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Noncommutative version of Borcherds' approach to quantum field theory

Richard Borcherds proposed an elegant geometric version of renormalized perturbative quantum field theory in curved spacetimes, where Lagrangians are sections of a Hopf algebra bundle over a smooth manifold. However, this framework looses its geometric meaning when Borcherds introduces a (graded) commutative normal product. We present a fully geometric version of Borcherds' quantization where the (external) tensor product plays the role of the normal product. We construct a noncommutative many-body Hopf algebra and a module over it which contains all the terms of the perturbative expansion and we quantize it to recover the expectation values of standard quantum field theory when the Hopf algebra fiber is (graded) cocommutative. This construction enables to the second quantize any theory described by a cocommutative Hopf algebra bundle.

Introduction

In an article entitled "Renormalization and quantum field theory" [START_REF] Borcherds | Renormalization and quantum field theory[END_REF], Richard Borcherds described a rigorous approach to renormalized perturbative quantum field theory in curved spacetimes. Borcherds' approach is closely related to the causal algebraic formalism [START_REF] Brunetti | Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds[END_REF], and it employs sheaf theory and Hopf algebras to achieve a particularly elegant and compact picture of quantum field theory (QFT). In particular, the combinatorial aspects of quantization and renormalization are completely taken care of by a Hopf algebraic structure. Moreover, Borcherds' approach has definite advantages when it comes to generalization. For example, the use of Hopf algebras is particularly powerful to deal with systems involving an initial state which is not quasi-free [START_REF] Ch | One-particle irreducibility with initial correlations[END_REF] and many of its tools (for example vector bundles and Hopf algebras) have natural noncommutative analogues that can be used to investigate noncommutative versions of quantum field theory.

In the present paper, which is a sketch of a more detailed article in preparation, we extend parts of Borcherds' approach by replacing his graded commutative normal product of classical fields by a tensor product which (i) allows us to formulate a fully geometric version of second quantization, (ii) provides a manageable topology for the many-body algebra, (iii) enables us to second quantize any cocommutative Hopf algebra bundle.

Hopf algebra bundles

In this section we introduce some concepts that are used in Borcherds' approach to QFT. Classical fields are sections of vector bundles over the space-time manifold M. We first reformulate Borcherds' sheaves into more familiar sections of vector bundles.

Let M be a smooth manifold and F π → M a smooth vector bundle over M [START_REF] Lee | Manifolds and Differential Geometry[END_REF]. We denote by φ α : π -1 (U α ) → U α ×V the local trivializations (where V is a vector space) and by t αβ the transition functions such that φ α

• φ -1 β (x, v) = (x,t αβ (x)v), where φ α • φ -1 β : (U α ∩U β ) ×V → (U α ∩U β )
×V and where the isomorphism t αβ (x) is an element of GL(V ). A vector bundle is an algebra bundle if the fiber model V is an algebra over K (where K is R or C) and if the transition functions are algebra isomorphisms:

t αβ (x)(u • v) = t αβ (x)(u) • t αβ (x)(v).
An algebra bundle is a Hopf algebra bundle if V is a Hopf algebra over K and the transition functions are Hopf algebra morphisms. In particular, the coproduct sends V to V ⊗ V , which is the fiber of the (internal) tensor product of

vector bundles F ⊗ F π ′ → M [4].
The space of sections Γ(M, F) is an infinite-dimensional vector space, but it is also a module over the ring C ∞ (M) of K-valued smooth functions: as such, it admits a (locally) finite basis which allows to use simple linear algebra tools. If F is an algebra bundle, then the space of sections Γ(M, F) is an algebra over the ring C ∞ (M): if σ 1 and σ 2 are such sections with φ α σ 1 (x) = (x, v 1 ) and φ α σ

2 (x) = (x, v 2 ), then φ α σ 1 • σ 2 (x) = (x, v 1 • v 2 ).
Similarly, the space of sections of a Hopf algebra bundle is a Hopf algebra over the ring C ∞ (M). In particular, the coproduct is now a map from

Γ(M, F) to Γ(M, F ⊗ F) ∼ = Γ(M, F) ⊗C ∞ (M) Γ(M, F).
Borcherds starts from a vector bundle E π → M of finite rank whose sections are the classical fields of the model. To define Lagrangian densities as polynomials in the field and its derivatives, he considers the infinite jet bundle JE π → M and the Hopf algebra bundle S(JE * ) π → M, which describes the polynomial functions on JE.

For example, the element

L = f + g µ + h µν + k, where f ∈ Γ(M, E * ), g µ ∈ Γ(M, J 1 E * ), h µν ∈ Γ(M, S 2 (J 1 E * )) and k ∈ Γ(M, S 4 (E * )), corresponds to the Lagrangian density L(ϕ) = f , ϕ + g µ , ϕ µ + h µν , ϕ µ ϕ ν + k, ϕϕϕϕ
, where ϕ is a field, ϕ µ its derivatives and •, • is the duality pairing between Γ(M, S(JE * )) and Γ(M, S(JE)) induced by the duality pairing between JE * and JE. This Hopf algebra is commutative and cocommutative. Note that the topological properties of this algebra must be carefully taken into account because JE * is an infinite-dimensional Fréchet manifold.

In the next section, we shall consider a general Hopf algebra bundle F π → M whose sections play the role of Lagrangian densities, where F = S(JE * ) in Borcherds' case.

The Fock Hopf algebra of classical fields

Second quantization starts from the construction of an algebra containing classical fields defined on any number of spacetime points. The commutative product of this many-body algebra is called the normal product, and it will be deformed to define a quantum field algebra. In Borcherds' paper, the algebra corresponding to the normal product of QFT is the symmetric algebra S K (Γ(M, F)) on the space of sections, which is too big to have a reasonable topology and which is no longer geometric, in the sense that S K (Γ(M, F)) is not the space of sections of a bundle over a manifold. This is because this manifold should be the quotient of M n by the action of the symmetric group on n elements, which is generally not a topological manifold [START_REF] Wagner | Symmetric, cyclic and permutation products of manifolds[END_REF].

To solve that problem, note that for any bundle F π → M there exists an external tensor product of bundles F ⊠ F π×π -→ M × M whose space of sections describes the (completed) tensor product of sections (over

K), Γ(M × M, F ⊠ F) ∼ = Γ(M, F) ⊗K Γ(M, F), that is, σ (x 1 , x 2 ) = ∑ σ 1 (x 1 ) ⊗ σ 2 (x 2 ). Moreover, since Γ(M, F) is a Hopf algebra over C ∞ (M), then Γ(M × M, F ⊠ F) is a Hopf algebra over C ∞ (M 2 ). Similarly, Definition 1. If F π → M
is a Hopf algebra bundle, the normal product of classical fields over n spacetime points is described by the normal product algebra Γ(M n , F ⊠n ), which is a Hopf algebra over C ∞ (M n ). Therefore, our normal product is encoded in the tensor product of sections, corresponding to the external tensor product of bundles. From a physical point of view, if F = S(JE * ) is the bundle of polynomial Lagrangians of E-valued fields, the external tensor product ⊠ describes exactly the normal product of field polynomials at 2 points of M: e.g. the normal productϕ 4 

(x 1 )∂ µ ϕ(x 2 )∂ µ ϕ(x 2 ) corresponds to the section σ (x 1 , x 2 ) = (x 1 , x 2 ), ϕ 4 ⊗ ∂ µ ϕ∂ µ ϕ of the bundle F ⊠ F over the point (x 1 , x 2 ) ∈ M × M.
The exterior tensor product can be performed on any number n of copies of the bundle F, giving the Hopf bundle F ⊠n π n -→ M n . To describe QFT, then, we need to define a single algebra which contains all numbers of points. The difficulty is that the algebras Γ(M n , F ⊠n ) are defined over different rings C ∞ (M n ), one for each n. It turns out that this problem was solved a long time ago by Bourbaki. The first step is to build

a ring R = lim -→ C ∞ (M n ) [6]
, which is the inductive limit of the rings C ∞ (M n ) corresponding to the map φ mn : C ∞ (M m ) → C ∞ (M n ), with m ≤ n, defined by φ mn ( f )(x 1 , . . . , x n ) = f (x 1 , . . . , x m ). The inductive limit of algebras over different rings is also defined by Bourbaki [START_REF] Bourbaki | Elements of Mathematics[END_REF] and its extension to Hopf algebras is straightforward. Thus, we obtain a Hopf algebra which is reminiscent of the Fock space in the sense that it contains any number of points. Definition 2. If F π → M is a Hopf algebra bundle, the Fock Hopf algebra is the inductive limit of Hopf algebras H Fock = lim -→ Γ(M n , F ⊠n ), which is a Hopf algebra over the ring R

Fock = lim -→ C ∞ (M n ).
Note that the Fock Hopf algebra is commutative iff F is commutative. The Hopf algebra structure on the Fock algebra is used to perform its deformation quantization.

We can now wonder whether the Fock Hopf algebra is a space of sections of a bundle over some infinite dimensional manifold. When M can be described by a single chart to R d , then the answer is yes and the manifold is lim ← -M n , which is a Fréchet manifold built on lim ← -(R d ) n . If M needs several charts, then the projective limit topology is not compatible with the structure of a Fréchet manifold and we need more general concepts of infinite-dimensional manifolds. We can also wonder whether the definition of φ mn is not too arbitrary. Instead of picking up the m first points of (x 1 , . . . , x n ), we can define an inductive limit corresponding to any subset of m elements, but by doing so we recover exactly H Fock and R Fock (because the family of sets {1, . . . , n} is cofinal in the family of subsets of N [START_REF] Köthe | Topological Vector Spaces I[END_REF]) so we stick to the simpler definition because countable inductive limits have better properties than uncountable ones.

Deformation quantization of H Fock

It remains to quantize the Fock Hopf algebra to recover the operator product of standard quantum field theory as a special case. A convenient method to do so is to use quantum groups, that Drinfeld created as a quantization of algebras [START_REF] Drinfel | Quantum groups[END_REF]. His foundation paper even cites the quantization method of Berezin, Vey, Lichnerowicz, Flato and Sternheimer (i.e. deformation quantization or star product). However, the quantization of fields does not use Drinfeld's quasitriangular structure but its dual, the Laplace pairing, which was first defined by Lyubashenko [START_REF] Lyubashenko | Hopf algebras and vector symmetries[END_REF]. Rota and Stein called it a Laplace pairing because, for anticommuting variables, its definition is equivalent to the Laplace identity of determinants [START_REF] Rota | Plethystic Hopf algebras[END_REF]. Borcherds calls it a bicharacter.

Laplace pairing

The problem is now that the Fock Hopf algebra is made of products of polynomials of smooth sections and their derivatives, whereas the quantum field amplitudes are distributions. Therefore, we need to introduce the space D ′ Fock = lim -→ D ′ (M n ), which is the inductive limit of the spaces of distributions on M n . The Laplace pairing is an R Fock -linear map

(•|•) : H Fock ⊗ R Fock H Fock → D ′
Fock , such that, for a, b and c in H Fock , (1|a) = (a|1) = ε(a) and (a|bc) = ∑(a(1)|b)(a(2)|c) and (ab|c) = ∑(a|c(1))(b|c(2)). Since the terms (a (1) |b)(a (2) |c) and (a|c (1) )(b|c (2) ) involve distributions, the product is only done when wavefront set conditions are satisfied [START_REF] Hörmander | The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis[END_REF].

In the case of standard quantum field theory, where H Fock is built from the fiber F = S(JE * ), the Laplace pairing is determined for f and g in Γ(M, E * ) by ( f ⊗ 1|1 ⊗ g) = f ⊗ g, D + , where D + ∈ D ′ (M2 , E ⊠2 ) is the Wightman propagator. This can also be written in a more physical way as (ϕ ⊗ 1|1 ⊗ ϕ) = D + or in a non-rigorous way (ϕ(x)|ϕ(y)) = D + (x, y) in the fiber over (x, y). This definition is extended to derivatives of fields by (∂ α ϕ ⊗ 1|1 ⊗ ∂ β ϕ) = ∂ α ∂ β D + , where α and β are multi-indices. This pairing is well defined because of the structural theorem [START_REF] Grosser | Geometric Theory of Generalized Functions with Applications to General Relativity[END_REF] 

D ′ (M 2 , E ⊠2 ) = Γ c (M 2 , (E * ) ⊠2 ) ′ ∼ = D ′ (M 2 ) ⊗ C ∞ (M 2 ) Γ(M 2 , E ⊠2 ) ∼ = L C ∞ (M 2 ) Γ(M 2 , (E * ) ⊠2 ), D ′ (M 2 ) .

Star product

Quantum group quantization was first defined by Rota and Stein [START_REF] Rota | Plethystic Hopf algebras[END_REF], then developed by Fauser and coworkers [START_REF] Fauser | On the Hopf algebraic origin of Wick normal-ordering[END_REF][START_REF] Ch | Quantum field theory and Hopf algebra cohomology[END_REF][START_REF] Ch | Quantum field theory meets Hopf algebra[END_REF]. Its equivalence with the star product was proved by Hirshfeld [START_REF] Hirshfeld | Star products and quantum groups in quantum mechanics and field theory[END_REF]. Borcherds does not define this product. Definition 3. Let F π → M be a Hopf algebra bundle and H Fock the corresponding Fock Hopf algebra. Then,

C Fock = lim -→ D ′ (M n ) ⊗ C ∞ (M n ) Γ(M n , F ⊠n ) is a H Fock -Hopf module where the coaction β is defined on c = u ⊗ h by β c = ∑ c ′ ⊗ c ′′ = ∑(u ⊗ h (1) ) ⊗ h (2) . The star product on C Fock is defined by c ⋆ d = ∑ c ′ d ′ (c ′′ |d ′′ ), (4.1)
where (c ′′ |d ′′ ) is identified with (c ′′ |d ′′ ) ⊗ 1. If the Hopf algebra is cocommutative, the star product is associative.

If we consider the example

c = u ⊗ h and d = v ⊗ k we find c ⋆ d = ∑ uv(h (2) |k (2) ) ⊗ h (1) k (1) . The product ab(h (1) |k (2)
) is a product of three distributions which is well-defined by the wavefront set condition [START_REF] Hörmander | The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis[END_REF] for standard quantum field theory [START_REF] Brunetti | Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds[END_REF]. Note that C Fock equipped with the star product is a sort of generalized Frobenius algebra, in the sense that (c ⋆ d|e) = (c|d ⋆ e) [START_REF] Ch | Quantum field theory meets Hopf algebra[END_REF].

For example if c = (1⊗1) ⊗ (ϕ⊗1) and d = (1⊗1) ⊗ (1⊗ϕ), then c ⋆ d = (1⊗1) ⊗ (ϕ⊗ϕ) + D + ⊗ (1⊗1) and we recover Wick's theorem usually written ϕ(x) ⋆ ϕ(y) = :ϕ(x)ϕ(y): + D + (x, y) in QFT textbooks. This completes the quantization of the Fock Hopf algebra, i.e. the second quantization of the Hopf algebra bundle F.

The time-ordered product

The last step to obtain Green functions of QFT is to define time-ordered products. We do this by following the causal approach developed by Stueckelberg, Bogoliubov, Epstein, Glaser [START_REF] Epstein | The role of locality in perturbation theory[END_REF] and finally Brunetti and Fredenhagen [START_REF] Brunetti | Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds[END_REF]. Then, the time-ordered product becomes a comodule morphism T : C Fock → C Fock and the Wick expansion of time-ordered products takes the simple form T (c) = ∑t(c ′ )c", where t(c) = (1 ⊗ ε)(T (c)) [START_REF] Ch | Quantum field theory meets Hopf algebra[END_REF]. The time-ordered product is defined recursively by the causality relation1 saying that T (cd) = T (c) ⋆ T (d) if the spacetime support of c is not earlier than the spacetime support of d. By Stora's lemma 2 , the causality relation and the partial order imply that T is defined recursively except on the diagonals, where the distributions have to be extended [START_REF] Brunetti | Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds[END_REF]. The ambiguity of this extension is organized by the renormalization group.

Conclusion

A second quantization method was described for any theory whose Lagrangian density is an element of a cocommutative Hopf algebra bundle. Fermions can be taken into account by using a graded cocommutative Hopf algebra [START_REF] Ch | Quantum field theory and Hopf algebra cohomology[END_REF]. Since we do not require the Hopf algebra to be commutative, we expect this approach to play a role in the second quantization of noncommutative geometry.

Borcherds' Gaussian property is a consequence of the causality relation[START_REF] Epstein | The role of locality in perturbation theory[END_REF].

It can easily be inferred from a remark by Bergbauer[START_REF] Bergbauer | Epstein-Glaser renormalization, the Hopf algebra of rooted trees and the Fulton-MacPherson compactification of configuration spaces[END_REF] that Stora's lemma only requires a (closed) partial order on M, which is taken to be the causal order in applications to Lorentzian manifolds.