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Let (C (t )) t ∈R be a cosine function in a unital Banach algebra. We show that if sup t ∈R C (t ) -c(t ) < 2 for some continuous scalar bounded cosine function (c(t )) t ∈R , then the closed subalgebra generated by (C (t )) t ∈R is isomorphic to C k for some positive integer k. If, further, sup t ∈R C (t )-c(t ) < 8 3 3 , then C (t ) = c(t ) for t ∈ R.

Introduction

Recall that a cosine function taking values in a unital normed algebra A with unit element 1 A is a family C = (C (t )) t ∈R of elements of A satisfying the so-called d'Alembert equation

C (0) = 1 A ,C (s + t ) +C (s -t ) = 2C (s)C (t ) (s ∈ R, t ∈ R). (1) 
Equality [START_REF] Arendt | A 0-3/2 -Law for Cosine Functions[END_REF] is also used to define G-cosine families C = (C (g )) g ∈G over an abelian group G, and in particular cosines sequences (C n ) n∈Z .

A cosine function C = (C (t )) t ∈R is said to be bounded if there exists M > 0 such that C (t ) ≤ M for every t ∈ R. In this case we set

C ∞ = sup t ∈R C (t ) , d i st (C 1 ,C 2 ) = C 1 -C 2 ∞ .
A cosine function is said to be scalar if C (t ) ∈ C.1 A for t ∈ R. It is well-known and easy to see that a bounded complex-valued cosine function c takes values in [-1, 1] and that a bounded continuous complex-valued cosine function satisfies c(t ) = cos(at ) where a = 2l i m t →0

1-c(t ) t 2
∈ R. More generally if X is a Banach space, and if C = (C (t )) t ∈R is a strongly continuous B(X )-valued cosine function, then the generator a of C is bounded if and only if the cosine function C is 1 continuous at 0 with respect to the operator norm on B(X ), and in this situation C (t ) = cos(t a), where cos(t a) is defined by the usual series, see for example [START_REF] Sova | Cosine operator functions[END_REF].

Strongly continuous operator valued cosine functions are a classical tool in the study of differential equations, see for example [2], [START_REF] Batkai | Cosine families generated by second order differential operators on W 1,1 (0, 1) with generalized Wentzell boundary conditions[END_REF], [START_REF] Nagy | Cosine operator functions and the abstract Cauchy problem[END_REF], [START_REF] Travis | Cosine families and abstract nonlinear second order differential equation[END_REF], and a functional calculus approach to these objects was developped recently in [START_REF] Haase | The functional calculus approach to cosine operator functions. Recent Trends in Analysis[END_REF].

Bobrowski and Chojnacki proved recently in [START_REF] Bobrowski | Isolated points of some sets of bounded cosine families, bounded semigroups, and bounded groups on a Banach space[END_REF] that if the set of all bounded strongly continuous cosine functions on a Banach space X is treated as a metric space under the operator norm on B(X ), then the isolated points of this set are precisely the scalar cosine functions.

They also gave a quantitative version of this result, by showing that if a strongly continuous operator valued cosine function on a Banach space C (t ) satisfies sup t ≥0 C (t ) -c(t ) < 1/2 for some scalar bounded continuous cosine function c(t ) then C (t ) = c(t ) for t ∈ R, and Schwenninger and Zwart showed in [START_REF] Schwenninger | Less than one implies zero[END_REF] that this result remains valid under the condition sup t ≥0 C (t )-c(t ) < 1. An elementary proof of this result is given by Chojnacki in [START_REF] Chojnacki | Group decompositions of bounded cosine sequences[END_REF].

The purpose of this paper is to show that this result holds when

sup t ≥0 C (t )- c(t ) < 8 3 3
, which is the optimal constant since sup t ∈R |cos(at

) -cos(3at )| = 8 3 3
for every a = 0, and that no continuity condition on C is needed if the scalar bounded cosine function c is assumed to be continuous, see theorem 3.6 (ii). In fact, this "0 -8 3 3 law" was already proved in a very recent paper by Bobrowski, Chojnacki and Gregoriewicz [START_REF] Bobrowski | On close-toscalar one-parameter cosine families[END_REF], which appeared after the present paper was submitted. The methods developed here vary in various aspects from those used by Bobrowski et al.

We also point out that the 'generic' distance between two continuous realvalued bounded cosine functions is 2, a consequence of the fact that finite independent subsets of the torus are "Kronecker sets": if a = 0, then the set Ω(a, m) := {b ≥ 0 sup t ∈R |cos(at )-cos(bt )| ≤ m} is finite, and every b ∈ Ω(a, m) has the form b = pa q , where p, q are odd, g cd (p, q) = 1, 1 ≤ p ≤ π ar ccos(m-1) , 1 ≤ q ≤ π ar ccos(m-1) . This description of the set Ω(a, m) leads to a description of cosine functions C = (C (t )) t ∈R in a Banach algebra A satisfying sup t ∈R C (t )-c(t ) = m when m < 2. In this case we show in theorem 3.6 (i) that there exists k ≤ c ar d (Ω(a, m)) such that the closed subalgebra A 1 generated by C is isomorphic to C k , and we also show that there exists a family p 1 , . . . , p k of pairwise orthogonal idempotents of A 1 and a family (b 1 , . . . , b k ) of distinct elements of Ω(a, m) such that we have

C (t ) = k j =1 cos(b j t )p j .
This implies in particular that if a cosine family (C (t )) t ∈R satisfies sup t ∈R C (t )-1 A < 2, then C (t ) = 1 A for t ∈ R. This result was proved very recently by Schwen-ninger and Zwart in [START_REF] Schwenninger | Zero-two law for cosine families[END_REF] for strongly continuous cosine families of bounded operators, but the general case seems new.

The description of the set Ω(a, m) pertains to folklore, but the operator theoretical part of the proofs seems new. It is based on the fact that every bounded cosine function (C (t )) t ∈R taking values in a commutative unital Banach algebra having a unique maximal ideal is scalar, see theorem 2.3 and corollary 2.4 in section 2.

Since sup n≥1 1 -cos 2nπ 3 = 3 2 , the constant 8 3 3

does not work for cosine sequences. It is nevertheless possible to show that if a G-cosine family C in a unital Banach algebra A satisfies sup g ∈G C (g ) -c(g ) < 5

2 for some bounded scalar G-cosine family c, then C (g ) = c(g ) for g ∈ G. and the constant 5 2 = max n≥1 cos nπ 5 -cos 3nπ 5 is obviously optimal. Details will be given elsewhere.

The author would like to give his very warm thanks to the referee for his insightful comments and corrections.

Cosine sequences in commutative local Banach algebras

Set f (x) = ar ccos(x). Then f ′ (x) = -1 1-x 2 , and we have, for x ∈] -1, 1[ 1 1 -x 2 = 1 + +∞ n=1 (-1) n n! - 1 2 - 1 2 -1 . . . - 1 2 -n + 1 x 2n = 1 + +∞ n=1 (2n)! 2 2n n! 2 x 2n .
Hence we have, for x ∈ (-1, 1), with the convention 0! = 1,

ar ccos(x) = π 2 - +∞ n=0 (2n)! 2 2n (2n + 1)n! 2 x 2n+1 .
It follows from example from Stirling's formula and Riemann's criterion that the series +∞ n=0 (2n)! 2 2n (2n+1)n! 2 is convergent, and it follows from Abel's lemma that the power series expansion of ar ccos(x) remains valid for x = 1 and x = -1. Since ar ccos(-1) = π, we have

+∞ n=0 (2n)! 2 2n (2n + 1)n! 2 = π 2 .
Now let A be a unital Banach algebra of unit element 1 A . We will write λ = λ.1 A when λ is scalar if there is no risk of confusion. We define e x by the usual series and set, for

x ∈ A, cos(x) = e i x + e -i x 2 = +∞ n=0
(-1) n x 2n (2n)! , so that cos(x + i πn) = (-1) n cos(x) for n ∈ Z. When z ∈ C, this gives the usual cosine function of a complex variable z.

Let A be the Gelfand space of A, i.e. the space of all algebra homomorphisms from A onto C. Notice that if χ ∈ A we have

χ(cos(x)) = cos(χ(x)). If sup n≥1 x n ≤ M < +∞, then the series π 2 - +∞ n=0 (2n)! 2 2n (2n+1)n! 2 x 2n+1 is conver- gent, we can set ar ccos(x) = π 2 - +∞ n=0 (2n)! 2 2n (2n + 1)n! 2 x 2n+1 ,
and we have

ar ccos(x) ≤ M + 1 2 π, χ(ar ccos(x)) = ar ccos(χ(x)) (χ ∈ A).
(

Also it follows from standard properties of the holomorphic functional calculus that cos(ar ccos(λx)) = λx for |λ| < 1. By continuity, we obtain the tautological formula cos(ar ccos(x)) = x.

(3)

Proposition 2.1. Let A be a unital Banach algebra, and let (c n ) n∈Z ⊂ A be a cosine sequence. If sup n≥1 c n ≤ M < +∞, then sup p≥1 c p n ≤ M for n ≥ 1, and we have

ar ccos(c n ) ≤ M + 1 2 π. ( 4 
)
Moreover Spec(c n ) ⊂ [-1, 1] for every n ∈ N, and for every character χ on A we have

χ(c n ) = cos(nβ χ ) (n ≥ 1), where β χ = χ(ar ccos(c 1 )) = ar ccos(χ(c 1 )) ∈ [0, π].
Proof: Let p ≥ 1, and assume that we have

c p 1 = p k=0 α k,p c k , (5) 
where α k,p ≥ 0, p k=0 α k,p = 1, which is trivially true for p = 1. Using (1), we obtain

c p+1 1 = p k=0 α k,p c 1 c k = α 0,p c 1 + p k=1 α k,p 2 c k-1 + p k=1 α k,p 2 c k+1 α 0,p c 1 + p-1 k=0 α k+1,p 2 c k + p+1 k=2 α k-1,p 2 c k = p+1 k=0 α k,p+1 c k ,
where

α 0,p+1 = α 1,p 2 , α 1,p+1 = α 0,p + α 2,p 2 , α k,p+1 = α k-1,p + α k+1,p 2 for 2 ≤ k ≤ p -1, α p,p+1 = α p-1,p 2 , α p+1,p+1 = α p,p 2 .
Clearly, α k,p+1 ≥ 0, and p+1 k=0 α k,p = 1. We thus see that (5) holds for every p ≥ 1.

Hence sup p≥1 c p 1 ≤ m. Applying this result to the cosine sequence (c nm ) m∈Z , we see that sup p≥1 c p n ≤ M for every n ≥ 1. Inequality (4) follows then from (2). If χ is a character on A, then the sequence (χ(c n )) n≥1 is a bounded complexvalued cosine sequence. Hence Since cos(ar ccos(c 1 )) = c 1 , we have cos(nar ccos(c 1 )) = c n , and we obtain an alternative approach to the group decomposition given in [START_REF] Chojnacki | Group decompositions of bounded cosine sequences[END_REF] by setting ν = e i ar ccos(c 1 ) . Now define the sine function and the "cardinal sine" function on a unital Banach algebra A by the usual formulae

χ(c n ) ∈ [-1, 1] for n ≥ 1,
si n(x) = ∞ n=0 (-1) n x 2n+1 (2n + 1)! , si nc(x) = ∞ n=0 (-1) n x 2n (2n + 1)! , so that si nc(0) = 1, xsi nc(x) = si n(x). We have again χ(si n(x)) = si n(χ(x)) and χ(si nc(x)) = si nc(χ(x)) for χ ∈ A. For x, y ∈ A such that y x = x y, we have the usual formula cos(x) -cos(y) = 2si n y -x 2 si n x + y 2 .
Recall x ∈ A is said to be quasinilpotent if lim n→+∞ x n = 0, which is equivalent to the fact that χ(x) = 0 for every χ ∈ A if A is commutative. is invertible and further

Lemma 2.2. Let A be a commutative Banach algebra, let x ∈ A and y ∈ A be two quasinilpotent elements of

(x -y)si nc y -x 2 = 2si n y -x 2 = 0. Since χ si nc y-x 2 = si nc(0) = 1 for every χ ∈ A, si nc y-x 2
is invertible and x = y.

If λ ∈ πZ, then we have cos(x) = cos(y), which gives

(y 2 -x 2 )si nc y -x 2 si nc x + y 2 = 4si n y -x 2 si n x + y 2 = 0.
We see again that si nc y-x 2 and si nc x+y 2 are invertible, which shows that x 2 = y 2 . Theorem 2.3. Let (c n ) n∈Z be a bounded cosine sequence in a Banach algebra A, and assume that spec(c 1 ) is a singleton. Then (c n ) n≥1 is a scalar sequence, and there exists b ∈ R such that c n = cos(nb).1 A for n ≥ 1.

Proof: Set M = sup n≥1 c n . We can assume that A is a commutative Banach algebra generated by c 1 , so that A consists of a single character χ. Let λ n = χ(c n ) be the unique element of spec(c n ), and set β = β χ = ar ccos(χ(c 1 )) = χ(ar ccos(c 1 )), so that λ n = cos(nβ) for n ≥ 1.

Set x n = ar ccos(c n ). Since c n = cos(x n ), we have cos(nβ) = cos(χ(x n )). It follows then from standard properties of the cosine function on C that there exists k n ∈ Z such that χ(x n ) = ±nβ + 2k n π, and we have χ(

x 1 ) = β. If χ(x n ) = nβ+2k n π, set y n = x n -2k n π.1 A , and if χ(x n ) = -nβ+2k n π set y n = -x n +2k n π.1 A , with the convention y n = x n -2k n π.1 A when β = 0. Then χ(y n ) = nβ = χ(nx 1 )
, and cos(y n ) = cos(x n ) = c n = cos(nx 1 ). Since A is a singleton, y nnβ.1 A and nx 1 -nβ.1 A are quasinilpotent. When β = 0 and β = π, it follows from item (i) of Lemma 2.2 that y n -nβ.1 A = nx 1 -nβ.1 A , and hence y n = nx 1 .

But y n -nβ.1 A = y n -χ(y n ).1 A = ±(x n -χ(±x n ).1 A ) ≤ (1+π)M . Hence, given that y n -nβ.1 A = n x 1 -β.1 A , we see that x 1 = β.1 A , (c n ) n≥1 is a scalar sequence, and c n = cos(nβ).1 A for n ≥ 1.

If β = 0, then χ(x n ) ∈ [0, π] ∩ 2πZ = {0}, y n = x n and nx 1 are quasinilpotent, and it follows from item (ii) of Lemma 2.2 that x 2 n = n 2 x 2 1 . Since the sequence (x 2 n ) n≥1 is bounded, we have

x 1 = 0, c 1 = 1 A and so c n = 1 A for every n ≥ 1. If β = π, set c ′ n = c 2n for n ≥ 1, and set β ′ = ar ccos(χ(c ′ 1 )). Then (c ′ n ) n≥1 is a cosine sequence. Since β ′ = 0, we have 2c 2 1 -1 A = c 2 = c ′ 1 = 1 A , and (c 1 -1 A )(c 1 + 1 A ) = 0. Since sc pec(c 1 ) = {-1}, c 1 -1 A is invertible, c 1 = -1 A , and c n = (-1) n .1 A = cos(nπ).1 A for n ≥ 1.
Recall that a commutative unital Banach algebra A is said to be local if it possesses a unique maximal ideal. We obtain the following corollary.

Corollary 2.4. Let G be an abelian group, and let C = (C (g )) g ∈G be a bounded cosine family in a commutative unital local Banach algebra. Then C is scalar, and so there exists a bounded cosine family (c(g )

) g ∈G with values in [-1, 1] such that C (g ) = c(g ).1 A for g ∈ G.

When the distance to a bounded cosine function is strictly less than 2

A standard result shows that every bounded complex cosine function c takes values in [-1, 1]. The following observation, which is the cosine counterpart of a standard result for discontinuous one-parameter unimodular groups, see [START_REF] Hille | Functional Analysis and Semigroups[END_REF], section 4.17, is certainly well-known.

Proposition 3.1. Let (c(t )) t ∈R be a discontinuous bounded complex cosine function. Then for every α ∈ [-1, 1] there exists a sequence (t n ) n≥1 of positive real numbers such that l i m n→+∞ t n = 0 and l i m n→+∞ c(t n ) = α.

Proof: The identity

(1 -c(s -t ))(1 -c(s + t )) = (c(s) -c(t )) 2
shows as is well-known that this bounded cosine function with values in [-1, 1] is discontinous at 0. Denote by G the set of all real numbers x for which there exists a sequence (t n ) n≥1 of positive reals such that l i m n→+∞ t n = 0 and

l i m n→+∞ c(t n ) = cos(x). Then nG + 2πZ ⊂ G for every n ∈ Z , G is closed, and G = 2πZ. Let x ∈ G ∩ (0, π]. If x
π is irrational, then the sequence (e i nx ) n≥1 is dense in T, and so G = R. If x π is rational let u be the smallest positive integer such that e i ux = 1. Then e 2i π u = e i px for some p ≥ 1, and so 2π u ∈ G. Let (t n ) n≥1 be a sequence of positive reals converging to 0 such that l i m n→+∞ c(t n ) = cos 2π u , let q ≥ 2, and let α be a limit point of the sequence c t n u q-1 n≥1 . There exists y ∈ R such that cos(y) = α, so that y ∈ G, and such that y = 2π u q + 2kπ u q-1 = (1+ku) 2π u q . Then g cd (1 + ku, u q ) = 1, and there exist a positive integer r such that r y -2π u q ∈ 2πZ, so that 2π u q ∈ G. This implies that G = R.

Corollary 3.2. Let a ∈ R, and let (c(t )) t ∈R be a discontinuous bounded scalar cosine function. Then sup t ∈R |cos(at

) -c(t )| = l i msup t →0 |cos(at ) -c(t )| = 2.
Corollary 3.3. Let X be a Banach space, let (c(t )) t ∈R be a scalar cosine function, and let (C (t )) t ∈R be a bounded strongly continuous cosine family of bounded operators on X such that sup t ∈R C (t ) -c(t )I X < 2. Then c(t ) is continuous, and so there exists a ∈ R such that c(t ) = cos(at ) for t ∈ R.

Proof: Let x ∈ X such that x = 1. If c(t ) were discontinuous, there would exist a sequence (t n ) n≥1 of positive real numbers such that

l i m n→+∞ t n = l i m n→+∞ c(t n ) + 1 = 0, which gives sup t ∈R C (t )-c(t )I X ≥ l i m n→+∞ C (t n )x-c(t n )x = l i m n→+∞ (1-c(t n )) x = 2.
The following observation is an easy consequence of Kronecker's theorem on independent finite subsets of the unit circle. Since sup t ∈R |1 -cos(bt )| = 2 for every b = 0, we can restrict attention to the case where a = 0 and b = 0. Denote by T the unit circle. If p aqb ∉ 2πZ for (p, q) ∈ Z 2 \ {(0, 0)}, then the set {(e i a , e i b )} is independent, and it follows from Kronecker's theorem, see for example [START_REF] Kahane | Ensembles Parfaits et Séries Trigonométriques[END_REF], p. 21 that the set (e i na , e i nb ) n∈Z is dense in T 2 , which implies that sup n≥1 |cos(na) -cos(nb)| = 2. Now assume that p aqb = 2kπ for some (p, q) ∈ Z 2 \{(0, 0)} and some k ∈ Z.

If p = 0, then we have b = 2kπ q , with k ≥ 1, q ≥ 1. If a π is irrational, then {e i nqa } n≥1 is dense in T, and we have

sup n≥1 cos(naq) -cos(nqb) = sup n≥1 cos(naq) -1 = 2.
Otherwise a π is rational, and so is a b . Now assume that p = 0, q = 0, and k = 0. If a π is rational, then b π is rational, and a b is rational. Otherwise we have, since the set {e i an } n≥1 is dense in the unit circle, sup t ∈R |cos(bt ) -cos(at )| ≥ sup n≥1 cos b(2kn + 1) q 2k -cos a(2kn + 1) q 2k

= cos a(2kn + 1) p 2k -(2kn + 1)πcos a(2kn + 1) q 2k

= cos an + a 2k p + cos an + a 2k q = 2.

Hence k = 0 if sup t ∈R |cos(t a) -cos(t b)| < 2. , where p, q are odd, g cd

(p, q) = 1, 1 ≤ p ≤ π ar ccos(m-1) , 1 ≤ q ≤ π ar ccos(m-1) . (ii) If m < 8 3 3
, then Ω(a, m) = {a}.

Proof: Assume that m < 2. Since Ω(0, m) = {0}, we can assume that a > 0. Let b ∈ Ω(a, m). Then b = 0. We may restrict attention to the case where a = 1, and there exists positive integers p and q such that b = p q , with g cd (p, q) = 1. If p or q were even, we would have sup t ∈R |cos(t ) -cos(bt )| ≥ sup n≥1 |cos(npπ)cos(nqπ)| = 2, and so p and q are odd.

It follows from Bezout's theorem that there exists (u, v) ∈ Z such that 2up -(2v + 1)q = 1. We have

sup t ∈R |cos(t ) -cos(bt )| ≥ cos(2uπ) -cos 2upπ q = 1 -cos (2v + 1)π + π q = 1 + cos π q .
Hence q ≤ π ar ccos(m-1) . Since sup t ∈R |cos(t )-cos(bt )| = sup t ∈R |cos(t )-cos( t b )|, the same argument shows that p ≤ π ar ccos(m-1) . This proves (i) (ii) If m < 1 + cos π 5 ≈ 1, 8090, then ar ccos(m -1) > π 5 and so every b ∈ Ω(a, m) can be written under the form b = ap q , where 1 ≤ p < 5 and 1 ≤ q < 5, with p and q odd, g cd (p, q) = 1 and so Ω(a, m) ⊂ a 3 , a, 3a .

An elementary computation shows that |cos(t ) -cos(3t )| attains its maximum when cos(t ) = ± 1 3 , which gives

max t ∈R = |cos(t ) -cos (t /3) | = max t ∈R |cos(t ) -cos(3t )| = 8 3 3 ≈ 1.5396.
Hence Ω(a, m) = a 3 , a, 3a if 8 3 3

≤ m < 1+cos π 5 , and Ω(a, m) = {a} if m < 8 3 3

.

We obtain the following theorem. for some a ∈ R, then C (t ) = cos(at ).1 A for t ∈ R.

Proof: (i) Let χ ∈ A 1 . Then it follows from Corollary 3.2 that there exists b χ ∈ Ω(a, m) such that χ(C (t )) = cos t b χ for t ∈ R.

Since b 2 χ = 2l i m t →0

1-χ(C (t )) 2

, the map χ → b χ is one-to-one, and it follows from Lemma 3.5 that A 1 is finite.

Let χ 1 , . . . , χ k be the elements of A 1 . It follows from the standard one-variable holomorphic functional calculus, see for example [START_REF] Dales | Banach Algebras and Automatic Continuity[END_REF], that there exists for every j ≤ k an idempotent p j of A 1 such that χ j (p j ) = 1 and χ i (p j ) = 0 for i = j. Hence p j p i = 0 for j = i , and 1 A = 1 A 1 = k j =1 p j . Let x ∈ A 1 . Then (p j C (t )) t ∈R is a cosine function in the commutative unital Banach algebra p j A 1 , spec p j A 1 (p j C (1)) = {χ j (C (1))}, and (cos(at )p j ) t ∈R is a scalar cosine function in p j A 1 . Since sup t ∈R cos(at )p j -p j C (t ) ≤ 2 p j , the cosine function (p j C (t )) t ∈R is bounded, and it follows from theorem 2.3 that (p j C (nt )) n∈Z is a scalar cosine sequence for every t ∈ R. So (p j C (t )) t ∈R is a scalar cosine function, and p j C (t ) = χ j (C (t )p j = cos(b j t )p j , where b j = b χ j ∈ Ω(a, m).

We obtain

C (t ) = k j =1 C (t )p j = k j =1
cos(t b j )p j (t ∈ R).

Since the algebras p j A 1 are one-dimensional, A 1 is isomorphic to C k .

  and we have c n = cos(nβ) for n ≥ 1, where β is any real number satisfying c 1 = cos(β). This holds in particular when β = β χ = χ(ar ccos(c 1 )) = ar ccos(χ(c 1 )) ∈ [0, π].

  A and let λ ∈ C. (i) If λ ∉ πZ, and if cos(λ.1 A + x) = cos(λ.1 A + y), then x = y. (ii) If λ ∈ πZ, and if cos(λ.1 A + x) = cos(λ.1 A + y), then x 2 = y 2 . Proof: If cos(λ.1 A + x) = cos(λ.1 A + y), we have si n yx 2 si n λ + x + y 2 = 0. If λ ∉ πZ, we have, for χ ∈ A, χ si n λ.1 A + x + y 2 = si n(λ) = 0, and so si n λ.1 A + x+y 2

Lemma 3 . 4 .

 34 Let a, b be two real numbers. If p aqb = 0 for (p, q) ∈ Z 2 \ {0, 0}, then sup t ∈R |cos(t a) -cos(t b)| = 2.

Lemma 3 . 5 .

 35 Let a ≥ 0, and set Ω(a, m) := b ≥ 0 | sup t ∈R |cos(t a) -cos(t b)| ≤ m for m ≥ 0. (i) If m < 2, then Ω(a, m) is finite, and every b ∈ Ω(a, m) has the form b = pa q

  j t )p j for t ∈ R.

(

  ii) If sup t ∈R C (t ) -cos(at ).1 < 8 3 3

  Theorem 3.6. Let (C (t )) t ∈R be a cosine function in a unital Banach algebra, and let A 1 be the closed subalgebra of A generated by (C (t )) t ∈R .(i) If m := sup t ∈R C (t ) -cos(at ).1 A < 2 for some a ∈ R, then A 1 is isomorphic to C k for some k ≤ c ar d (Ω(a, m)) , and there exists a family p 1 , . . . , p k of pairwise orthogonal idempotents of A 1 and a family b 1 , . . . , b k of distinct elements of Ω(a, m) such that C (t ) =

(ii) If m < 8 3 3 , then Ω(a, m) = {a}, k = 1, p 1 = 1 A and C (t ) = cos(at ).1 A .

Since Ω(0, m) = {0} for every m < 2, we obtain the following result, which was obtained recently by Schwenninger and Zwart in [START_REF] Schwenninger | Zero-two law for cosine families[END_REF] for strongly continuous operator valued cosine functions. A very short argument to prove a weaker result with the constant 3/2 instead of 2 is given by Arendt in [START_REF] Arendt | A 0-3/2 -Law for Cosine Functions[END_REF].

Let C = (C (t )) t ∈R be a bounded strongly continuous cosine family of bounded operators on a Banach space X . Bobrowski and Chojnacki observed in [START_REF] Bobrowski | Isolated points of some sets of bounded cosine families, bounded semigroups, and bounded groups on a Banach space[END_REF], lemma 3 that if sup t ∈R C (t )-c(t )I X < 1 then the generator of C is bounded, assuming that the scalar cosine function c is continuous. The following corollary, which is an immediate consequence of collorary 3.3 and theorem 3.6, shows that the continuity condition on c(t ) is redundant, and that the generator of C (t ) is bounded whenever sup t ∈R C (t ) -c(t )I X < 2. Corollary 3.8. Let X be a Banach space, let (c(t )) t ∈R be a bounded scalar cosine function, and let C = (C (t )) t ∈R be a bounded strongly continuous cosine family of bounded operators on X such that sup t ∈R C (t ) -c(t )I X < 2. Then there exists a ∈ R such that c(t ) = cos(at ) for t ∈ R, and the conclusions of theorem 3.6 hold. In particular the generator of the cosine function C is bounded.