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Approaching mental representations of urban soundscape using
auditory scenes simulation

Grégoire Lafay, Mathieu Lagrange, and Jean François Petiot
Institut de Recherche en Communications et Cybernétique de Nantes (IRCCYN), Ecole centrale de Nantes,
France

Mathias Rossignol and Nicolas Misdariis
Institut de Recherche et Coordination Acoustique/Musique (IRCAM), France

This paper introduces a new subject-centered experimental protocol to study mental representations
of urban soundscapes through a simulation process. Subjects are asked to recreate a full sound envi-
ronment by means of a structured sound data set and a software dedicated to sound manipulation.
This paradigm is used to characterize urban sound environment representations, by analyzing the
sound classes that were used to simulate the auditory scenes. Results show that a semantic charac-
terization in terms of presence / absence of sound sources is an effective way to characterize urban
sound environments.

PACS numbers: 43.50.Lj, 43.50.Rq, 43.50.Qp, 43.66.Lj, 43.66.Ba

I. INTRODUCTION

The notion of soundscape has been introduced by
Schafer31,32 in the 1970s as the auditory equivalent to
landscape. Following this paradigm, a sonic environ-
ment is described by focusing on the listener’s evalua-
tion, rather than only taking into account the acoustic
parameters of the sound. Focusing on subjective crite-
ria, Schafer proposed to decompose the soundscape be-
tween three main components called keynote sounds, sig-
nals and soundmarks. The notion of soundmark refers
to sounds with subjective qualities that bring them into
focus for a certain category of people, whereas keynote
sounds and signals may roughly be considered as respec-
tively background and foreground sounds. Schafer also
claims that the improvement of the sonic environment
requires a “ positive ” approach to the soundscape, in-
volving the identification and reinforcement of pleasant,
important or meaningful sounds in the environment. The
soundscape thus appears as a powerful tool to develop
perceptively motivated acoustical indicators34.

The main goals of studies addressing soundscape per-
ception may be summarized as follow:

1. Describing the soundscape: How does the hu-
man brain identify different types of soundscapes?
What are the elements composing each type of
soundscape? How do they differ from one sound-
scape type to another?

2. Evaluating the soundscape: How do those el-
ements influence the qualitative evaluations of
a soundscape, such as “ noise annoyance ” or
“ pleasantness ”, to name but a few?

The second question finds its origin in the growing
need to improve the quality of artificial sonic environ-
ments, such as the urban soundscape. It is only dur-
ing the 1980s that policy-makers started taking into ac-
count the link between noise and pollution, considering
noise as a significant degradation of the quality of life.

To fight this pollution, the first approach consisted in
identifying unwanted sounds, and lowering their intensi-
ties. Thus, in the wake of this realization, several reg-
ulations have emerged, often limited to enforcing sound
level thresholds. However, several studies showed that
urban “ noise ” perception and evaluation is a complex
phenomenon that cannot be described solely with the
help of objective acoustical measures such as A-weighted
levels and LAeq

10–12,28,33,35. More precisely, Yang and
Kang38 as well as Kang and Zhang17 found significant
differences between objective acoustic comfort measure-
ments and subjective evaluations of sonic environments,
thus confirming that “ noise ” is a cognitive object which
depends on a listener’s appreciation and the context in
which the noise is heard. Many urban “ noises ” such
as that of a siren, can annoy as well as warn of a dan-
ger. Many town districts are appreciated because of their
lively and animated atmosphere which often results in
higher sound levels.

To summarize, we believe that even if acoustical reg-
ulations are to some extent effective, there is a need
to describe urban soundscapes not only through ob-
jective acoustical measures. Qualitative attributes also
need to be considered7,36 in order to understand bet-
ter the relationship between humans and their acoustic
environment31.

II. BACKGROUND

The strength of the soundscape approach is, to some
extent, also its weakness, as it implies to fully appreciate
the interaction of many factors. Perception of sound-
scape is thus an interdisciplinary field of investigation,
each discipline coming with its well identified experi-
mental protocol. In each one, integration of the results
can be difficult9,34. Recently, ambitious projects have
been undertaken as the European Cooperation in Sci-
ence and Technology Action TD0804-Soundscape of Eu-
ropean Cities and Landscapes to standardize soundscape
assessment and indicators.
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We believe that studies addressing soundscape percep-
tion may be roughly divided into two approaches accord-
ing to their methodologies9.

The first approach is the dimensional approach, which
tends to derive relevant emotional dimensions using se-
mantic differential analysis7,16,17, and to link those di-
mensions with acoustical descriptors36. The idea is to
investigate the soundscape using both acoustical mea-
surements and semantic data. In order to establish the
semantic axis9 prior to the dimensional analysis, those
semantic data usually come from qualitative surveys. Us-
ing a Principal Component Analysis (PCA) on descrip-
tors of urban soundscapes, Cain and al.7,9 found two
independent emotional dimensions named “ Calmness ”
and “ Vibrancy ”. Using a hierarchical cluster analy-
sis on both semantic differential attributes and acous-
tical descriptors, Torija and al.36 derive 15 soundscape
typologies and show that crest factor and sound level
at 125Hz are relevant acoustical variables to recognize
types of soundscape. Although the dimensional approach
provides important cues to describe soundscape percep-
tion, it remains a purely holistic approach as it bypasses
the way in which the human brain decomposes sound-
scapes into perceptual auditory objects3,37 and how each
of those objects may influence the qualitative judgment.

The second approach is the categorical approach,
which investigates mental representations of soundscape.
Mental representations can be seen as mirrors of the per-
ceived external realities (see Dubois et al.11 p.869 for a
definition). They are the memory of the knowledge ac-
quired by a subject, and act as the base of top-down
cognitive systems21. As explained by Dubois et al.11

“ semantic categories can be seen as mediating individ-
ual sensory experiences to collective representations by
means of a shared language ”. As they cannot be ob-
served, experimenters must use objectivation methods
to reach them. Traditional methods used to objectify
human mental representations attempt to derive men-
tal categories and perceptual components, either by rely-
ing on verbal descriptions coming from questionnaires or
interviews2,13,28 (categories of sound sources) or by sort-
ing tasks14,15,20 (categories of sound sources and sound-
scapes). To identify the mental categories, these meth-
ods require psycho-linguistic and lexical analyses. Re-
sults from those studies tend to show that the sound-
scape appreciation depends upon the identification and
the assessment of the sound sources which compose the
soundscape11,13,14,20,28. The categorical approach thus
agrees with the Auditory Scene Analysis (ASA) theory3,
which stands that auditory stimuli are decomposed into
“ auditory objects ” called “ streams ”, which may be re-
garded as sequences of auditory events emitted by pu-
tative sound sources8,37. This view is in line with re-
cent cognitive neuroscience studies suggesting that the
primary auditory cortex (A1) produces representations
of such auditory objects that act as bases for high level
cognitive processing23.

As underlined by Davies and al.9, while the categori-
cal approach provides useful information to understand
how a soundscape is composed, it does not provide in-
formation on how the relations (acoustic or semantic)

between the soundscape components (sequences of audio
events emitted by sound sources) are perceived and influ-
enced the qualitative evaluation. Furthermore, as cate-
gory “ names ” may occur at different semantic levels, cat-
egorical approaches based on linguistic analysis are not
amenable to facilitating comparison between studies4,25.
To go further in the categorical approach, there is a need
for methods providing 1) a finer characterization of sound
source categories with semantic and numeric data, 2) a
description of the inter-relations existing between these
sound sources, and 3) subjective data that may be used
as basis for inter-studies comparisons.

III. METHOD OVERVIEW

With those considerations in mind, we propose a
new subject-centered experimental protocol to character-
ize sound environments with qualitative data related to
quantitative data. In this protocol, subjects are asked to
simulate complex sound environments with pre-imposed
associated qualitative appreciations. To do so, they have
access to a soundscape simulator that uses classes of
sounds as base elements. The soundscape simulator is
thus bound to a sound data set of urban environmental
sounds, organized hierarchically around sound categories
found in previous studies4,11,13,14,20,25. The proposed
protocol was previously tested and validated thanks to
a pilot study19 with 10 subjects.

Previous works done by Bruce et al. also use a sound-
scape simulator to study soundscape perception5,6. But
in their approach, subjects may only add or remove a
short set of long recordings of foreground sounds, and
adjust their levels. In our approach, subjects are pre-
sented with a full data set of classes of urban environ-
mental sounds, that they may manipulate in terms of
sound intensity and time positioning.

The proposed protocol is used to characterize two an-
tagonistic soundscapes: subjects are asked to simulate
two full urban sonic environments, one “ ideal ” and the
other “ non-ideal ”. The names “ ideal ” and “ non-ideal ”
have been chosen in order to compare the results with
those of a previous study addressing ideal urban sound
environment representations13. In this paper, the focus is
put on the acoustical analysis of the simulated scenes to
figure out what the characteristics of an ideal (resp. non-
ideal) urban environment are, in terms of sound source
composition, sound event densities and sound levels. To
refine the analysis, sound sources categories and their
related quantitative data are investigated according to
different semantic levels of categorization (urban trans-
port>car>car-passing)4,25.

The simulated scenes as well as the annotations
are available on the archive Data Repository: https:
//archive.org/details/soundSimulatedUrbanScene
The experiment web-page is available via the link
http://soundthings.org/simScene/. It should be run
on the Chrome browser or the Mozilla Firefox browser.
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IV. EXPERIMENTAL PARADIGM

The proposed experimental protocol is largely inspired
by hypotheses coming from cognitive psychology10,11 and
categorization theory29. A sound is considered both for
its physical properties and for its semantic value which
both depend on the subject and the context (urban en-
vironment). The purpose of our protocol is to objectify
human mental representations of the sonic world without
the need for a linguistic analysis, by characterizing them
with combined semantic and numerical data.

To that end, subjects are asked to recreate a com-
plex sound environment, making use of an environmental
sound data set that they may explore without any writ-
ten textual help thanks to a selection interface designed
for this study. The selection process has been designed to
rely only on the listening of sounds themselves, in order
not to influence subjects with a priori associated seman-
tic values. Once a sound element is selected, subjects
must name it. They may then modify some of its physi-
cal parameters, thanks to a set of audio controllers. This
framework is depicted on Figure 2. It exposes three types
of data to objectify mental representations:

1. Generic semantic data: the “ tags ” of the sounds
chosen by the subject. A tag is relative to the
nomenclature of our typology, and thus pre-defined
by experimenters. (ex: male-voice)

2. Quantitative data: the set of “ audio parameters ”
attributed to the sounds by the subject (ex: sound
level dB).

3. Non-generic semantic data: all the subjective ver-
bal data including the names given by the subject
to the sounds they selected (ex: the cries of a man),
a general title of the simulated scene, and a free
comment concerning the creation process.

The proposed paradigm can thus be seen as the inverse
of that of a description task (questionnaire, interviews)
that uses audio data as input (see Figure 1). In contrast
with interviews and questionnaires, which both require
subjects to describe a soundscape, i.e. to decompose the
soundscape in elements, subjects are asked to recompose
the soundscape from a sound data set of urban environ-
mental sounds. This sound data set represents the “ sonic
world ”: a semantic discretization of it in term of “ṡound
sources ”. It ideally provides the subject with all the
sound diversity he may desire.

The proposed approach questions the following:
“ What sounds have been used? ”, “ how have they been
used? ” and “ how have they been named? ”, whereas
descriptions tasks respond to: “ What sounds have been
named? ” and “ how have they been described? ”.

V. SIMULATING THE SOUNDSCAPE

A. Soundscape model

In order to allow the creation of a complex sound envi-
ronment, a model of soundscape has been designed whose

Subject Psycho-linguistic
analysis

Re-composition

Decomposition

Langage Categories of 
sound sources

Subject
Sounds and audio

parameters chosen
Categories of 
sound sources

non ambiguous 
analysis

words

+  words

soundscape

simulated soundscape data set

FIG. 1. The psycho-linguistic analysis paradigm (top) and
the proposed approach (bottom)

key aspects are now presented. A soundscape is assumed
to be a sum of tracks. Each track is modeled by a tem-
poral sequence of sound samples that belong to the same
sound class. To this sense, each track is related to one
specific sound class (leaf sound class more specifically, see
V.B). To generate a soundscape, subjects may interact
with the tracks, but not with specific sound samples. In
other words, if a subject wishes to put a sequence of car
sounds, he may choose the sound class car passing and
manipulate its associated track, but he cannot interact
with individual sound samples of car passing.

Concerning the sound classes, the commonly accepted
distinction made between “ sound events ” and “ sound
textures ” is taken into account. A soundscape is thus
regarded as “ a skeleton of events on a bed of texture ”24.
Several studies point out the fact that textures and events
drive two distinct cognitive processes20,22,30. If there is
to some extend an analogy between the notion of “ sound
event ”, and the Schaferian notion of “ signal ”, the anal-
ogy is not obvious between the notions of “ texture ” and
keynote. Schafer’s definition of keynote is perceptively
motivated whereas most definitions of texture adopt a
morphological approach (see30 for a definition of texture,
which is the one adopted in this paper).

Following this distinction (events vs textures), two sep-
arate treatments are handled by the soundscape simula-
tor:

• For the sound event classes the temporal sequence
is made of randomly selected sound samples belong-
ing to the considered sound class of events. the
temporal sequence is scaled by the mean/average
spacing time between the sound events, the begin-
ning and the end of the sequence.

• For the sound texture classes the temporal se-
quence is made of randomly selected texture sam-
ples belonging to the considered texture class,
which are sequenced without time space (crossfad-
ing is used to guarantee that the transition is seam-
less). Only the beginning and the end of the sam-
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world
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Soudscape
generated by subject

(Audio)
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control 
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and Free comments

Psychological 
objectivation 
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: audio and quantitative data
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Names given to 
chosen sounds

Tags of the
chosen sounds

Objectified
Representations

of the sonic 
world

Acoustical 
analysis

Recording

Listening

FIG. 2. Paradigm of the proposed experimental protocol. square: non-generic semantic data; star : generic semantic data;
circle: audio and quantitative data; Dashed-line: data not addressed in this paper; Line: data addressed in this paper

ple sequence may be set by the subject. Further-
more, in order to avoid any unnatural effect due to
the repetition of identical sounds1, the soundscape
simulator guaranties that a sample will never tran-
sition to itself.

Six audio parameters allow the subject to manipulate
sound sequences of each selected class, in terms of sound
levels and time positioning, see Table I. The parameters
have an effect on all the samples of a sound sequence. To
this sense, sound levels, and time spaces between events
(only for events classes) are controlled in terms of aver-
age and variance between all the sound samples. Global
parameters as global fade in/out and start/stop positions
act on all the sequence. A last parameters called “ sample
fade in/out ” allows subject to set a same fade effect sep-
arately on each sample of an events sequence (only for
events classes).

B. Sound data set

Segmenting the sonic world to provide the subject with
a reasonable and representative number of sound events
and textures is a crucial step of our experiment. In order
to create our sound data set, we rely on previous studies
addressing urban sound source categories4,11,13,14,20,25.
Based on the names of those categories, we build two hi-
erarchical structures of event and texture sound classes,
respectively. Top classes of those structures represent
concepts as “ urban transport ” grouping sound classes
such as “ boat ” or “ cars ”, which are themselves grouped
in sub-classes. The deeper the class level, the lower the
variability between the exemplars lying under the class.
In this paper, the class levels will be referred as seman-

tic levels, the top classes being at the semantic level 0,
the first subclasses at the semantic level 1 and so forth
until the leaf classes are reached. Leaf classes are col-
lections of recorded sound samples. Subjects may only
interact with the leaf classes. The Figure 3 illustrates the
hierarchical structure.

C. Simulation process

The simulation process involves two steps (see Fig-
ure 4), each of them relying on particular data resources
and software interfaces. The two steps are:

1. Sound Class selection: where the subject has to se-
lect a leaf class of sound (“ car passing ”, “ heavy
rain ”, . . . ). The selection is made without any
written verbal help thanks to a particular selection
interface.

2. Sound Class modification: where the subject may
tune the parameters (time and intensity) of the
temporal sequence formed by sounds belonging to
the selected sound class.

VI. EXPERIMENT

A. Participants

44 post-graduate students of the École Centrale de
Nantes (French engineering school), were asked to take
part in the experiment. They were 30 males and 14 fe-
males and were about the same age (M: 21.6, STD: 2).
All of them have been living in the same large French
city (Nantes) for at least two years.
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Audio Parameters Description

Sound intensity (dB) Average and variance

Spacing time (sec) Average and variance

(only for event classes)

Position in Scene (sec) Start and Stop

Fade In/out (sec) Global

Sample fade In/out (sec) For each events

(only for event classes)

TABLE I. Description of the audio parameters

Level 0

(top class)

Level 1 Level 2

(leaf class)

Subject

Hierarchical Structure

Samples

Transport Car

sample 1
sample 2

sample n

Scooter

Car
passing

Car
starting

Selection

FIG. 3. Scheme of the hierarchical structure used both for the
event and texture data sets. Depending on the considered top
class, there could be more than 3 semantic levels.

B. Apparatus

483 urban environmental sounds were collected, of
which 381 sound events and 102 textures. Among them,
260 events and 72 textures were recorded by the au-
thors. The rest, which proved to be particularly difficult
to record, came from existing sound banks. All record-
ings were performed using the shotgun microphone Audio
Technica AT8035 connected to a ZOOM H4n recorder.
The use of a shotgun microphone allowed us to isolate as
much as possible sound recordings from undesired events.
All the sound were normalized to the same root mean
square (RMS) level. The experiment was run simulta-
neously with the 44 subjects spread in three identical
rooms with calm environment. Subjects were forbid-
den to talk to one another. Audio was presented dioti-
cally to each participant via BeyerDynamic DT 990 Pro
semi open headphones. Three experimenters were always
present (one in each room) to give instructions and an-
swer queries if needed, including explanations, software
installation and warm up session.

C. Task

Subjects are asked to successively create two urban
soundscapes. The first must be ideal (ie the favorite ur-
ban soundscape of the subject in which they would like

1) Choose a 
sound class 2) Name the 

sound class

Set the audio
parameters

Step 1:

Iterative process for 

generating a soundscape

3) Give a global title to the 
generated soundscape

4) Give a free comment about 
the generated soundscapes

 5) Indicate potential missing 
sound from the sound data set

6) Criticize the software and 
the selection interfaces

Step 2:

Verbal Description

FIG. 4. The simulation process

to live), the second non-ideal (ie the worst urban sound-
scape of the subject in which they would not like to live).
They are asked to mimic a static listener. Subjects are
absolutely not restricted in their design choices, but are
forbidden to create physically impossible situations such
as “ a dog barking every 10 milliseconds ”. Each simula-
tion involves six steps which are exposed in Figure 4. At
the start of the experiment, a small tutorial of 20 minutes
has been planed in order to familiarize the subject with
the software environment. The experiment is scheduled
to last about two hours.

D. Data collection and analysis

Four subjects were excluded from the analysis due to a
misunderstanding of the instructions or a failure to com-
ply with the time limits. 40 subjects completed the ex-
periment successfully, giving us 40 ideal urban auditory
scenes (i-scenes) and 40 non-ideal urban auditory scenes
(ni-scenes).

The proposed experimental protocol generated a large
range of data suggesting numerous avenues of investi-
gations. We here choose to restrict ourselves to 1) the
analysis of the holistic properties of the created scenes
such as sound levels, event density and diversity, and
2) a class wise analysis, i.e. the analysis of the proper-
ties attached to each specific sound class, and a study of
the distribution of the classes among the ideal and non
ideal scenes. Other aspects are intentionally left for fu-
ture research. Thus, among the collected data, we focus
on 2 types of data: 1) the generic semantic data be-
ing the “ tags ” of the chosen sound classes, and 2) the
quantitative data being the sound levels attached to the
sound classes. For the holistic analysis, the data are aver-
aged over the scenes, without looking at particular sound
classes. For the class-wise analysis, the scene content is
investigated with respect to the different sound classes
used.
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Event classes Texture classes

i-scenes -6.8 (5.4) -2.6 (3.9)

ni-scenes -2.4 (3.2) -1.6 (2.6)

TABLE II. Sound levels: mean sound levels in dB averaged
over the subjects

Semantic i-scenes ni-scenes

level Coverage Diversity Coverage Diversity

0 100 % 5.7 (1.4) 100 % 5.7 (1.4)

1 95 % 7.6 (2.7) 95 % 9.5 (2.5)

2 85 % 8.1 (3.2) 89 % 9.7 (2.7)

3 86 % 8.3 (3.4) 89 % 9.7 (2.7)

TABLE III. Diversity and coverage: the coverage is the per-
centage of the sound classes (events and Textures) of the data
set that have been used by all the subjects. The diversity is
the mean number of distinct sound classes chosen by each
subject, averaged over the subjects

VII. HOLISTIC ANALYSIS

For the holistic analysis, all the statistical tests are
performed using a Wilcoxon signed ranks test at the 5%
significance level. Observations are obtained by averag-
ing the data related to each scene. Results are presented
in the tables using the convention average(standard de-
viation).

A. Sound levels

Table II shows the results for the mean sound levels av-
eraged over all subjects. For each scene, the mean sound
level is obtained by averaging the sample levels. Samples
are the elements which composed a temporal sequence
of a particular sound class: if a subject selects the event
sound class car passing and creates a sequence composed
of 10 audio events, 10 samples are considered. This mea-
sure is thus not equivalent to the global sound level, but
can reasonably be considered a good indicator of the over-
all sound level of a scene. Considering the event samples
of the i- and ni-scenes, results show that the sound levels
are significantly higher (p = 2.08∗10−5) for the ni-scenes,
indicating that sound levels are indeed on average higher
for unpleasant sound environments. But if there is a bla-
tant difference between the event sound levels of the i-
and ni-scenes, the deviation between the texture sound
levels is not significant(p = 0.14). This result suggests
that textures have less direct influence on the sound level
perception. This could be due to the fact that textures
are sounds with low semantic weight30, in other words,
sounds which are less easy to identify. This is in line
with early results of Kuwano et al.18 showing that overall
judgment of loudness of a sound environment sequence
is not statistically different with average instantaneous
judgment of the recalled sound events of the sequence.

Density of the sound events

i-scenes 53 (65)

ni-scenes 63 (64)

TABLE IV. Density of the sound events: mean number of
sound events of each scene averaged over the subjects

Semantic level Event and texture Event Texture

0 81 % 76 % 70 %

1 90 % 91 % 78 %

2 92 % 89 % 80 %

3 93 % 91 % —

TABLE V. Precision at rank 5 (P@5) computed from the
Jaccard distances between the scenes for different semantic
levels

B. Diversity and coverage

The notion of diversity is addressed by observing the
number of distinct sound classes (events and textures)
used in each i- and ni-scenes. This number depends on
the semantic level considered. For example, let us con-
sider two ni-scenes, one having a sound class car-passing
of the semantic level 2, and the other a sound class car-
starting, also of the semantic level 2. Both classes belong
to the hierarchical structure transport (level 0) > car
(level 1). We will count 2 distinct sound classes for the
semantic levels 2 and 3 (as car-starting and car-passing
have no subclass), and only 1 sound class for the semantic
levels 0 and 1.

Averaged results are shown in Table III. Except for the
semantic level 0, the diversity is significantly higher for
the ni-scenes (level 1: p = 2.5 ∗ 10−4; level 2: p = 0.006;
level 3: p = 0.011;). This reveals that ni-scenes are com-
posed of a larger variety of sounds than i-scenes, suggest-
ing that a non ideal urban environment contains more
distinct sound sources than an ideal urban environment.

To qualify this measure of diversity, and verify that it
is not biased by the selection interface, we look at the
coverage. The coverage is defined by the percentage of
the sound classes (events and textures) of the data set
that have been used by all the subjects. For example, if
all the classes of the semantic level 1 have been chosen by
at least one subject, the coverage for the semantic level 1
will be of 100%. A low coverage would suggest that some
parts of the data set have not been explored. Results are
shown in Table III. The coverage remains superior to
85% regardless the semantic level, indicating that most
of the sounds have been used for each type of scenes.

C. Event density

The event density is defined as the number of event
sound samples used to generate a scene, regardless of the
classes. We can see that the numbers of sound samples
vary widely with the subjects. There is no statistical

6



difference between the densities of the i- and ni-scenes
(p = 0.14). This suggests that the global sound events
density does not influence the qualitative evaluation of a
urban soundscape.

VIII. CLASS-WISE ANALYSIS

For the class-wise analysis, all the statistical analy-
ses are done using a Wilcoxon rank-sum test (Mann-
Whitney-Wilcoxon test) at the 5% significance level. Ob-
servations are obtained by averaging the data related to
each class.

A. Semantic features: an effective way to evaluate
soundscape quality

In order to describe the scenes in terms of sound
sources, the “ tags ” of the sound classes (event and tex-
ture) chosen by the subjects are now investigated. Fig-
ures 5 and 6 display the “ tags ” of the semantic levels 1
or 2. For ease of reading, the tags horn, fire alarm and
car alarm are grouped into a class named alarm/horn the
classes bus and train are grouped into a class named pub-
lic transportation, and the classes truck, car, scooter, mo-
torcycle and start passage-way are grouped into a class
named traffic. Classes with a selection percentage less
than 2 % are not displayed. We only count the selected
sound classes and not the number of samples of their
respective sequences.

There is considerable difference between the “ tags ”
of the i- and ni-scenes, confirming that sound seman-
tics play an important role in soundscape evaluation. To
address this, each simulated scene is represented by a
boolean vector of n dimensions Si = (x1, x2, . . . , xn),
i ∈ [1, 80]. Each dimension corresponds to a sound class
(event and texture) of a particular semantic level (for ex-
amples n = 44 classes for the semantic level 1). Thus
x1 = 1 indicates that the sound class x1 is present in
the scenes Si (not present if x1 = 0 resp.). A Jaccard
distance26 is then computed between the vectors Si. To
quantify how semantic features characterize both the i-
and ni-scenes, the precision at rank 5 (P@5) metric is
used, i.e. the average number of items of the same class
among the 5 closest items to a given seed item. For each
scene Si, P@5 is thus obtained by averaging the number
of scenes having the same label as Si (i or ni) among the
five scenes Sj (j = 1, ..., 5) that are closest to Si. Results
are then averaged over the scenes Si (i = 1, . . . , 80).

Results are shown in Table V. For the semantic level
1, a P@5 of 90% is found, with a random threshold of
58%. The deeper the hierarchical level, the higher the
P@5. We find 92.25% for semantic level 2 and 92.75% for
semantic level 3. This is a strong indicator that seman-
tic values of sounds are good descriptors to distinguish
between the i- and ni-scenes. To refine the analysis, the
same test is run considering separately the sound textures
and the events to describe the scenes (for the semantic
level 1, events: Si ∈ Si = (x1, x2, . . . , x31) and texture:
Si ∈ Si = (x32, x33, . . . , x44)). The P@5 achieved for the

semantic level 1 of 91% for the events and 78.5 % for
the textures demonstrate that sound events contribute
more to the perception of soundscape quality than sound
textures.

B. Hierarchical analysis of sound categories

The sound classes showed in the Figures 5 and 6
are close to those found by Guastavino13 in a psycho-
linguistic study also addressing ideal urban soundscape
perception. Classes that suggest human presence and
nature are the most present in i-scenes while classes re-
ferring to mechanical and construction work sounds are
used for ni-scenes. This fact has been observed in other
psycho-linguistic studies11,14,28. It confirms the biophilia
hypothesis that “ humans are attracted to nature ” (Wil-
son quoted by Guastavino13). However some differences
are to be noted. In her study, Guastavino13 point out
that “ public transports ” are typical sounds of an ideal
urban environment (also mentioned by Dubois et al.11).
She attributes this observation to the fact that urban en-
vironment perception is driven by the meaning attributed
to the identified sources. As this meaning is influenced
by social values, public transport sounds are better ac-
cepted than those of private vehicles. Our results tend to
qualify this claim by showing that sounds of public trans-
ports (bus and train) were chosen for both the i-scenes
(3.97% of the selected sound classes) and the ni-scenes
(5.1% of the selected sound classes). Moreover, the sound
densities (i-scenes: 1.1(2.1); ni-scenes: 1.4(2.2); p = 0.2)
as well as the sample levels (i-scenes(dB): -1.5(3.1); ni-
scenes(dB): -1.6(3.3); p = 0.47) do not differ significantly.
Thus even if the idea of public transport sounds are well
accepted due to societal considerations, the sound itself
remains similar to that of any vehicles and appears in
the ni-scenes more than car or truck sounds. Although
semantic features influence the qualitative evaluation of
public transport sounds (bus sounds correspond indeed to
3.64% of the event classes used in the i-scenes, as much as
bicycle sounds and more than any other vehicle sounds),
it seems that, for this sound category, it is not predom-
inant over the role played by the physical attributes of
the sound.

Figures 5 and 6 indicate a counter-intuitive result
showing that the event class traffic (composed of the
event subclasses truck, car, scooter, motorcycle and start
passage-way) is well represented in the i-scenes (10.3%
of the selected sound classes) as well as in the ni-scenes
(21.6%), thus suggesting that traffic sounds are an inte-
gral part of an ideal urban environment. If we look at the
sample levels, there is no statistical difference between
the i- and ni-scenes (i-scenes (dB): -1.8(2.1); ni-scenes
(dB): -1.7(3.6); p = 0.17). The difference occurs only if
we look at the sample densities (i-scenes(dB): 2.7(4.5);
ni-scenes (dB): 10.4(11.9); p = 3.6 ∗ 10−5) which is sig-
nificantly superior for the ni-scenes. These results tend
to indicate that traffic sounds are not absent from the
representation of an ideal urban environment provided
their densities are not excessive. If we refine the analysis
by assessing separately each event subclass of traffic, we
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FIG. 5. Percentage of the number of sound classes of events
(top) and textures (bottom) used by the subjects for the i-
scenes at the semantic level 1 or 2 depending of the sounds
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FIG. 6. Percentage of the number of sound classes of events
(top) and textures (bottom) used by the subjects for the ni-
scenes at the semantic level 1 or 2 depending of the sounds

find significant differences only for the subclasses scooter
and motorcycle. The former has a significantly higher
density (p = 5.6 ∗ 10−4) for the ni-scenes, and the lat-
ter has both significantly higher sample levels (p = 0.03)
and density (p = 0.02) for the ni-scenes. Putting these

Semantic level Markers

i-scenes ni-scenes

0 construction work

1 church bell klaxon

bicycle bell siren

animal vehicle work

footsteps

2 church bell klaxon

birds siren

bicycle bell vehicle work

female laugh

male laugh

3 church bell klaxon

birds singing siren

bicycle bell vehicle work

female laugh

male footsteps concrete

TABLE VI. Event classes found to be markers. In each cell,
markers are ordered using descending order of V-test values

results with the urban problematic of “ traffic noise ”, it
appears that 1) it is mostly the sounds of two-wheeled
vehicles that are the cause of the annoyance, and 2) that
in this case, sound levels are not a relevant indicator of
quality compared to sound density.

The texture class traffic hubbub is well present in the
i-scenes. There is no statistical difference between the
i- and ni-scenes for both the sample levels (p = 0.11)
and the densities (p = 0.77). Considering now the sub-
classes of traffic hubbub (see Figures 5 and 5), we see
that the Traffic hubbub of streets class has been mostly
used for the i-scenes (18.75 % of the textures used in i-
scenes) whereas the Traffic hubbub of crossroad class has
been only used for the ni-scenes. If we compare those
two subclasses, we find again no statistical differences
for both the sample levels (p = 0.19) and the densities
(p = 0.37). These observations show the importance of
context and expectation in soundscape evaluation. The
fact that traffic hubbub is not depreciated for ideal ur-
ban environments shows that “ traffic sounds ” are un-
derstood as being an inherent element of urban environ-
ment. This is in contradiction with an intuitive idea that
traffic background are indeed “ noises ”. Similar findings
are presented by Guastavino12: asking subjects to de-
scribe urban background, she found that appreciation of
the traffic background depends on the subject, as it can
be reassuring or even appreciated, providing it is not too
loud.

C. Markers

This section investigates the existence of potential
event sound markers of an ideal urban environment (resp.
non-ideal urban environment), ie an event class which
has been mostly used in one type of soundscape. To
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identify markers, the V-test statistical value is used. For
each semantic level, considering the population as being
the total number n of event classes used for both i-scenes
and ni-scenes, nk the number of event classes used for one
type of scene k (ni-scenes or i-scenes), nj the number of
event classes j used for both i-scenes and ni-scenes, and
nkj the number of event classes j used for one type of
scene k (ni-scene or i-scene), the V-test of the event class
j (modality) in the scene type k (group) can be computed
as follow:

V-testjk =
njk − nk

nj

n√
nk

n−nk

n−1
nj

n (1− nj

n )

The V-test tests the null hypothesis that the nk in-
dividuals of the group k are randomly drawn from the
population of n individuals. Usually the V-test value is
assessed at the 5% significance level, that is, if the null
hypothesis is true, the V-test value has a 95% chance to
fall within the confidence interval [−1.96, 1.96]. Thus the
V-test is considered as statistically significant if its abso-
lute value remains superior to 2. It is safer to correct the
usual 5% significance level as we are testing many modal-
ities (49 event classes for the third semantic level). To do
so, we use the Bonferroni adjustment27. The Bonferroni
adjustment is approximated by dividing the 5% signifi-
cance level by the number of modalities j (event classes)
to be tested. For example, if we test the 49 event classes
of the semantic level 3, the corrected significance level
will be 0.001%, and the V-test value will be statistically
significant if its absolute value is superior to 3.29.

Results are shown on the table VI. Eleven markers are
found across all the semantic levels. Confirming again
the Biophilia hypothesis, sounds of human (footsteps, fe-
male laugh, male laugh and male footsteps concrete) and
nature (animal, birds and birds singing ) are markers of
the i-scenes. The presence of Church Bell as a strong
marker of the i-scenes can be due to the socio-cultural
background of the subjects, in great majority French cit-
izens. It confirms Schafer’s claim that sounds that are
recognized by a community as integral part of its sonic
environment are popular31.

For the ni-scenes, the markers (Klaxon, Siren, vehicle
work and construction work) are rather intuitive. In-
terestingly, none of the event classes related to traffic
sounds is a marker of the i- or ni-scenes. It confirms the
trend observed in VIII.A that traffic sounds are under-
stood to be intrinsically part of a urban environment. In
other words, although the event densities of traffic sound
classes differ between the i- and ni-scenes, traffic sound
classes presence is still not a characteristic of a non-ideal
urban sound environment.

IX. DISCUSSION

A. About protocol validity

One way to validate the protocol is to look at the sub-
ject comments. Looking at the database criticisms, 28

subjects stated that they couldn’t find one or several de-
sired sounds, with a maximum of 4 sounds for one sub-
ject. From all the missing sounds we identified 26 sound
classes at different semantic levels. Among those classes,
16 were effectively present in the database, 1 referred
to musical sounds which we had chosen to exclude from
the database and only 9 were effectively absent. Among
the 16 sound classes, they have all been used by at least
one subject, except for one sound class (stroller/trolley).
Among the 9 missing ones, we find very specific sounds
as sport car or teenager voice. We believe that those
results show that the database diversity was sufficient
for the purpose of the study. If we look at the interface
criticisms, 32.5 % of all the subject clearly stood that
the selection interface was a “ straightforward yet effec-
tive way ” to find a sound whereas only 10 % indicated
that they encountered difficulties. The remaining 57.5 %
did not report difficulties. Those results tend to confirm
that both the data set and the selection interface are well
suited for the experiment.

B. Outcomes

We believe that four main benefits may derive from us-
ing the proposed simulation approach: 1) Other studies
based on description tasks use full soundscapes record-
ings as input. Those recordings are specific exemplars of
a very many potential soundscapes which could occur at
the same location, at the same time. The re-composition
process prevents experimenters from this bias as the sim-
ulated soundscape is directly related to the subject rep-
resentation. Although the simulation is limited by the
diversity of the sound data set, we believe that this bias
is more controllable, as the expressiveness of the sub-
jects’ responses will be less constrained by the size of the
data set than by the exposure to imposed exemplars of a
soundscape. 2) The presence of a structured sound data
set allows us to focus directly on the sounds chosen by
subjects instead of verbal data only. Thus it may reduce
the potential bias of a psycho-linguistic analysis, the first
being the mastering of the subject’s language by the sub-
ject, the second being the lack of definite terms to fully
describe sounds or complex sound environments13, and
the third being the high inter-subject variability concern-
ing the description of a same sound. 3) The simulation
protocol provides sound signals of simulated urban en-
vironments, annotated in term of sound sources, sound
intensity, time positioning and qualitative appreciations.
It allows us to appreciate new soundscapes descriptors
as sample density, which otherwise would be tedious to
obtain from recordings.

To some extend, those simulated scenes may be re-
garded as cognitive summaries of mental representa-
tions and may be a useful data set for all Computa-
tional Auditory Scene Analysis (CASA) research or cog-
nitive neuroscience studies investigating ’auditory object’
decomposition23 or regularities representation impact on
high level perceptive processes37.
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X. CONCLUSIONS AND PERSPECTIVES

In this paper we introduced a new experimental proto-
col to study soundscape perception based on a simulation
paradigm. Application of this protocol allows us to gain
knowledge about the perception of urban soundscape by
asking human subjects to simulate two urban sound envi-
ronments: one ideal and the other non-ideal. The results
of the presented study show that:

• The simulation paradigm provides the same high
level sound categories as those observed by ques-
tionnaire based studies13, and allows us to refine
the hierarchical analysis of those sound categories.

• A semantic characterization of the soundscape in
term of presence / absence of sound sources is an
effective way to characterize ideal or non-ideal ur-
ban environment.

• Global sound level is indeed a good indicator of
pleasantness, but not for specific sound categories.

• Structural features such as sound event density
are found to be relevant descriptors to character-
ize traffic sounds.

These results indicate that associated semantic values
of events is an effective information to categorize the sim-
ulated scenes between ideal and non ideal scenes. More
precisely, the study shows that some event categories may
be considered as markers of a specific type of soundscape.
We believe that those results could be useful to guide the
design of computational categorization paradigms based
on automatic sound event detection.

We believe that this protocol allows us to directly ob-
jectify important aspects of the mental representations
of the subjects by being able to look at 1) the sound
classes chosen by the subjects to simulate the scenes and
2) their associated quantitative data. Lastly, the use of
a pre-fixed structured data set may facilitate the inter-
subjects or inter-studies comparison as all subjects have
access to the same decontextualised material to recreate
their own vision (contextualisation) of a particular sound
environment.

We believe that performing this experiment with sub-
jects of different socio-cultural backgrounds would be in-
teresting for future work as it would allow us to study
the cultural impact on the hearing cognitive processes
involved.
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