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Loop measures without transition probabilities

Pat Fitzsimmons Yves Le Jan Jay Rosen ∗

January 31, 2015

Abstract

1 Introduction

To the best of our knowledge, loop measures first appeared in the work of
Symanzik on Euclidean quantum field theory, [11], where they are referred to
as ‘blob measures’. They next appear in the work of Lawler and Werner, [6].
In both works, the loop measure is that associated with Brownian motion. In
[7] loop measures associated with a large class of Markov processes are defined
and studied. In all these cases it is assumed that the underlying Markov
process has transition densities. The goal of this paper is to define and study
loop measures for Markov processes without transition densities.

Let X=(Ω,Ft, Xt, θt, P
x) be a transient Borel right process [10] with state

space S, which we assume to be locally compact with a countable base. We
use the canonical representation of X in which Ω is the set of right continuous
paths paths ω : [0,∞)→ S∆ = S ∪∆ with ∆ /∈ S, and is such that ω(t) = ∆
for all t ≥ ζ = inf{t > 0 |ω(t) = ∆}. Set Xt(ω) = ω(t).

Let m be a Borel measure on S which is finite on compact sets. We assume
that with respect to m, X has strictly positive potential densities uα(x, y),
α ≥ 0, which satisfy the resolvent equations. We set u(x, y) = u0(x, y), and
assume that u(x, y) is excessive in x for each fixed y.

Let hz(x) = u(x, z). If we assume that u is finite, then the hz−transform
of X is a right process on S, see [10, Section 62], with probabilities P x/hz . Let

∗Research of J. Rosen was partially supported by grants from the National Science Foun-
dation and PSC CUNY.

0 Key words and phrases: loop soups, Markov processes, intersection local times.
0 AMS 2000 subject classification: Primary 60K99, 60J55; Secondary 60G17.

1



Qz,z = u(z, z)P z/hz . We can then define the loop measure as

µ (F ) =

∫
Qz,z

(
F

ζ

)
dm(z), (1.1)

for any F measurable function F . Loop measures for processes with finite
potential densities but without transition densities are discussed in [4]. In the
present paper we assume that the potential densities u(x, y) are infinite on
the diagonal, but finite off the diagonal. In this case the construction of the
measures P z/hz given in [10] breaks down. Assuming that all points are polar,
we show how to construct a family of measures Qz,z, z ∈ S, which generalize
the measures Qz,z = u(z, z)P z/hz in the case of finite u(x, y).

After constructing Qz,z, z ∈ S and defining the loop measure µ using (1.1),
we show how to calculate some important moments. We assume that

sup
x

∫
K

(u(x, y) + u(y, x))2 dm(y) <∞ (1.2)

for any compact K ⊆ S. For exponentially killed Brownian motion in Rd this
means that d ≤ 3.

Theorem 1.1 For any k ≥ 2, and bounded measurable functions f1, . . . , fk
with compact support

µ

 k∏
j=1

∫ ∞
0

fj(Xtj ) dtj

 (1.3)

=
∑
π∈P�

k

∫
u(x1, x2)u(x2, x3) · · ·u(xk, x1)

k∏
j=1

fπj (xj) dm(xj),

where P�k denotes the set of permutations of [1, k] on the circle. (For example,
(1, 2, 3), (3, 1, 2) and (2, 3, 1) are considered to be one permutation π ∈ P�3 .)

Our assumption (1.2) will guarantee that the right hand side of (1.3) is
finite. Note that if k = 1 our formula would give

µ

(∫ ∞
0

f(Xt) dtj

)
=

∫
u(x, x)f(x) dm(x) =∞, (1.4)

for any f ≥ 0, by our assumption that the potentials u(x, y) are infinite on
the diagonal.
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For f1, . . . , fk as above consider more generally the multiple integral

Mf1,...,fk
t =

∑
π∈T �

k

∫
0≤r1≤···≤rk≤t

fπ(1)(Xr1) · · · fπ(k)(Xrk) dr1 · · · drk, (1.5)

where T �k denotes the set of translations π of [1, k] which are cyclic mod k,
that is, for some i, π(j) = j + i, mod k, for all j = 1, . . . , k. In the proof of
Theorem 1.1 we first show that

µ
(
Mf1,...,fk
∞

)
=

∫
u(x1, x2)u(x2, x3) · · ·u(xk, x1)

k∏
j=1

fj(xj) dm(xj). (1.6)

(1.3) will then follow since

k∏
j=1

∫ ∞
0

fj(Xtj ) dtj =
∑
π∈P�

k

M
fπ1 ,...,fπk∞ . (1.7)

There is a related measure which we shall use which gives finite values even
for k = 1. Set

ν(F ) =

∫
Qz,z (F ) dm(z). (1.8)

Assume that for any α > 0, any compact K ⊆ S, and any K̃ which is a
compact neighborhood of K

sup
z∈K̃c, x∈K

uα(z, x) <∞. (1.9)

Theorem 1.2 For any k ≥ 1, α > 0, and bounded measurable functions
f1, . . . , fk with compact support

ν

 k∏
j=1

∫ ∞
0

fj(Xtj ) dtje
−αζ

 (1.10)

=
∑
π∈Pk

∫
uα(z, x1)uα(x1, x2) · · ·uα(xk, z)

k∏
j=1

fπj (xj) dm(xj) dm(z),

where Pk denotes the set of permutations of [1, k], and both sides are finite.

We call µ the loop measure of X because, when X has continuous paths,
µ is concentrated on the set of continuous loops with a distinguished starting
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point (since Qx,x is carried by loops starting at x). Moreover, in the next
Theorem we show that it is shift invariant. More precisely, let ρu denote the
loop rotation defined by

ρuω(s) =

{
ω(s+ u mod ζ(ω)), if 0 ≤ s < ζ(ω)
∆, otherwise.

Here, for two positive numbers a, b we define a mod b = a−mb for the unique
positive integer m such that 0 ≤ a−mb < b.

For the next Theorem we need an additional assumption: for any δ > 0
and compact K ⊆ S ∫

K
Pδ(z, dx)u(x, z) dm(z) <∞. (1.11)

Theorem 1.3 µ is invariant under ρu, for any u.

Note that if we have transition densities pδ(z, x) then∫
K
Pδ(z, dx)u(x, z) dm(z) =

∫ ∫
K
pδ(z, x)u(x, z) dm(x) dm(z) (1.12)

=

∫
K

(∫ ∞
δ

pt(x, x) dt

)
dm(x).

In our work on processes with transition densities, it was always assumed that
supx

∫∞
δ pt(x, x) dt <∞ for any δ > 0, which indeed gives (1.11).

For the next Theorem we assume that the measure m is excessive. With
this assumption there is always a dual process X̂ (essentially uniquely deter-
mined), but in general it is a moderate Markov process. We assume that the
measures Û(·, y) are absolutely continuous with respect to m for each y ∈ S.

For CAF’s Lν1t , . . . L
νk
t with Revuz measures ν1, . . . , νk, let

Aν1,...,νkt =
∑
π∈T �

k

∫
0≤r1≤···≤rk≤t

dL
νπ(1)
r1 · · · dLνπ(k)rk . (1.13)

We refer to Aν1,...,νkt as a multiple CAF.

Theorem 1.4 For any k ≥ 2, and any CAF’s Lν1t , . . . L
νk
t with Revuz mea-

sures ν1, . . . , νk,

µ (Aν1,...,νk∞ ) =

∫
u(x1, x2)u(x2, x3) · · ·u(xk, x1)

k∏
j=1

dνj(xj). (1.14)
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and

µ

 k∏
j=1

L
νj
∞

 =
∑
π∈P�

k

∫
u(x1, x2)u(x2, x3) · · ·u(xk, x1)

k∏
j=1

dνπj (xj). (1.15)

The finiteness of the right hand side of (1.15) will depend on the potential
densities u(x, y) and the measures ν1, . . . , νk. For a more thorough discussion
see [8, (1.5)] and the paragraph there following (1.5).

With the results of this paper, most of the results of [4, 8, 9] on loop
measures, loop soups, CAF’s and intersection local times will carry over to
processes without transition densities.

2 Construction of Qz,z

Let us fix z ∈ S and consider the excessive function hz(x) := u(x, z), finite and
strictly positive on the subspace Sz := {x ∈ S : x 6= z}. Doob’s h-transform
theory yields the existence of laws P x,z, x ∈ Sz, on path space under which
the coordinate process is Markov with transition semigroup

P zt (x, dy) := Pt(x, dy)
hz(y)

hz(x)
. (2.1)

See, for example, [10, pp. 298–299]. Now consider the family of measures

ηzt (dx) := Pt(z, dx)hz(x). (2.2)

Since we assume that the singleton {z} is polar, the transition semigroup
(Pt) will not charge {z}, so these may be viewed as measures on Sz or on S.
Adopting the latter point of view, it is immediate that (ηzt )t>0 is an entrance
law for (P zt ). There is a general theorem guaranteeing the existence of a right
process with one-dimensional distributions (ηzt ) and transition semigroup (P zt );
see [5, Proposition (3.5)]. The law of this process is the desired Qz,z. Aside
from the entrance law identity ηzt P

z
s = ηzt+s, their result only requires that

each of the measures ηzt be σ-finite, which is clearly the case in the present
discussion.

With this we immediately obtain, for 0 < t1 < · · · < tk,

Qz,z

 k∏
j=1

fj(Xtj )

 = ηzt1(dx1)
k∏
j=2

P ztj−tj−1
(xj−1, dxj)

k∏
j=1

fj(xj) (2.3)

=
k∏
j=1

Ptj−tj−1(xj−1, dxj)
k∏
j=1

fj(xj)u(xk, z)
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with t0 = 0 and x0 = z. Hence

Qz,z

∫
0<t1<···<tk<∞

k∏
j=1

fj(Xtj ) dtj

 (2.4)

=

∫
u(z, x1)u(x1, x2) · · ·u(xk, z)

k∏
j=1

fj(xj) dm(xj),

so that

Qz,z

 k∏
j=1

∫ ∞
0

fj(Xtj ) dtj

 (2.5)

=
∑
π∈Pk

∫
u(z, x1)u(x1, x2) · · ·u(xk, z)

k∏
j=1

fπj (xj) dm(xj).

Returning to (2.3) with 0 < t1 < · · · < tk and using the fact that ζ > tk
implies that ζ = tk + ζ ◦ θtk we have

Qz,z

 k∏
j=1

fj(Xtj )e
−αζ

 (2.6)

= Qz,z

 k∏
j=1

fj(Xtj )e
−αtk

(
e−αζ ◦ θtk

)
=

k∏
j=1

Pαtj−tj−1
(xj−1, dxj)

k∏
j=1

fj(xj)hz(xk)P
xk,z

(
e−αζ

)
.

Note that by (2.1) and the fact that X has α-potential densities for all
α ≥ 0

P xk,z
(∫ ∞

0
e−αt1{S}(Xt) dt

)
=

∫ ∞
0

e−αtP xk,z
(
1{S}(Xt)

)
dt (2.7)

=

∫ ∞
0

e−αt
∫
S
Pt(xk, dy)

hz(y)

hz(xk)
dt

=

∫
uα(xk, y)

hz(y)

hz(xk)
dm(y).
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Combining this with our assumption that the α-potential densities satisfy the
resolvent equation we see that

hz(xk)P
xk,z

(
e−αζ

)
= hz(xk)P

xk,z

(
1− α

∫ ζ

0
e−αt dt

)
(2.8)

= hz(xk)− αhz(xk)P xk,z
(∫ ∞

0
e−αt1{S}(Xt) dt

)
= u(xk, z)− α

∫
uα(xk, y)u(y, z) dm(y) = uα(xk, z).

Using this in (2.6) we obtain

Qz,z

 k∏
j=1

fj(Xtj )e
−αζ

 (2.9)

=
k∏
j=1

Pαtj−tj−1
(xj−1, dxj)u

α(xk, z)
k∏
j=1

fj(xj).

We then have

Qz,z

e−αζ ∫
0<t1<···<tk<∞

k∏
j=1

fj(Xtj ) dtj

 (2.10)

=

∫
uα(z, x1)uα(x1, x2) · · ·uα(xk, z)

k∏
j=1

fj(xj) dm(xj),

and consequently

Qz,z

e−αζ k∏
j=1

∫ ∞
0

fj(Xtj ) dtj

 (2.11)

=
∑
π∈Pk

∫
uα(z, x1)uα(x1, x2) · · ·uα(xk, z)

k∏
j=1

fπj (xj) dm(xj).

3 The loop measure and its moments

Set

µ(F ) =

∫
Qz,z

(
F

ζ

)
dm(z). (3.1)
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Proof of Theorem 1.1: We use an argument from the proof of [4,
Lemma 2.1], which is due to Symanzik, [11].

It follows from the resolvent equation that the potential densities uβ(x, y)
are continuous and monotone decreasing in β, for x 6= y. Using this together
with the resolvent equation and the monotone convergence theorem we obtain
that for xk 6= x1∫

S
uα(xk, z)u

α(z, x1) dm(z) = − d

dα
uα(xk, x1). (3.2)

Hence using (2.10)∫
Qz,z

(
e−αζMf1,...fk

∞

)
dm(z) (3.3)

= −
∑
π∈T �

k

∫
uα(x1, x2)uα(x2, x3) · · ·uα(xk−1, xk)

d

dα
uα(xk, x1)

k∏
j=1

fπj (xj) dm(xj)

= − d

dα

∫
uα(x1, x2)uα(x2, x3) · · ·uα(xk−1, xk)u

α(xk, x1)
k∏
j=1

fj(xj) dm(xj).

For the last step we used the product rule for differentiation and the fact that
in the middle line we are summing over all translations mod k.

Since, as mentioned, uα(x, y) is monotone decreasing in α for x 6= y,

v(x, y) = lim
α→∞

uα(x, y) (3.4)

exists and∫
v(x, y)f(y) dm(y) = lim

α→∞

∫ ∞
0

e−αt
∫
Pt(xk, dy)f(y) dt = 0. (3.5)

Hence v(x, y) = 0 for m−a.e. y. Integrating (3.3) with respect to α from 0
to ∞ and using Fubini’s theorem we then obtain (1.6). (1.3) then follows by
(1.7).

To show that the right hand side of (1.3) is finite we repeatedly use the
Cauchy-Schwarz inequality and our assumption (1.2). See the proof of [8,
Lemma 3.3].

Proof of Theorem 1.2: The formula (1.10) follows immediately from
(2.11). When k ≥ 2, the right hand side of (1.10) can be shown to be finite
by repeatedly using the Cauchy-Schwarz inequality, our assumption (1.2) and
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the fact that uα(x, z) is integrable in z for any α > 0. When k = 1, if K is a
compact set containing the support of f1 and K̃ is a compact neighborhood
of K, then ∫ ∫

uα(z, x)uα(x, z)f1(x) dm(x) dm(z)

=

∫
K̃

∫
uα(z, x)uα(x, z)f1(x) dm(x) dm(z)

+

∫
K̃c

∫
uα(z, x)uα(x, z)f1(x) dm(x) dm(z).

Using (1.2) ∫
K̃

(∫
uα(z, x)uα(x, z)f1(x) dm(x)

)
dm(z) (3.6)

≤ m(K̃) sup
z

∫
uα(z, x)uα(x, z)f1(x) dm(x) <∞,

and using (1.9) ∫
K̃c

∫
uα(z, x)uα(x, z)f1(x) dm(x) dm(z) (3.7)

≤ C
∫ (∫

uα(x, z) dm(z)

)
f1(x) dm(x) <∞.

4 Subordination

The basic idea in our proof that the loop measure is shift invariant is to show
that the loop measure can be obtained as the ‘limit’ of loop measures for
processes with transition densities. These processes will be obtained from the
original process by subordination.

We consider a subordinator Tt which is a compound Poisson process with
Levy measure cψ so that

Ex (f (XTt)) =
∞∑
j=1

(ct)j

j!
e−ct

∫ ∞
0

Ex (f (Xs))ψ
∗j(ds). (4.1)
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If we take ψ to be exponential with parameter θ, then ψ∗j(ds) = sj−1θj

Γ(j) e
−sθ ds

so that we have

Ex (f (XTt)) =
∞∑
j=1

(ct)j

j!
e−ct

∫ ∞
0

Ex (f (Xs))
sj−1θj

Γ(j)
e−sθ ds. (4.2)

Hence the subordinated transition semigroup

P̃t(x, dy) =
∞∑
j=1

(ct)j

j!
e−ct

∫ ∞
0

Ps(x, dy)
sj−1θj

Γ(j)
e−sθ ds. (4.3)

Noting that∫ ∞
0

Ps(x,A)sj−1e−sθ ds =
dj−1

dθj−1

∫ ∞
0

Ps(x,A)e−sθ ds =
dj−1

dθj−1
U θ(x,A), (4.4)

we see that P̃t(x, dy) is absolutely continuous with respect to the measure m
on S, and we can choose transition densities p̃t(x, y).

From now on we take θ = c = n, and use (n) as a superscript or subscript

to denote objects with respect to the subordinated process, denoted by X
(n)
t .

Lemma 4.1

uα(n)(x, y) =
1

(1 + α/n)2
uα/(1+α/n)(x, y). (4.5)

In particular,
uα(n)(x, y) ≤ u(n)(x, y) = u(x, y). (4.6)
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Proof:

Uα(n)(x, dy) =

∫ ∞
0

e−αtP
(n)
t (x, dy) dt (4.7)

=
1

α+ n

∞∑
j=1

∫ ∞
0

(
n

α+ n

)j
Ps(x, dy)

sj−1nj

Γ(j)
e−sn ds.

=
n2

(α+ n)2

∫ ∞
0

Ps(x, dy)

 ∞∑
j=1

sj−1(n2/(α+ n))(j−1)

Γ(j)
e−sn

 ds

=
n2

(α+ n)2

∫ ∞
0

(
esn

2/(α+n)e−sn
)
Ps(x, dy) ds

=
n2

(α+ n)2

∫ ∞
0

e
−s
(
n− n2

α+n

)
Ps(x, dy) ds

=
n2

(α+ n)2
unα/(α+n)(x, y) dm(y)

=
1

(1 + α/n)2
uα/(1+α/n)(x, y) dm(y).

Lemma 4.2 For any α, αj , j = 1, . . . , k and continuous compactly supported
fj , j = 1, . . . , k

lim
n→∞

∫
Rk+

k∏
j=1

e−αjtjQz,z(n)

 k∏
j=1

fj(X
(n)
tj

)e−αζ

 k∏
j=1

dtj (4.8)

=

∫
Rk+

k∏
j=1

e−αjtjQz,z

 k∏
j=1

fj(Xtj )e
−αζ

 k∏
j=1

dtj .

Proof: Recall (2.9). For 0 < t1 < · · · < tk

Qz,z

 k∏
j=1

fj(Xtj )e
−αζ

 (4.9)

=

k∏
j=1

Pαtj−tj−1
(xj−1, dxj)u

α(xk, z)

k∏
j=1

fj(xj)
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with the corresponding

Qz,z(n)

 k∏
j=1

fj(X
(n)
tj

)e−αζ

 (4.10)

=

k∏
j=1

P
(n),α
tj−tj−1

(xj−1, dxj)u
α
(n)(xk, z)

k∏
j=1

fj(xj).

Using (4.10) we see that

∫
Rk+

k∏
j=1

e−αjtjQz,z(n)

 k∏
j=1

fj(X
(n)
tj

)e−αζ

 k∏
j=1

dtj (4.11)

=
∑
π∈Pk

∫
{0≤t1≤···≤tk≤∞}

k∏
j=1

e−αjtjQz,z(n)

 k∏
j=1

fπ(j)(X
(n)
tj

)e−αζ

 k∏
j=1

dtj

=
∑
π∈Pk

∫
{0≤t1≤···≤tk≤∞}

k∏
j=1

P
(n),α+

∑k
l=j αl

tj−tj−1
(xj−1, dxj)

uα(n)(xk, z)
k∏
j=1

fπ(j)(xj)
k∏
j=1

dtj

=
∑
π∈Pk

k∏
j=1

U
α+
∑k
l=j αl

(n) (xj−1, dxj)u
α
(n)(xk, z)

k∏
j=1

fπ(j)(xj)

=
∑
π∈Pk

∫ k∏
j=1

u
α+
∑k
l=j αl

(n) (xj−1, xj)u
α
(n)(xk, z)

k∏
j=1

fπ(j)(xj) dm(xj).

(4.8) now follows from (4.6), (1.2) and the dominated convergence theorem.

It follows from (4.8) that for a.e. t1, · · · , tk

lim
n→∞

Qz,z(n)

 k∏
j=1

fj(X
(n)
tj

)e−αζ

 = Qz,z

 k∏
j=1

fj(Xtj )e
−αζ

 . (4.12)
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Lemma 4.3 For any α, αj , j = 1, . . . , k and continuous compactly supported
fj , j = 1, . . . , k

lim
n→∞

∫
Rk+

k∏
j=1

e−αjtjν(n)

 k∏
j=1

fj(X
(n)
tj

)e−αζ

 k∏
j=1

dtj (4.13)

=

∫
Rk+

k∏
j=1

e−αjtjν

 k∏
j=1

fj(Xtj )e
−αζ

 k∏
j=1

dtj .

Proof: By (4.11)∫
Rk+

k∏
j=1

e−αjtjν(n)

 k∏
j=1

fj(X
(n)
tj

)e−αζ

 k∏
j=1

dtj (4.14)

=
∑
π∈Pk

∫ k∏
j=1

u
α+
∑k
l=j αl

(n) (xj−1, xj)u
α
(n)(xk, z)

k∏
j=1

fπ(j)(xj) dm(xj) dm(z).

If k ≥ 2, then using the resolvent equation we see that(
k∑
l=1

αl

)∫
Rk+

k∏
j=1

e−αjtjν(n)

 k∏
j=1

fj(X
(n)
tj

)e−αζ

 k∏
j=1

dtj (4.15)

=
∑
π∈Pk

∫ k∏
j=2

u
α+
∑k
l=j αl

(n) (xj−1, xj)u
α
(n)(xk, x1)

k∏
j=1

fπ(j)(xj) dm(xj)

−
∑
π∈Pk

∫ k∏
j=2

u
α+
∑k
l=j αl

(n) (xj−1, xj)u
α+
∑k
l=1 αl

(n) (xk, x1)
k∏
j=1

fπ(j)(xj) dm(xj),

and (4.13) for k ≥ 2 then follows from (4.6), (1.2) and the dominated conver-
gence theorem. Here we repeatedly use the Cauchy-Schwarz inequality. See
the proof of [8, Lemma 3.3].

When k = 1, ∫
R+

e−α1t1ν(n)

(
f1(X

(n)
t1

)e−αζ
)
dt1 (4.16)

=

∫ ∫
uα+α1

(n) (z, x)uα(n)(x, z)f1(x) dm(x) dm(z).

Note that by (4.5) we have uα(n)(x, z) ≤ uα/2(x, z) for n sufficiently large. We
can then use the argument from the proof of Theorem 1.2 and the dominated
convergence theorem to get (4.13) for k = 1.
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It follows from (4.13) that

lim
n→∞

∫
Rk+

k∏
j=1

e−αjtjν(n)

 k∏
j=1

fj(X
(n)
tj

)g(ζ)

 k∏
j=1

dtj (4.17)

=

∫
Rk+

k∏
j=1

e−αjtjν

 k∏
j=1

fj(Xtj )g(ζ)

 k∏
j=1

dtj

for all continuous exponentially bounded functions g. We will be particularly
interested in g of the form

g(ζ) =

∏k
j=1(1− e−βjζ)∏k
j=1(1− e−αjζ)

e−αζhs(ζ) (4.18)

where 0 ≤ hs(ζ) ≤ 1 is a continuous function with hs(ζ) = 0 for ζ ≤ s.

5 Invariance under loop rotation

Proof of Theorem 1.3: Because the lifetime ζ is rotation invariant (ζ(ρvω) =
ζ(ω) so long as ζ(ω) <∞), the rotation invariance of the loop measure

µ(F ) = ν

(
F

ζ

)
(5.1)

is equivalent to that of the measure ν.
We note that by (1.11)

ν (f(Xδ)) =

∫
Pδ(z, dx)f(x)u(x, z) dm(z) <∞ (5.2)

for any δ > 0 and bounded measurable f with compact support.
We next recall some ideas from [4]. Let us define the process X to be the

periodic extension of X; that is,

Xt =

{
Xt−qζ , if qζ ≤ t < (q + 1)ζ, q = 0, 1, 2, . . .
Xt, if ζ =∞ (5.3)

It will be convenient to write

Iα(f) :=

∫ ∞
0

e−αtf(Xt) dt, Iα(f) :=

∫ ∞
0

e−αtf(Xt) dt. (5.4)
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The key observation is that

Iα(f) =
Iα(f)

1− e−αζ
, (5.5)

for all α > 0. This follows from

Iα(f) : =

∫ ∞
0

e−αtf(Xt) dt

=
∞∑
q=0

∫ (q+1)ζ

qζ
e−αtf(Xt) dt

=
∞∑
q=0

e−αqζ
∫ ζ

0
e−αtf(Xt) dt =

Iα(f)

1− e−αζ
.

The rotation invariance of µ or ν is equivalent to the following Lemma.

Lemma 5.1

ν

 k∏
j=1

fj(Xtj+r)1{tk<ζ}

 = ν

 k∏
j=1

fj(Xtj )1{tk<ζ}

 (5.6)

for all 0 < t1 < · · · < tk and r > 0 and all fj ≥ 0 continuous with compact
support.

Let 0 ≤ hs(ζ) ≤ 1 be a continuous function with hs(ζ) = 0 for ζ ≤ s. To
prove Lemma 5.1 we first prove the following.

Lemma 5.2 For all k ≥ 1, and 0 ≤ t1, · · · , tk < s and all fj ≥ 0 continuous
with compact support

ν

 k∏
j=1

fj(Xtj+r)hs(ζ)

 = ν

 k∏
j=1

fj(Xtj )hs(ζ)

 . (5.7)

15



Proof of Lemma 5.2: Using first (5.5) and then (4.17) we have that

lim
n→∞

∫
Rk+

k∏
j=1

e−αjtjν(n)

 k∏
j=1

fj

(
X(n)

tj

)
(1− e−βjζ)e−αζhs(ζ)

 k∏
j=1

dtj

= lim
n→∞

∫
Rk+

k∏
j=1

e−αjtjν(n)

 k∏
j=1

fj

(
X(n)

tj

) (1− e−βjζ)
(1− e−αjζ)

e−αζhs(ζ)

 k∏
j=1

dtj

=

∫
Rk+

k∏
j=1

e−αjtjν

 k∏
j=1

fj(Xtj )
(1− e−βjζ)
(1− e−αjζ)

e−αζhs(ζ)

 k∏
j=1

dtj

=

∫
Rk+

k∏
j=1

e−αjtjν

 k∏
j=1

fj(Xtj )(1− e−βjζ)e−αζhs(ζ)

 k∏
j=1

dtj . (5.8)

It follows from this that for a.e. 0 ≤ t1, · · · , tk

lim
n→∞

ν(n)

 k∏
j=1

fj

(
X(n)

tj

)
(1− e−βjζ)e−αζhs(ζ)

 (5.9)

= ν

 k∏
j=1

fj(Xtj )(1− e−βjζ)e−αζhs(ζ)

 .

The same calculations show that for any r > 0,

lim
n→∞

ν(n)

 k∏
j=1

fj

(
X(n)

tj+r

)
(1− e−βjζ)e−αζhs(ζ)

 (5.10)

= ν

 k∏
j=1

fj(Xtj+r)(1− e−βjζ)e−αζhs(ζ)


for a.e. 0 ≤ t1, · · · , tk. Since ν(n) is invariant under loop rotation, see [4,
Lemma 2.4] for the simple proof, it follows from our last two displays that for
a.e. 0 ≤ t1, · · · , tk

ν

 k∏
j=1

fj(Xtj+r)(1− e−βjζ)e−αζhs(ζ)

 (5.11)

= ν

 k∏
j=1

fj(Xtj )(1− e−βjζ)e−αζhs(ζ)

 .
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We now use an argument from [4] (see from (5.31) there until the end of the
paragraph). By Fubini we can find a set T ⊆ (0, s) with full measure such that
for all t1 ∈ T we have that (5.11) holds for a.e. t2, . . . , tk ∈ (0, s). Using (5.2)
with δ = t1, the boundedness and continuity of the fj and the right continuity
of X̄t it follows from the Dominated Convergence Theorem that (5.11) holds
for all (t1, t2, . . . , tk) ∈ T × [0, s)k−1. Let now f1,n be a sequence of continuous
functions with compact support with the property that f1,n ↑ 1. By the above,
(5.11) with f1 replaced by f1,n holds for all (t1, t2, . . . , tk) ∈ Tn×[0, s)k−1 for an
appropriate Tn ⊆ (0, s) with full measure . In particular T∗ = ∩nTn 6= ∅, and
we can apply the Monotone Convergence Theorem with t1 ∈ T∗ to conclude
that

ν

(1− e−β1ζ)
k∏
j=2

fj(Xtj+r)(1− e−βjζ)e−αζhs(ζ)

 (5.12)

= ν

(1− e−β1ζ)
k∏
j=2

fj(Xtj )(1− e−βjζ)e−αζhs(ζ)


for all t2, . . . , tk < s. Applying once again the Monotone Convergence Theorem
for βj →∞, α→ 0 we obtain

ν

 k∏
j=2

fj(Xtj+r)hs(ζ)

 = ν

 k∏
j=2

fj(Xtj )hs(ζ)

 (5.13)

for all t2, . . . , tk < s. Since k is arbitrary, we obtain our Lemma.

Proof of Lemma 5.1: Fix 0 < t1 < · · · < tk. Choose a sequence sn ↓ tk.
It is clear that we can choose hsn so that hsn(ζ) ↑ 1{tk<ζ}. Lemma 5.1 then
follows from Lemma 5.2 by the Monotone Convergence Theorem.

6 The loop measure and continuous additive func-
tionals

Before proving Theorem 1.4 we will need two facts about continuous additive
functionals (CAFs). The first says that to each CAF A of X is associated a
measure νA on S such that for any measurable function f

UAf(x) := Ex
∫ ∞

0
f(Xt) dAt =

∫
S
u(x, y)f(y) νA(dy), ∀x ∈ S. (6.1)
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νA is referred to as the Revuz measure of A. The second fact we need is that
if a CAF has Revuz measure ν with respect to X, it has Revuz measure h · ν
with respect to the h-transform of X. Following the proof of Theorem 1.4 we
will discuss these facts and provide references.

Proof of Theorem 1.4: To prove (1.15) it is enough to prove the
additive functional version of (2.4). We consider first our Borel right process
X. These considerations will then be applied to the h-transform of X using
hz = u(·, z) for fixed z ∈ S.

Let Aj (j = 1, 2, . . .) be CAFs of X with Revuz measures νj . Using the
Markov property, see for example Theorems 28.7 and 22.8 of [10], and (6.1)
at the last step

Ex
∫
{0<t1<t2<···<tn<∞}

n∏
j=1

dAjtj (6.2)

= Ex

∫ ∞
0

∫
{0<t2<···<tn<∞}

n∏
j=2

dAjtj

 ◦ θt1 dA1
t1


= Ex

∫ ∞
0

EXt1

∫
{0<t2<···<tn<∞}

n∏
j=2

dAjtj

 dA1
t1


=

∫
S
u(x, x1)Ex1

∫
{0<t2<···<tn<∞}

n∏
j=2

dAjtj

 ν1(dx1),

and then by induction

Ex
∫
{0<t1<t2<···<tn<∞}

n∏
j=1

dAjtj (6.3)

=

∫
Sn
u(x, x1)u(x1, x2) · · ·u(xn−1, xn)

n∏
j=1

νj(dxj).

Notice that by our assumption that u(x, x1) is excessive in x for each x1, the
expressions in (6.3) are excessive functions of x. Thus if η = (ηt) is an en-
trance law, then writing Eη for the measure under which the one-dimensional
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distributions are given by the entrance law we have

Eη
∫
{0<t1<t2<···<tn<∞}

n∏
j=1

dAjtj (6.4)

=↑ lim
t↓0

∫
S
ηt(dx)Ex

∫
{0<t1<t2<···<tn<∞}

n∏
j=1

dAjtj

=↑ lim
t↓0

∫
S
ηt(dx)

∫
Sn
u(x, x1)u(x1, x2) · · ·u(xn−1, xn)

n∏
j=1

νj(dxj)

=

∫
Sn
g(x1)u(x1, x2) · · ·u(xn−1, xn)

n∏
j=1

νj(dxj),

where g(x1) :=↑ limt↓0
∫
ηt(dx)u(x, x1).

Now apply the above to the h-transform of the original process X, with
hz = u(·, z) for a fixed z ∈ S, as described in Section 2. This process has poten-
tial density uhz(x, y) = u(x, y)/hz(x) with respect to the measure hz(y)m(dy).
Also, if a CAF has Revuz measure ν with respect to X, it has Revuz measure
hz · ν with respect to the h-transform process. Thus by (6.3)

Ex,z
∫
{0<t1<t2<···<tn<∞}

n∏
j=1

dAjtj (6.5)

=

∫
Sn

u(x, x1)

hz(x)

u(x1, x2)

hz(x1)
· · · u(xn−1, xn)

hz(xn−1)

n∏
j=1

hz(xj) νj(dxj)

=
1

hz(x)

∫
Sn
u(x, x1)u(x1, x2) · · ·u(xn−1, xn)hz(xn)

n∏
j=1

νj(dxj)

=
1

hz(x)

∫
Sn
u(x, x1)u(x1, x2) · · ·u(xn−1, xn)u(xn, z)

n∏
j=1

νj(dxj).

When we use the entrance law ηzt (dx) = Pt(z, dx)hz(x), the function g of the
preceding paragraph is

↑ lim
t↓0

ηzt (dx)uhz(x, x1) =↑ lim
t↓0

Pt(z, dx)u(x, x1) = u(z, x1). (6.6)

Thus, using the definition of Qz,z from Section 2,

Qz,z
∫

0<t1<···<tn<∞

n∏
j=1

dAttj =

∫
Sn
u(z, x1)u(x1, x2) · · ·u(xn, z)

n∏
j=1

νj(dxj).

(6.7)
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Similar considerations work for the α-potentials, and the argument given in
the proof of Theorem 1.1 proves (1.15).

We now discuss the facts mentioned at the beginning of this section.
Given a right-continuous strong Markov process X (more precisely, a Borel

right Markov process) and an excessive measure m, there is always a dual
process X̂ (essentially uniquely determined), but in general it is a moderate
Markov process: the Markov property holds only at predictable times.

In what follows f and g are non-negative Borel functions on S. By duality∫
S
f(x)Ug(x)m(dx) =

∫
S
Ûf(y)g(y)m(dy), (6.8)

where the kernel Û is the potential kernel of the moderate Markov dual of X.
Under our assumptions it follows from [1, VI, Theorem 1.4] that the potential
density u can be chosen so that x 7→ u(x, y) is excessive for each y, and
y 7→ u(x, y) is co-excessive (that is, excessive with respect to the moderate
Markov dual process X̂) for each x. (6.8) implies that

Ûf(y) =

∫
S
u(x, y)f(x)m(dx), (6.9)

for m-a.e. y. Since both sides of (6.9) are co-excessive, they agree for all y.
By [3, (5.13)] we have the Revuz formula∫

S
f(x)UAg(x)m(dx) =

∫
S
Ûf(y)g(y)νA(dy), (6.10)

where νA is the Revuz measure of the CAF A with respect to m. Feeding
(6.9) into (6.10) and varying f we find that

UAg(x) =

∫
S
u(x, y)g(y) νA(dy), (6.11)

first for m-a.e. x, then for all x because both sides of (6.11) are excessive.
This proves (6.1).

One subtlety: the laws P̂ x of X̂ are only determined modulo a class of
sets (“m-exceptional”) defined in [3], see (3.4) for the definition of the term,
and then Remark (5.14); but that class is not charged by ν, so the exception
causes no problem.

To establish the second fact that we needed, let τt be the right continuous
inverse of At, and let f be a positive measurable function. Using the change
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of variables formula, [2, Chapter 6, (55.1)] and then Fubini

Ex/h
(∫ ∞

0
f(Xt) dAt

)
= Ex/h

(∫ ∞
0

f(Xτ(u)) du

)
(6.12)

=

∫ ∞
0

Ex/h
(
f(Xτ(u))

)
du.

Using [10, (62.20)] and then Fubini we have∫ ∞
0

Ex/h
(
f(Xτ(u))

)
du =

1

h(x)

∫ ∞
0

Ex
(
f(Xτ(u))h(Xτ(u))

)
du (6.13)

=
1

h(x)
Ex
(∫ ∞

0
f(Xτ(u))h(Xτ(u)) du

)
.

Using the change of variables formula once again, the last two formulas show
that

Ex/h
(∫ ∞

0
f(Xt) dAt

)
=

1

h(x)
Ex
(∫ ∞

0
f(Xt)h(Xt) dAt

)
. (6.14)

Using (6.1) we see that

Ex/h
(∫ ∞

0
f(Xt) dAt

)
=

1

h(x)

∫
S
u(x, y)f(y)h(y) νA(dy). (6.15)

This shows that if a CAF has Revuz measure ν with respect to X, then it has
Revuz measure h ·ν with respect to the h-transform of X. (Recall that we use
u(x,y)
h(x) for the potential densities of the h-transform process).
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