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Abstract: We introduce a qualitative method capable of imaging defects in an unknown
complex environment using differential measurements. The main difficulty is that the back-
ground medium is unknown and too complex to obtain a reliable estimate of the associated
Green function. To overcome this difficulty our approach exploits two measurements of the
farfield operators, one without defects and one with defects. The analysis of our method
relies on the recently introduced Generalized Linear Sampling Methods (GLSM) and the
link to the solutions of the interior transmission problems. We give numerical examples
related to non destructive testing in concrete-like materials, illustrating the performance of
our method.
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1 Introduction

We are interested in the imaging of defects inside unknown heterogeneous medium from multi-
static measurements of waves at a fixed frenquency. The main difficulty of our setting is that
the background medium is unknown and complex, which means that one cannot obtain a good
estimate for the background Green function. This discards the possibility of using classical (qual-
itative) imaging methods [2]. We assume that two sets of measurements, one for the defect free
and one for the defect containing medium, are at our disposal and we design a numerical inversion
algorithm that exploits those supplementary data to visualize the defect location. The analysis of
our method relies on the GLSM and the link it has with the solution to the interior transmission
problems (see [4] and [5]). Ones ends up with an indicator function that combines the indicator
functions from the GLSM and a filtered difference term computed without additional significant
numerical cost. We shall briefly introduce the scattering problem by a heterogeneous medium
and the needed notations in Section 2. In Section 3 we review the main theoretical results of
[5]. We give in Section 4 some numerical experiments on concrete like materials, illustrating the
performance of our method.

2 Scattering by an inhomogeneous medium

We restrict ourselves to the case of scalar time harmonic waves and we focus on full aperture
farfield measurements associated to incident plane waves. For a wave number k > 0, the total
field solves the Helmholtz equation:

∆u+ k2nu = 0 in Rd
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for d = 2 or 3 and n the refractive index, where =(n) ≥ 0. We denote by D̄ the support of n− 1
and assume that D is a bounded domain with Lipschitz boundary and connected complement.
We are interested by the case where u is generated by an incident plane wave, ui(θ, x) := eikx·θ

for x ∈ Rd and θ ∈ Sd−1. We also introduce the scattered field us defined by:
us(θ, ·) := u− ui(θ, ·) in Rd,

lim
r→∞

∫
|x|=r

∣∣∂us

∂r − iku
s
∣∣2 ds = 0.

(1)

We introduce the farfield u∞(θ, x̂) defined through the following expansion: us(θ, x) =
eik|x|

|x|(d−1)/2 (u∞(θ, x̂) +O(1/|x|)) for |x| → ∞ and for all (θ, x̂) ∈ Sd−1 × Sd−1.

Leading to the farfield operator:

Fg(x̂) :=

∫
Sd−1

u∞(θ, x̂)g(θ)ds(θ).

It is well known that the farfield operator admits two factorisations F = GH = H∗TH. The
compact operator H : L2(Sd−1)→ L2(D) is defined by :

Hg :=

∫
Sd−1

eikx·θg(θ)ds(θ), g ∈ L2(Sd−1), x ∈ D, (2)

and is dense in {v ∈ L2(D) s.t. ∆v + k2v = 0 in D}. Its adjoint H∗ : L2(D) → L2(Sd−1) is
defined by :

H∗ϕ(x̂) :=

∫
D

e−iky.x̂ϕ(y)dy, ϕ ∈ L2(D), x̂ ∈ Sd−1.

We define the compact operator G : R(H) ⊂ L2(D) → L2(Sd−1) defined by: Gv := w∞ where
w∞ is the farfield of w ∈ H1

loc(Rd) associated to the incident wave v :
∆w + nk2w = k2(1− n)v in Rd,

lim
r→∞

∫
|x|=r

∣∣∂w
∂r − ikw

∣∣2 ds = 0.
(3)

Finally we define T : L2(D)→ L2(D) by:

Tv := −k2(1− n)(v + w). (4)

In the following we will use the operator F# = |<(F )| + |=(F )|, which can be factorised
as F# = H∗T#H, where the operator T# is a real selfadjoint operator [1] that satisfies (under
hypothesis 1) :

|(T#h, h)| =
∥∥∥(T#)

1
2h
∥∥∥2

≥ µ ‖h‖2 ∀h ∈ R(H), (5)

where µ > 0 is a constant independent of h.

Hypothesis 1. The index of refraction n and the domain D satisfy n ∈ L∞(Rd), supp(n− 1) =
D, =(n) ≥ 0 and there exist a constant n∗ > 0 such that <(n(x)− 1) ≥ n∗ for a.e. x ∈ D.

3 Theoretical Results

The GLSM relies on the solvability of the so-called interior transmission problem defined by
(u, v) ∈ L2(D)× L2(D) such that u− v ∈ H2(D) and

ITP(D, f, g, n, n′) =


∆u+ k2nu = 0 in D,
∆v + k2n′v = 0 in D,
(u− v) = f on ∂D,
∂
∂ν (u− v) = g on ∂D,

(6)

We denote by σ(D,n, n′) the set of wave number k ∈ R for which the ITP(D, f, g, n, n′) is not

well posed for all f ∈ H 1
2 (∂D) and g ∈ H− 1

2 (∂D).
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Hypothesis 2. We assumed that k2 ∈ R+ and n are such that for all f ∈ H 1
2 (∂D) and g ∈

H−
1
2 (∂D) the ITP(D, f, g, n) has a unique solution (u, v) ∈ L2(D) × L2(D) such that u − v ∈

H2(D).

This hypothesis is verified [6] for all k2 ∈ R+ except a countable set without finite point of
accumulation if n verifies 1/(n− 1) ∈ L∞(D) and <(n− 1) is either positive or negative definite
in the neighbourhood of ∂D. We introduce the farfield pattern of the Green function:

φz(x̂) := e−ikx̂·z

and the key ingredient of the GLSM:

Theorem 1. Assume that k /∈ σ(D,n, 1). Then G is compact, injective with dense range and
φz ∈ R(G) if and only if z ∈ D. Moreover, if z ∈ D then G(v) = φz if and only if there exists
u ∈ L2(D) such that (u, v) is a solution of ITP(D,Φz,

∂Φz

∂ν , n, 1).

We outline the main results of the GLSM in the case of noisy data (see [5]). The noisy

operators, F δ and F δ# are such that
∥∥F δ − F∥∥ ≤ cδ and

∥∥∥F δ# − F#

∥∥∥ ≤ δ where c is a real

constant.Let gα,δz ∈ L2(Sd−1) be the minimizer of

Jδα(φz; g) := α(|
(
F δ#g, g

)
|+ δα−η ‖g‖2) +

∥∥F δg − φz∥∥2
, (7)

for α > 0, δ > 0, η ∈]0, 1[ and φz ∈ L2(Sd−1). The functional

Aα,δ(g) := |
(
F δ#g, g

)
|+ α−ηδ ‖g‖2 (8)

gives a characterisation of D through the following result.

Theorem 2. Under hypothesis 2 and 1 we have:

• z ∈ D implies lim sup
α→0

lim sup
δ→0

Aα,δ(gα,δz ) <∞,

• z /∈ D implies lim inf
α→0

lim inf
δ→0

Aα,δ(gα,δz ) =∞.

When we have two measurements campaigns, the same results applies to D̄0 = supp(n0−1) ⊂
D̄ where Aα,δ0 is defined as above using F δ0 (the farfield associated with n0 and D0) and

gα,δ0,z = arg min
g∈L2(Sd−1)

α(|
(
F δ0,#g, g

)
|+ δα−η ‖g‖2) +

∥∥F δ0 g − φz∥∥2
.

However we are interested in supp(n− n0). The filtered difference term defined by:

Dδ(g, g0) := |
(
F δ0,#(g − g0), g − g0

)
|+ δ ‖g − g0‖2 ,

will be used to image the simply connected part of D0 that have been modified between the two
measurements. We denote this domain by D̃0. Let Ω be the part of supp(n − n0) such that
Ω̄ ∩ D̄0 = ∅. We introduce the following indicator function:

Iα,δT (gα,δz , gα,δ0,z ) =
1√

Aα,δ(gα,δz )
(

1 +Aα,δ(gα,δz )Dδ(gα,δz , gα,δ0,z )−1
) , (9)

which will image a domain larger than the defect as follows:

Theorem 3. If we assume that k /∈ σ(D,n, 1) ∪ σ(D0, n0, 1) ∪ σ(D,n, n0) and, n and n0 verify

hypothesis 1, then z ∈ D̃0 ∪ Ω if and only if lim
α→0

lim inf
δ→0

Iα,δT (gα,δz , gα,δ0,z ) > 0.
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4 Numerical Simulations

In order to fix the ideas, we shall limit ourselves to the two dimensional case and will introduce the
algorithms for the discrete setting. We identify S1 with the interval [0, 2π[. In order to collect the
data of the inverse problem we solve numerically (3) for N incident fields ui( 2πj

N , ·), j ∈ {0...N−1}
using a finite element method implemented with Freefem++ [8]. The discrete version of F is
then the matrix F := (u∞( 2πj

N , 2πk
N ))0≤j,k≤N−1. We add some noise to the data to build a noisy

far field matrix F δ where (F δ)j,k = (F )j,k(1 + σNij) for σ > 0 and Nij an uniform complex
random variable in [−1, 1]2. We similarly generate F δ0 We denote by φz ∈ CN, the vector defined
by φz(j) = exp(−ik(z1 cos( 2πj

N )+z2 sin( 2πj
N )) for 0 ≤ j ≤ N−1. The analysis of previous sections

suggests to consider

gGLSM
z := argming∈L2(S1)

(
α
∥∥∥(F δ] )

1
2 g
∥∥∥2

L2(S1)
+ α1−ηδ ‖g‖2L2(S1) +

∥∥F δg − φz∥∥2

L2(S1)

)
.

The minimizer is explicitly given by

gGLSM
z = (αF δ] + α1−ηδId+ F δ∗F δ)−1F δ∗φz.

We similarly construct gGLSM
0,z using F δ0 . In our numerical simulations we choose η = 0 (which

corresponds to the one used in [4]) and set α with the same heuristic as in [4]. We then look at

z → Iα,δT (gα,δz , gα,δ0,z ) as an indicator function.
All our experiments are conducted for the background medium n0 shown in Figure 1. This

background medium is a simplified numerical description of a concrete like material. The wave
frequency is 150kHz , the celerity of the medium is 4300m.s−1 (which means a wavelength of
2.87cm) and the celerity inside the inclusion is 5700m.s−1.

Figure 1. The background medium, n = 0.57 inside the yellow inclusions

Our theoretical analysis is only valid for inhomogeneous perturbations n and n0. One example
of this setting is shown in Figure 2 where we modified the celerity (3 times higher) in two of the
inclusions between the two measurements.

The main concern with concrete non destructive testing is the case of cracks. Our analysis
do not include this case and its extension to it is the subject of an ongoing work. However the
results shown in Figure 3 for a crack being either inside or outside the inhomogeneity n0 gives
promising results. To obtain this results we do not test with φz but with its normal derivatives
as explained in [7].
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Figure 2. From left to right and up to down : The index n, Iα,δT (gα,δz , gα,δ0,z ),Aα,δ0 (gα,δ0,z )−1 and

Aα,δ(gα,δz )−1

Figure 3. Cracks: On the left the medium with the cracks and on the right the corresponding
Iα,δT (gα,δz , gα,δ0,z )
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