L2 + ‖ ∂sxh ‖2
L2

)
. (22)∣∣∣∣∣

s∑
i=1

(
s
i

)∫
R

(
A1

0i∂x + A2
0i∂

2
x

)
∂s−ix ∂tV · ∂sxV

∣∣∣∣∣ ≤ Θ{he,α,µ}(δ)

(
s∑
i=1

‖ ∂ixh ‖2
L2 + ‖ ∂s+1

x u ‖2
L2

)
.(23)∣∣∫

R (A1
0t∂x + A2

0t∂
2
x) ∂

s
xV · ∂sxV

∣∣ ≤ Θ{he,α,µ}(δ)
(
‖ ∂s+1

x u ‖2
L2

)
. (24)∣∣∫

R (A0
1x +A1

1x∂x +A2
1x∂

2
x) ∂

s
xV · ∂sxV

∣∣ ≤ Θ{he,α}(δ)
(
‖ ∂sxh ‖2

L2 + ‖ ∂sxu ‖2
H1

)
. (25)∣∣∣∣∣

s∑
i=2

(
s
i

)∫
R

(
A0

1i +A1
1i∂x +A2

1i∂
2
x

)
∂s−i+1
x V · ∂sxV

∣∣∣∣∣ ≤ Θ{he,α}(δ)
(
‖ ∂xh ‖2

Hs−1 + ‖ ∂xu ‖2
Hs

)
.(26)

Proof Let us first prove (21). We have, by definition of A0
0, for all 1 ≤ i ≤ s ,∫

R
A0

0i∂
s−i
x ∂tV · ∂sxV = −3α∂ix(h(ux)

2) ∂s−ix ∂th ∂
s
xh+ ∂ixh ∂

s−i
x ∂tu ∂

s
xu.
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Therefore,∣∣∣∣∫
R
A0

0i∂
s−i
x ∂tV · ∂sxV

∣∣∣∣ ≤ ‖ ∂s−ix ∂tu ‖L∞
2

(
‖ ∂ixh ‖2

L2 + ‖ ∂sxu ‖2
L2

)
+ ‖ ∂s−ix ∂th ‖L∞

(
‖ ∂sxh ‖2

L2 + ‖ 3α∂ixh (ux)
2 ‖2

L2 + ‖ 6α
i−1∑
j=0

∂jxh ∂xu ∂
i−j+1
x u ‖2

L2

)

≤ max

{
‖ ∂s−ix ∂tu ‖L∞

2
, Che,α(δ) ‖ ∂s−ix ∂th ‖L∞

}(
‖ hx ‖2

Hs−1 + ‖ ux ‖2
Hs

)
.

Then, considering (19), the proof of (21) is complete.

We are now going to prove (22). To do so, we should first remark that∫
R
A0

0t∂
s
xV · ∂sxV = −3α∂t

(
h(ux)

2
)

(∂sxh)2 + ht(∂
s
xu)2.

Then, ∣∣∣∣∫
R
A0

0t∂
s
xV · ∂sxV

∣∣∣∣ ≤‖ 3α∂t
(
h(ux)

2
)
‖L∞‖ ∂sxh ‖2

L2 + ‖ ht ‖L∞‖ ∂sxu ‖2
L2 .

Now, we use (19) to get the result.

The first step to prove (23) is to notice that we have for all 1 ≤ i ≤ s∫
R

(
A1

0i∂x +A2
0i∂

2
x

)
∂s−ix ∂tV · ∂sxV = α

∫
R
(∂ixh

3) ∂s+1
x u (∂s−i+1

x ∂tu).

Hence,∣∣∣∣∫
R

(
A1

0i∂x +A2
0i∂

2
x

)
∂s−ix ∂tV · ∂xV

∣∣∣∣ ≤ ‖ α∂s−i+1
x ∂tu ‖L∞

2

(
‖ ∂ixh3 ‖2

L2 + ‖ ∂s+1
x u ‖2

L2

)
≤ ‖ α∂

s−i+1
x ∂tu ‖L∞

2

(
C{he}(δ)

i∑
j=1

‖ ∂ixh ‖2
L2 + ‖ ∂s+1

x u ‖2
L2

)
.

Considering 19, we obtain the estimate.

In order to prove (24) , we first remark that∫
R

(
A1

0t∂x +A2
0t∂

2
x

)
∂sxV · ∂sxV =

∫
R

3αh2ht(∂
s+1
x u)2.

Again, using (19), we find∣∣∣∣∫
R

(
A1

0t∂x +A2
0t∂

2
x

)
∂sxV · ∂sxV

∣∣∣∣ ≤ Θ{he,α}(δ) ‖ ∂s+1
x u ‖2

L2 .
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To prove (25), we use an integration by part,

∫
R

(
A1

1x∂x +A2
1x∂

2
x

)
∂sxV · ∂sxV =

∫
R
−α(h3u)xx∂

s+1
x u∂sxu− α(h3u)x∂

s+2
x u∂sxu

=

∫
R
−α∂x

(
(h3u)x∂

s+1
x u

)
∂s+1
x u =

∫
R
α(h3u)x(∂

s+1
x u)2.

Hence,

∣∣∣∣∫
R

(
A1

1x∂x +A2
1x∂

2
x

)
∂sxV · ∂sxV

∣∣∣∣ ≤ Θ{he,α}(δ) ‖ ∂s+1
x u ‖2

L2 .

We have also

∫
R
A0

1x∂
s
xV · ∂sxV =‖ A0

1x ‖L∞
∫
R
(∂sxh)2 + (∂sxu)2 + 2∂sxh∂

s
xu,

where
‖ A0

1x ‖L∞= max
i∈{1,2}
j∈{1,2}

{‖ (A0
1x)ij ‖L∞},

where (A0
1x)ij represents the element of row i and column j of the matrix (A0

1(V ))x). We now
just need to remark that

lim
δ→0

V ∈B(Ve,δ)

‖ A0
1x ‖L∞= 0. (27)

Indeed, this fact is obvious using the structure of A0
1,

‖ A0
1x ‖L∞≤‖ gux ‖L∞ + ‖ ghx ‖L∞ + ‖ ∂x(hu)+2α∂2

x(h
3ux) ‖L∞ + ‖ 6α∂x(hu(ux)

2) ‖L∞ .

Therefore,
‖ A0

1x ‖L∞≤ Θ{he,α}(δ).

and we get the result.

The last estimate (26) is just a consequence of the following fact which holds true for all
2 ≤ i ≤ s. It is due to the structure ofA1

1(V ) andA2
1(V ) together with an integration by part:∫

R

(
A1

1i∂x +A2
1i∂

2
x

)
∂s−i+1
x V · ∂sxV = α

∫
R
(∂ix(h

3u)) ∂s−i+2
x u (∂s+1

x u).

Hence, as long as V ∈ Bs̄(Ve, δ),∣∣∣∣∫
R

(
A1

1i∂x +A2
1i∂

2
x

)
∂s−i+1
x V · ∂sxV

∣∣∣∣ ≤ ‖ α∂ix(h3u) ‖L∞
2

(
‖ ∂s−i+2

x u ‖2
L2 + ‖ ∂sxu ‖2

L2

)
≤ Θ{he,α}(δ)

(
‖ ∂s−i+2

x u ‖2
L2 + ‖ ∂sxu ‖2

L2

)
.
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On the other hand, we have for all 2 ≤ i ≤ s− 1,∣∣∣∣∫
R
A0

1i∂
s−i+1
x V · ∂sxV

∣∣∣∣ ≤ 2 ‖ A0
1i ‖L∞

(
‖ ∂s−i+1

x u ‖2
L2 + ‖ ∂sxu ‖2

L2 + ‖ ∂s−i+1
x h ‖2

L2 + ‖ ∂sxh ‖2
L2

)
≤ Θ{he,α}(δ)

(
‖ ∂s−i+1

x u ‖2
L2 + ‖ ∂sxu ‖2

L2 + ‖ ∂s−i+1
x h ‖2

L2 + ‖ ∂sxh ‖2
L2

)
,

since the structure of A0
1 gives us for all integer i ∈ [2, s− 1],

lim
δ→0

V ∈Bs̄(Ve,δ)

‖ A0
1i ‖L∞= 0.

We now need to give an estimation on the norm of the last term of the sum,
∣∣∫

RA
0
1s∂xV · ∂sxV

∣∣.
This term can not be treated by the same way as the previous terms because

lim
δ→0

V ∈B(Ve,δ)

‖ A0
1s ‖L∞ 6= 0.

However, we can use the structure ofA1(V ), a basic Young’s inequality and an integration by
part to get∣∣∣∣∫

R
A0

1s∂xV · ∂sxV
∣∣∣∣ ≤ ‖ ∂xV ‖L∞2

(
‖ ∂sx

(
gu− 3αhu(ux)

2
)
‖2
L2 + ‖ ∂sx

(
gh− 3αh2(ux)

2
)
‖2
L2

)
+ ‖ ∂xV ‖L∞

(
‖ ∂sx (hu) ‖2

L2

2
+ ‖ ∂sxh ‖2

L2 + ‖ ∂sxu ‖2
L2

)
+

∣∣∣∣∫
R

2α∂s+1
x (h3ux) ∂xu ∂

s
xu

∣∣∣∣
≤ Θ{he}(δ)

(
‖ ∂xh ‖2

Hs−1 + ‖ ∂xu ‖2
Hs +

∣∣∣∣∫
R

2α∂sx(h
3ux)∂x (∂xu ∂

s
xu)

∣∣∣∣)
≤ Θ{he,α}(δ)

(
‖ ∂xh ‖2

Hs−1 + ‖ ∂xu ‖2
Hs

)
.

Hence, estimate (26) is totally proved. �

This lemma together with the coercivity of A0 and relation (18) leads us to the following
propositions

Proposition 3.6 Let us assume that there exists δ > 0, T̄ > 0 such that the solution V of (1)
satisfies V (T ) ∈ Bs̄(Ve, δ) for all T ∈ [0, T̄ ]. Then, we have for all 1 ≤ s ≤ s̄,

‖ ∂sx (V (T )− Ve) ‖2
X0 +C{he,µ}(δ)

∫ T

0

‖ ∂s+1
x u ‖2

L2 ≤ C{he,α}(δ) ‖ ∂sx (V (0)− Ve) ‖2
X0

+ Θ{he,α,µ}(δ)

∫ T

0

‖ Vx ‖2
Xs−1 .

Then, considering this proposition together with the 0th order estimate of Subsection 3.1, we
reach the final primary estimate which is given in the following proposition. This estimate
together with the result of the next part enables us to prove the main theorem.
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Proposition 3.7 Let us assume that there exists δ > 0, T̄ > 0 such that the solution V of (1)
satisfies V (T ) ∈ Bs̄(Ve, δ) for all T ∈ [0, T̄ ). Then, we have for such T,

‖ V (T )− Ve ‖2
Xs̄ +C{he,µ}(δ)

∫ T

0

‖ ux ‖2
Hs̄ ≤ C{he,α}(δ) ‖ V (0)− Ve ‖2

Xs̄

+ Θ{he,µ}(δ)

∫ T

0

‖ Vx ‖2
Xs̄−1 . (28)

3.3 Estimate on
∫ t
0 ‖ ∂

s
xh ‖2L2

This part is the final step to prove Proposition 2.3. In fact, considering (28), we need to
find a convenient estimate on

∫ t
0
‖ ∂xV ‖2

Xs̄−1 . This idea has been used in [20], [10] and [19].
Actually, estimate (28) has a similar appearance than the estimate found in these references for
symmetric hyperbolic systems with dissipative terms. Then, they use the Kawashima stability
condition to control the norm of spatial derivatives of first components of the solution. Let us
note that, as in the case of hyperbolic system, we do not need to control the norm of second
components. This is due to the presence of the second term of the left hand side of inequality
(28). What we need to control in the case of Green–Naghi equation, is the time integral of
norm of the spatial derivative of h. Nevertheless, the main difficulty is the generalization of the
Kawashima–Shizuta condition. Actually, we have not been able to find any operator version
of the Shizuta–Kawashima condition for Green–Naghdi equation. However, we are going to
see that it is possible to find an appropriate upper bound for

∫ t
0
‖ ∂sxh ‖2

L2 by using a slightly
different technique as in the hyperbolic case. To do so, we consider the 2 × 2 hollow real
matrix K(Ve) defined by

K(Ve) =

(
0 1
−he

g
0

)
. (29)

As we will see further, the reason why we consider this matrix, is the fact that K(Ve)A1(Ve)
is a diagonal real matrix with a strictly positive first component. In other words, there exists a

matrix of the form B =

(
0 0
0 L

)
with L ≥ 0 such that K(Ve)A1(Ve) +B is definite positive.

This enables us, as in [20], [10], to get an upper bound for
∫ t

0
‖ ∂sxh ‖2

L2 . This upper bound is
convenient even though, unlike the case of hyperbolic systems, K(Ve)A0(Ve) is not a skew-
symmetric operator. This is due to the fact that we can extract a part fromK(Ve)A0(V ), which
plays a quite similar role to a skew-symmetric operator such that the norm of the remaining
part is controllable in a suitable manner. So, let us write (7) under the form

A0(V )∂tV +A1(Ve)∂xV = H(V ), (30)

where H(V ) is defined by

H(V ) = [A1(Ve)− A1(V )] ∂xV +

(
0

µ∂x(hux)

)
. (31)
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We then take the action of the operator K(Ve)∂
s−1
x on (30) and take the scalar product with

∂sxV . This leads us to∫ T

0

∫
R
K(Ve)∂

s−1
x A0(V )∂tV · ∂sxV +

∫ T

0

∫
R
K(Ve)A1(Ve)∂

s
xV · ∂sxV

=

∫ T

0

∫
R
K(Ve)∂

s−1
x H(V ) · ∂sxV,

or equivalently to∫ T

0

∫
R
K(Ve)A1(Ve)∂

s
xV · ∂sxV =

∫ T

0

∫
R
K(Ve)∂

s−1
x H(V ) · ∂sxV

−
∫ T

0

∫
R
K(Ve)∂

s−1
x A0(V )∂tV · ∂sxV. (32)

Let us note that

K(Ve)A1(Ve) =

(
ghe 0
0 −h2

e

)
. (33)

Hence, ∫ T

0

∫
R
K(Ve)A1(Ve)∂

s
xV · ∂sxV =

∫ T

0

∫
R

(
ghe(∂

s
xh)2 − h2

e(∂
s
xu)2

)
= ghe

∫ T

0

‖ ∂sxh ‖2
L2 −h2

e

∫ T

0

‖ ∂sxu ‖2
L2 . (34)

Gathering (32) and (34), we get

g

∫ T

0

‖ ∂sxh ‖2
L2= he

∫ T

0

‖ ∂sxu ‖2
L2 +

1

he

∫ T

0

∫
R
∂s−1
x (K(Ve)H(V )−K(Ve)A0(V )∂tV )·∂sxV.

(35)
It is now sufficient to give a convenient estimate on the last term of (35). To do so, we first
remark that

A1(Ve)− A1(V ) =

(
−gu+ 3αhu(ux)

2 g(he − h) + 3αh2(ux)
2

g(he − h) + 3αh2(ux)
2 −hu− 2α(h3ux)x + α∂x(h

3u∂x())

)
. (36)

Then we have

K(Ve)∂
s−1
x H(V ) · ∂sxV = µ∂sx(hux)∂

s
xh+ ∂s−1

x

(
g(he − h)(hx) + 3αh2(ux)

2hx
)
∂sxh

+ ∂s−1
x

(
heuhx −

3αhe
g

huhx(ux)
2

)
∂sxu− ∂s−1

x

(
he(he − h)(ux) +

3αhe
g

h2(ux)
3

)
∂sxu

− ∂s−1
x

(
huux + 2α∂x(h

3ux)ux
)
∂sxh+ α∂sx

(
h3uuxx

)
∂sxh. (37)

On the other hand,

K(Ve)A0(V ) =

(
0 Lh

−he + 3α
g
heh(ux)

2 0

)
, (38)
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and,

K(Ve)∂
s−1
x (A0(V )∂tV )·∂sxV = ∂s−1

x Lh(ut)·∂sxh+∂s−1
x

(
3αhe
g

h(ux)
2ht − heht

)
∂sxu. (39)

Now, we use the following lemma to visualize the part of K(Ve)∂
s−1
x (A0(V )∂tV ) · ∂sxV that

we would extract.

Lemma 3.8 Assume that f ∈ C0([0, T ],Xs(R)) for some T > 0. Then, we have

Lhft = ∂tLhf − fht + 3α∂x
(
h2htfx

)
. (40)

In fact, using the lemma, (39) becomes

K(Ve)∂
s−1
x (A0(V )∂tV ) · ∂sxV = ∂t

(
∂s−1
x Lhu · ∂sxh

)
− ∂s−1

x Lhu · ∂t∂sxh

− ∂s−1
x (uht) · ∂sxh+ 3α∂sx

(
h2htux

)
∂sxh+ ∂s−1

x

(
3αhe
g

h(ux)
2ht − heht

)
∂sxu.

Therefore, ∂t (∂s−1
x Lhu · ∂sxh) is the term we are going to find a lower bound for. Then, we

find an upper bound for all the other terms to get to the final estimate. All of the operations
and simplifications we use in this part are done in order to lead us to the desired upper-bound
estimate. First, we use the mass conservation ht = −(hu)x, and we find

K(Ve)∂
s−1
x (A0(V )∂tV ) · ∂sxV = ∂t

(
∂s−1
x Lhu · ∂sxh

)
+ ∂s−1

x Lhu · ∂s+1
x (hu)

+ ∂s−1
x (u(hu)x) · ∂sxh− 3α∂sx

(
h2(hu)xux

)
∂sxh− ∂s−1

x

(
3αhe
g

h(ux)
2(hu)x − he(hu)x

)
∂sxu.

Then, a simple development gives us

K(Ve)∂
s−1
x (A0(V )∂tV ) · ∂sxV = ∂t

(
∂s−1
x Lhu · ∂sxh

)
− 3α∂sx

(
h2(hu)xux

)
∂sxh

+ ∂s−1
x (u(hu)x) · ∂sxh− ∂s−1

x

(
3αhe
g

h(ux)
2(hu)x

)
∂sxu+ he∂

s
x(hu)∂sxu+ ∂s−1

x Lhu · ∂s+1
x (hu).

We now need the following lemmas to be able to deal with terms the order of which is too high
to be controlled as desired. These lemmas are consequences of basic computations. We are
going to see that

∫
R αh

3u ∂s+2
x u ∂sxh is the only term the order of which is too high. It appears

in the expressions of both
∫
RK(Ve)∂

s−1
x (A0(V )∂tV ) · ∂sxV and

∫
RK(Ve)∂

s−1
x (A0(V )∂tV ) ·

∂sxV . This is to say that higher order terms compensate each other. This is what leads us to the
convenient estimate.

Lemma 3.9 Assume that V ∈ Xs̄(R). Then, we have∫
R
he∂

s
x(hu)∂sxu+ ∂s−1

x Lhu · ∂s+1
x (hu) =

∫
R
h(he − h)(∂sxu)2 + αh3u ∂s+2

x u ∂sxh

+

∫
R
h2he

s∑
i=1

∂ixh ∂
s−i
x u ∂sxu

(
s∑
i=1

∂ixh ∂
s−i
x u

)(
s∑
j=1

∂jxh ∂
s−j
x u

)
− 2h∂sxu

(
s∑
j=1

∂jxh ∂
s−j
x u

)

+ α

∫
R
∂sx(hu)

(
s+1∑
i=1

∂ix(h
3) ∂s+1−i

x u

)
.
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Lemma 3.10 Assume that V ∈ X s̄(R). Then, we have

α

∫
R
∂sx
(
h3uuxx

)
∂sxh =

∫
R
αh3u ∂s+2

x u ∂sxh+ α
s∑
i=1

∫
R
∂ix(h

3u) ∂s+2−i
x u ∂sxh. (41)

These lemmas are consequences of the definition ofL, integration by part and Leibniz formula.
Now using (37), (41) together with previous lemmas, we get∫

R
K(Ve)∂

s−1
x (H(V )−A0(V )∂tV ) · ∂sxV =

∫
R
∂t
(
∂s−1
x Lhu · ∂sxh

)
+ µ∂sx(hux)∂

s
xh

+R[h, u], (42)

where ∣∣∣∣∫
R
R[h, u]

∣∣∣∣ ≤ Θ{he,α}(δ) ‖ hx ‖2
Hs−1 +C{he,α}(δ) ‖ ux ‖2

Hs .

Let us also note that the fist two terms of the right hand side of (42) satisfy the relations given
in the following lemma,

Lemma 3.11 Let V = (h, u) be in Xs̄(R). Then,

|µ∂sx(hux)∂sxh| ≤ Θ{µ}(δ) ‖ ∂xV ‖2
Xs−1 +C{µ,he}(δ) ‖ ∂s+1

x u ‖2
L2 +

g

2
‖ ∂sxh ‖2

L2 , (43)

and ∫ T

0

∫
R
∂t
(
∂s−1
x Lhu · ∂sxh

)
≤ C{he,α}(δ)

(
‖ u(T ) ‖2

Hs+1 + ‖ ∂sxh(T ) ‖2
L2

)
+ C{he,α}(δ)

(
‖ u(0) ‖2

Hs+1 + ‖ ∂sxh(0) ‖2
L2

)
. (44)

Proof The first estimate (43) is a consequence of Leibniz formula and the fact that∣∣∂s+1
x u ∂sxh

∣∣ ≤ 2µ(he + δ)

g

(
∂s+1
x u

)2
+

g

2µ(he + δ)
(∂sxh)2 .

The second one (44) is a consequence of the facts that

∂s−1
x Lhu · ∂sxh ≤

1

2
(∂s−1
x Lhu)2 +

1

2
(∂sxh)2,

and of the continuity of Lh expressed by

‖ Lhu ‖2
L2≤ C{he,α}(δ) ‖ u ‖2

H2 .

�

We now sum (35) for 1 ≤ s ≤ s̄. This together with (42) and Lemma 3.11 enables us to give
an estimation on

∫ T
0
‖ hx ‖2

Hs̄−1 :

Proposition 3.12 Let us assume that there exists T̄ > 0 such that the local Xs̄ solution of (1)
exits and satisfies V (T ) ∈ Bs̄(Ve, δ) for all T ∈ [0, T̄ ). Then, we have for such T ,∫ T

0

‖ hx ‖2
Hs̄−1 ≤ C{he,µ}(δ)

∫ T

0

‖ ux ‖2
Hs̄ +C{he,α}(δ)

(
‖ u(T ) ‖2

Hs̄+1 + ‖ ∂xh(T ) ‖2
Hs̄−1

)
+ C{he,α}(δ)

(
‖ u(0) ‖2

Hs̄+1 + ‖ ∂xh(0) ‖2
Hs̄−1

)
. (45)

This proposition together with Proposition 3.7 gives the a priori estimate of Proposition 2.3.
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4 Further remarks

4.1 What happens if α = 0?
During this study we have assumed that α, µ > 0. However, we may be interested for instance
in α = 0 case (Saint-Venant system). Actually we can easily check that the Hamiltonian
Hhe,0 as well as the operator A0(V ) are quadratic for Hs̄ × Hs̄ norm for α = 0. This fact
is completely coherent with the well-posedness space of the system because the Saint-Venant
system is well-posed in Hs̄(R) + he ×Hs̄(R) and not any more in Xs̄(R). We can also easily
remark that, in this case, the operators A0(V ) and A1(V ) are real symmetric matrix and the
symmetric structure (7) of the system is equivalent to the normal symmetric structure of Saint-
Venant system seen as a hyperbolic system. Then, all the computations of the previous section
can be reconsidered for this case to lead us to the following final proposition

Proposition 4.1 Let s̄ ≥ 2 be an integer, α = 0 and δ > 0 and consider the initial data V0 ∈
Bs̄(Ve, δ) with Ve = (he, 0). Assume also that there exists T̄ > 0 such that the unique local
solution V ∈ C([0, T̄ ); (Hs̄ + he)×Hs̄) of (1) satisfies V (T ) ∈ Bs̄(Ve, δ) for all 0 ≤ T < T̄ .
Then, the following estimate holds true for such T,

(1−Θ{he}(δ)) ‖ V (T )− Ve ‖2
Hs̄×Hs̄ +C{he,µ}(δ)

∫ T

0

‖ ux ‖2
Hs̄ ≤ C{he}(δ) ‖ V (0)− Ve ‖2

Hs̄×Hs̄

+ Θ{he,µ}(δ)

∫ T

0

‖ ux ‖2
Hs̄

This gives us by the same logic as in 2 the global existence of this solution. In other words, our
approach in the case α = 0 is quite similar to the approach presented in [13] for hyperbolic-
parabolic systems and gives the same result for Saint-Venant system.

4.2 What happens if µ = 0?
In order to see the importance of the right hand side dissipative term µ∂x(h∂xu), we can
reconsider our approach assuming µ = 0. Then, we will reach the following proposition

Proposition 4.2 Let s̄ ≥ 2 be an integer, µ = 0 and δ > 0 small enough such that (1) is
locally well-posed for the initial data V0 ∈ Bs̄(Ve, δ) with Ve = (he, 0). Assume also that
there exists T̄ > 0 such that the unique local solution V satisfies V (T ) ∈ Bs̄(Ve, δ) for all
0 ≤ T < T̄ . Then, the following estimate holds true,

(1−Θ{he,α}(δ)) ‖ V (T )− Ve ‖2
Xs̄≤ C{he,α}(δ) ‖ V (0)− Ve ‖2

Xs̄ +Θ{he,α}(δ)

∫ T

0

‖ ux ‖2
Hs̄ .

(46)

Hence, the global existence theorem can not be generalized in this case because we miss the
very important term

∫ T
0
‖ ux ‖2

Hs̄ on the right hand side of estimate (46). In other words
the factor C{he,µ,α}(δ) associated with this term in the estimate of Proposition 2.3 is linearly
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dependent to µ and it is strictly equal to 0 while µ = 0. However, the factor Θ{he,µ,α}(δ) in
front of

∫ T
0
‖ ux ‖2

Hs̄ in the left hand side of the estimate of Proposition 2.3 is the addition of
a continuous function equal to 0 for µ = 0 with other terms independent of µ, dependent only
on α.

5 Conclusion and Perspectives
During this study, we proved the global existence and the asymptotic stability of the equilib-
rium solutions of Green–Naghdi system with a second order viscosity. This result is obtained
by generalizing the technique used for symmetric entropy dissipative hyperbolic equations
thanks to the generalized symmetric structure of the system. The study of the rate of the con-
vergence to equilibrium could be one of the perspectives of this work. In fact, this point has
been studied for hyperbolic parabolic systems in [13]. We believe that the result may be gen-
eralized to the Green–Naghdi system with a second order viscosity.

Let us however recall that the result found in this study can not be generalized by this method
to the Green–Naghdi system with friction−κu (with κ > 0), without the viscosity µu∂x(hux).
In fact, in absence of this term, the first estimations are not coherent with the estimation of∫ T

0
‖ hx ‖2

Hs̄−1 , in the sense that there are of one order less than the estimation of
∫ T

0
‖

hx ‖2
Hs̄−1 . Furthermore, if we add higher order viscous terms (order 4 or more), we are not

able any more to generalize the technique used in this work. In fact, in this last case, the
order of the first estimations are always less than the order of

∫ T
0
‖ hx ‖2

Hs−1 with or without
−κu2 + µu∂x(hux). This is to say that the order 2 seems to be the only order of viscosity, the
main result can be obtained by a similar way as for hyperbolic systems for.

One of the other perspectives of this work is to study, in a general frame, the stability of
equilibriums of locally-wellposed symmetrizable systems with a convenient friction or vis-
cous term. In fact the main difficulty of this generalization is to find the condition which lets
us get a convenient estimates on the time integral of the spatial derivative of the solution. Let
us note that in the case of hyperbolic systems, there are other equivalent formulations of the
Kawashima–Shizuta condition [19, 13] which may be more convenient for the generalization.
One of these formulations for hyperbolic systems is the emptiness of the intersection of the
eigenspaces of the symmetric positive definite matrix (equivalent toA0) and of the symmetric
matrix (equivalent to A1) with the kernel of the viscosity matrix at equilibriums. It is also
interesting to mention that the Kawashima–Shizuta condition is not sharp for hyperbolic sys-
tems (see [18] or [4] for instance). A generalization of less sharper conditions may be another
way to follow. The answer to this question can lead us for instance, to the stability of equilib-
riums of 2D Green–Naghdi system. In fact, it would be possible to repeat the computations of
this work for the two dimensional system to get a similar result. Let us remark that A0(V ) in
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2-dimensional case is given by

A0(V ) =

g − 3αh(div(u, v))2 0 0
0 h− α∂x(h3∂x) −α∂x(h3∂y)
0 −α∂y(h3∂x) h− α∂y(h3∂y)


where v represents the vertically averaged vertical speed. In this case, A0(V ) is quadratic,
near equilibriums, for the norm ‖ . ‖Xs defined by

‖ f ‖2
Xs=‖ f ‖2

L2 + ‖ div(f) ‖2
L2 .

This is also the norm of the local well-posedness of 2-dimensional system ([1]). Hence, the
symmetric structure is coherent with the well-posedness space.
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A Special Symmetric Structure
In this section, we consider the following conservative system

∂tW + ∂xF (W ) = 0, (47)

where F is a differential application of the unknown W . We also assume that the system
admits an additional conservation law of the form

∂tE(W ) + ∂xP (W ) = 0

where E and P are differential applications of W such that the second variation of the Hamil-
tonianH(W ) =

∫
RE(W ) is definite positive. This is to say, see [14] for more details, that the

system is symmetrizable. Moreover, we have the following proposition

Proposition A.1 Assume that there exists a decomposition W = (U, V ) such that the appli-
cation δVH(U, .) is invertible. Then, (47) is symmetrizable of the form

A0(w)∂tw +A1(w)∂xw = 0.

where
w = (U, δVH(W )).

Moreover, A0(w) is a symmetric definite positive bloc diagonal operator and A1(w) is a
symmetric one.
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Proof Let us first note w = (u, v) where u = U and v = δVH(W ). Then,

DwW =

(
1 0

DuV DvV

)
,

and

δ2
WH(W ) =

(
δ2
UH(W ) δ2

V UH(W )
δ2
UVH(W ) δ2

VH(W )

)
.

On the other hand, it is shown in [14] that the expressions of the symmetric operators A0(V )
and A1(V ) are given by

A0(V ) = DwW
?(w) δ2

WH(W ) DwW (w),

and
A1(V ) = DwW

?(w) δ2
WH(W ) DWF (W ) DwW (w).

Hence,

A0(w) =(
δ2
UH(W ) + δ2

V UH(W ) DuV + (DuV )T δ2
UVH(W ) + (DuV )T δ2

VH(W ) DuV δ2
V UH(W ) DvV + (DuV )T δ2

VH(W )DvV
(DvV )T δ2

UVH(W ) + (DvV )T δ2
VH(W )DuV (DvV )T δ2

VH(W ) DvV

)
.

Then, A0(w) is bloc diagonal considering the fact that

(DvV )T δ2
UVH(W ) + (DvV )T δ2

VH(W ) DuV = 0.

Indeed, v = δVH(W ) and u = U give us

(DvV )T δ2
UVH(W ) + (DvV )T δ2

VH(W ) DuV = (DvV )T DUv + (DvV )T DV v DuV

= (DvV )T DUv DuU + (DvV )T DV v DuV = (DvV )T (DUv DuU +DV v DuV )

= (DvV )T Duv = 0.

�

Let us now add a right hand side term of the following form to (47){
∂tU + ∂xF1(U) = 0,

∂tV + ∂xF2(V ) = q(W ),
(48)

where q is a differential application of W and (U, V ) is a decomposition of W satisfying
the assumptions of Proposition (A.1). Hence, symmetrizing the system as suggested in the
proposition, we find a system of the type

A0(w)∂tw +A1(w)∂xw = G(w),

with
G(w) = (DwW )T δ2

WH(W )Q(W ).

We are now going to see that Q(W ) = (0, q(W )) is an eigenvector for the eigenvalue 1 of
(DwW )T δ2

WH(W ). In fact, the following proposition holds true.
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Proposition A.2 The right hand side term G(w) is equal to Q(W ).

Proof We have by assumptions

G(W ) = (DwW )T δ2
WH(W )Q(W ) =

(
δ2
V UH q(W ) + (DuV )T δ2

VH q(W )
(DvV )T δ2

VH q(W )

)
.

Considering the fact that the first components (associated to U ) of G(W ) are the same as the
up non diagonal bloc of the operator A0(w) considered in the proof of Proposition A.1 acting
on q(W ), these components vanish. On the other hand,

(DvV )T δ2
VH q(W ) = (DvV )T (δ2

VH)T q(W ) = (DvV )T (DV v)T q(W )

= (DvV DV v)T q(W ) = (DvV (DvV )−1)T q(W ) = q(W ).

�

B Local well-posedness
Let us first note that there exists δ > 0 such that A0(V ) is invertible for all V ∈ Bs̄(Ve, δ).
Then, consider the associated linear problem∂tV +A−1

0 (V )A1(V )∂xV =

(
0

µL−1
h (∂x(hux))

)
V (0, x) = g0(x)

(49)

with V ∈ C([0, T ];Xs̄(R)) for some s̄ ≥ 2 and g0 ∈ Xs̄(R). It is proved in [12] that the
problem admits a unique solution V in C([0, T ];Xs̄)(R). We now consider the following
iteration scheme A0(V k)∂tV

k+1 +A1(V k)∂xV
k+1 =

(
0

µ∂x(h
kukx)

)
V k+1(0, x) = gk+1(x)

(50)

where gk+1 = εkV0 ?ρ( .
εk

) for some mollifier ρ3 with the positive real set εk = β
2k

, with β > 0.
We initialize the iteration by g0 = V0. We know that (50) admits a unique solution for all
entire k. Let us now assume that V l(t) ∈ Bs̄(Ve, δ) for all l ≤ k and all t ∈ [0, T ]. This
implies by triangle inequality that

‖ V l − g0 ‖C([0,T ];Xs̄)≤ 2δ (51)

for all l ≤ k. We can show that there exists a suitable T > 0 such that the estimate (51) holds
also true for l = k + 1 . In fact, we consider the sth derivative of (50) , take the scalar product

3ρ ∈ D(R;R+) is supported in the unit ball such that
∫
R ρ = 1.
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with ∂s+1
x (V k+1 − g0) and we sum over s ∈ {0, ..., s̄}. Then, using very similar logics as in

3.2, we find for all 0 ≤ t ≤ T ,

‖ V k+1(t)− g0 ‖2
Xs̄ ≤ C{‖g0‖L∞}(δ) ‖ g

k+1 − g0 ‖2
Xs̄ +C{‖g0‖L∞ ,µ}(δ)

∫ t

0

‖ V k+1(t′)− g0 ‖2
Xs̄ dt′

+ C{‖g0‖L∞ ,µ}(δ)t.

Then, Gronwall lemma leads us, for δ small enough, to

‖ V k+1 − g0 ‖2
C([0,T ];Xs̄)≤ CeλT

(
‖ gk+1 − g0 ‖2

Xs̄ +T
)
.

where C and λ are strictly positive reals independent of k. On the other hand, there exists by
assumption, ε0 > 0 such that

‖ gk+1 − g0 ‖Xs̄≤ ε0 for all k ∈ N.

Then, choosing β small enough (therefore ε0 small enough), there exists T > 0 such that the
condition (51) is satisfied for all l ∈ N. We assume from now that T and β are small enough
to give us (51) for all entire. Then, we consider the sth derivative of (50) for iterations k and
k−1 , take the scalar product with ∂s+1

x (V k+1−V k), subtract the two equations and sum over
s ∈ {0, ..., s̄}. Likewise, we get

‖ V k+1(t)− V k(t) ‖2
Xs̄ ≤ γ ‖ gk+1 − gk ‖2

Xs̄ +θ

∫ t

0

‖ V k(t′)− V k−1(t′) ‖2
Xs̄ dt′

+ θ

∫ t

0

‖ V k+1(t′)− V k(t′) ‖2
Xs̄ dt′

for some convenient positive γ, θ. Applying the Gronwall lemma, we have for all k ∈ N

‖ V k+1 − V k ‖2
C([0,T ];Xs̄) ≤ eλT

(
‖ gk+1 − gk ‖2

Xs̄ +θ

∫ T

0

‖ V k(t′)− V k−1(t′) ‖2
Xs̄ dt′

)
.

(52)

Now, we sum (52) on k ∈ N. This leads us to

(1− θTeλT )
∑
k∈N

‖ V k+1 − V k ‖2
C([0,T ];Xs̄)≤ eλT

∑
k∈N

‖ gk+1 − gk ‖2
Xs̄ .

Then, considering the fact the T is small enough and the fact that the sum
∑

k∈N ‖ gk+1 −
gk ‖2

Xs̄ is convergent, we find that the set V k is convergent in C([0, T ];Xs̄). The unicity
can be proved by the same way. In fact, we obtain a very similar approximation to (52) for
‖ V 1−V 2 ‖Xs̄ considering two solutions V 1(x, t) and V 2(x, t) for the initial conditions V1(x)
and V2(x). Hence, the local well-posedness is proved.
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C Linear stability of equilibriums of the Green-Naghdi equa-
tion

In this part we are going to see another use of the symmetric structure of the Green-Naghdi
equation. In fact, this structure enables us to prove the linear stability of the equilibrium
Ve = (he, ue), with he > 0, of the system without any right hand side term. To see this, let us
consider the solution V ∈ Xs̄(R) of the linearized system

A0(Ve)∂tV +A1(Ve)∂xV = 0, (53)

act ∂sx on (53) for 0 ≤ s ≤ s̄, and take the scalar product by ∂sx(V − Ve) :∫ T

0

∫
R
A0(Ve)∂t∂

s
xV · ∂sx(V − Ve) +

∫ T

0

∫
R
A1(Ve)∂

s+1
x V · ∂sx(V − Ve) = 0. (54)

Now, considering the facts that∫
R
A0(Ve)∂t∂

s
xV · ∂sx(V − Ve) =

1

2

d

dt

∫
R
A0(Ve)∂

s
x(V − Ve) · ∂sx(V − Ve),

and ∫ T

0

∫
R
A1(Ve)∂

s+1
x V · ∂sx(V − Ve) = 0,

together with the X0-quadraticity of A0(Ve), we get the following estimate,

‖ ∂sx(V (T )− Ve) ‖2
X0≤ C ‖ ∂sx(V (0)− Ve) ‖2

X0 . (55)

where C is a strictly positive constant depending only on he, α and g. Hence, we have the
following proposition,

Proposition C.1 Let s̄ ≥ 2 be an integer and consider the initial data V0 ∈ Xs̄(R). Then,
there exists C > 0 such that the solution V of (53) satisfies for all time,

‖ V (T )− Ve ‖2
Xs̄≤ C ‖ V0 − Ve ‖2

Xs̄ . (56)

This gives us the linear stability of the equilibrium of (1).

Theorem C.2 Let s̄ ≥ 2 be an integer and consider the Green-Naghdi system,{
∂th+ ∂xhu = 0,

∂thu+ ∂xhu
2 + ∂x(gh

2/2 + αh2ḧ) = 0.
(57)

Then, the equilibrium solutions Ve = (he, ue), with he > 0, are linearly stable for the Xs̄

norm.

Let us note that this theorem can be generalized to all locally well-posed symmetrizable system
of the form (53) such that A0(Ve) is quadratic.
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