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1. Introduction

In an article entitled “Renormalization and quantum field theory” [1], Richard Borcherds de-

scribed a rigorous approach to renormalized perturbative quantum field theory in curved space-

times. Borcherds’ approach is closely related to the causal algebraic formalism [2], and it employs

sheaf theory and Hopf algebras to achieve a particularly elegant and compact picture of quantum

field theory (QFT). In particular, the combinatorial aspects of quantization and renormalization are

completely taken care of by a Hopf algebraic structure. Moreover, Borcherds’ approach has definite

advantages when it comes to generalization. For example, the use of Hopf algebras is particularly

powerful to deal with systems involving an initial state which is not quasi-free [3] and many of its

tools (for example vector bundles and Hopf algebras) have natural noncommutative analogues that

can be used to investigate noncommutative versions of quantum field theory.

In the present paper, which is a sketch of a more detailed article in preparation, we extend parts

of Borcherds’ approach by replacing his graded commutative normal product of classical fields by

a tensor product which (i) allows us to formulate a fully geometric version of second quantization,

(ii) provides a manageable topology for the many-body algebra, (iii) enables us to second quantize

any cocommutative Hopf algebra bundle.

2. Hopf algebra bundles

In this section we introduce some concepts that are used in Borcherds’ approach to QFT.

Classical fields are sections of vector bundles over the space-time manifold M. We first reformulate

Borcherds’ sheaves into more familiar sections of vector bundles.

Let M be a smooth manifold and F
π
→M a smooth vector bundle over M [4]. We denote by

φα : π−1(Uα)→Uα×V the local trivializations (where V is a vector space) and by tαβ the transition

functions such that φα ◦φ−1
β (x,v) = (x, tαβ (x)v), where φα ◦φ−1

β : (Uα ∩Uβ )×V → (Uα ∩Uβ )×V

and where the isomorphism tαβ (x) is an element of GL(V ). A vector bundle is an algebra bundle

if the fiber model V is an algebra over K (where K is R or C) and if the transition functions are

algebra isomorphisms: tαβ (x)(u · v) = tαβ (x)(u) · tαβ (x)(v). An algebra bundle is a Hopf algebra

bundle if V is a Hopf algebra over K and the transition functions are Hopf algebra morphisms. In

particular, the coproduct sends V to V ⊗V , which is the fiber of the (internal) tensor product of

vector bundles F⊗F
π ′
→M [4].

The space of sections Γ(M,F) is an infinite-dimensional vector space, but it is also a module

over the ring C∞(M) of K-valued smooth functions: as such, it admits a (locally) finite basis which

allows to use simple linear algebra tools. If F is an algebra bundle, then the space of sections

Γ(M,F) is an algebra over the ring C∞(M): if σ1 and σ2 are such sections with φα

(

σ1(x)
)

= (x,v1)

and φα

(

σ2(x)
)

= (x,v2), then φα

(

σ1 ·σ2(x)
)

= (x,v1 · v2). Similarly, the space of sections of a

Hopf algebra bundle is a Hopf algebra over the ring C∞(M). In particular, the coproduct is now a

map from Γ(M,F) to Γ(M,F⊗F)∼= Γ(M,F)⊗̂C∞(M)Γ(M,F).

Borcherds starts from a vector bundle E
π
→ M of finite rank whose sections are the classical

fields of the model. To define Lagrangian densities as polynomials in the field and its derivatives,

he considers the infinite jet bundle JE
π
→ M and the Hopf algebra bundle S(JE∗)

π
→ M, which

describes the polynomial functions on JE .
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For example, the element L = f +gµ +hµν + k, where f ∈ Γ(M,E∗), gµ ∈ Γ(M,J1E∗), hµν ∈

Γ(M,S2(J1E∗)) and k ∈ Γ(M,S4(E∗)), corresponds to the Lagrangian density L(ϕ) = 〈 f ,ϕ〉+

〈gµ
,ϕµ〉+ 〈h

µν
,ϕµϕν〉+ 〈k,ϕϕϕϕ〉, where ϕ is a field, ϕµ its derivatives and 〈·, ·〉 is the duality

pairing between Γ(M,S(JE∗)) and Γ(M,S(JE)) induced by the duality pairing between JE∗ and

JE . This Hopf algebra is commutative and cocommutative. Note that the topological properties

of this algebra must be carefully taken into account because JE∗ is an infinite-dimensional Fréchet

manifold.

In the next section, we shall consider a general Hopf algebra bundle F
π
→M whose sections

play the role of Lagrangian densities, where F = S(JE∗) in Borcherds’ case.

3. The Fock Hopf algebra of classical fields

Second quantization starts from the construction of an algebra containing classical fields de-

fined on any number of spacetime points. The commutative product of this many-body alge-

bra is called the normal product, and it will be deformed to define a quantum field algebra. In

Borcherds’ paper, the algebra corresponding to the normal product of QFT is the symmetric al-

gebra SK(Γ(M,F)) on the space of sections, which is too big to have a reasonable topology and

which is no longer geometric, in the sense that SK(Γ(M,F)) is not the space of sections of a bundle

over a manifold. This is because this manifold should be the quotient of Mn by the action of the

symmetric group on n elements, which is generally not a topological manifold [5].

To solve that problem, note that for any bundle F
π
→M there exists an external tensor product

of bundles F ⊠F
π×π
−→M×M whose space of sections describes the (completed) tensor product of

sections (over K), Γ(M×M,F ⊠F)∼= Γ(M,F)⊗̂KΓ(M,F), that is, σ(x1,x2) = ∑σ1(x1)⊗σ2(x2).

Moreover, since Γ(M,F) is a Hopf algebra over C∞(M), then Γ(M×M,F ⊠F) is a Hopf algebra

over C∞(M2). Similarly,

Definition 1. If F
π
→ M is a Hopf algebra bundle, the normal product of classical fields over n

spacetime points is described by the normal product algebra Γ(Mn
,F⊠n), which is a Hopf algebra

over C∞(Mn).

Therefore, our normal product is encoded in the tensor product of sections, corresponding to

the external tensor product of bundles. From a physical point of view, if F = S(JE∗) is the bundle of

polynomial Lagrangians of E-valued fields, the external tensor product ⊠ describes exactly the nor-

mal product of field polynomials at 2 points of M: e.g. the normal productϕ4(x1)∂µϕ(x2)∂
µ ϕ(x2)

corresponds to the section σ(x1,x2) =
(

(x1,x2),ϕ
4⊗∂µϕ∂ µϕ

)

of the bundle F ⊠F over the point

(x1,x2) ∈M×M. The exterior tensor product can be performed on any number n of copies of the

bundle F , giving the Hopf bundle F⊠n πn

−→Mn.

To describe QFT, then, we need to define a single algebra which contains all numbers of points.

The difficulty is that the algebras Γ(Mn
,F⊠n) are defined over different rings C∞(Mn), one for each

n. It turns out that this problem was solved a long time ago by Bourbaki. The first step is to build

a ring R = lim
−→

C∞(Mn) [6], which is the inductive limit of the rings C∞(Mn) corresponding to the

map φmn : C∞(Mm)→ C∞(Mn), with m ≤ n, defined by φmn( f )(x1, . . . ,xn) = f (x1, . . . ,xm). The

inductive limit of algebras over different rings is also defined by Bourbaki [6] and its extension to
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Hopf algebras is straightforward. Thus, we obtain a Hopf algebra which is reminiscent of the Fock

space in the sense that it contains any number of points.

Definition 2. If F
π
→M is a Hopf algebra bundle, the Fock Hopf algebra is the inductive limit of

Hopf algebras HFock = lim
−→

Γ(Mn
,F⊠n), which is a Hopf algebra over the ring RFock = lim

−→
C∞(Mn).

Note that the Fock Hopf algebra is commutative iff F is commutative. The Hopf algebra

structure on the Fock algebra is used to perform its deformation quantization.

We can now wonder whether the Fock Hopf algebra is a space of sections of a bundle over

some infinite dimensional manifold. When M can be described by a single chart to R
d , then the

answer is yes and the manifold is lim
←−

Mn, which is a Fréchet manifold built on lim
←−

(Rd)n. If M

needs several charts, then the projective limit topology is not compatible with the structure of a

Fréchet manifold and we need more general concepts of infinite-dimensional manifolds. We can

also wonder whether the definition of φmn is not too arbitrary. Instead of picking up the m first

points of (x1, . . . ,xn), we can define an inductive limit corresponding to any subset of m elements,

but by doing so we recover exactly HFock and RFock (because the family of sets {1, . . . ,n} is cofinal

in the family of subsets of N [7]) so we stick to the simpler definition because countable inductive

limits have better properties than uncountable ones.

4. Deformation quantization of HFock

It remains to quantize the Fock Hopf algebra to recover the operator product of standard quan-

tum field theory as a special case. A convenient method to do so is to use quantum groups, that

Drinfeld created as a quantization of algebras [8]. His foundation paper even cites the quantization

method of Berezin, Vey, Lichnerowicz, Flato and Sternheimer (i.e. deformation quantization or star

product). However, the quantization of fields does not use Drinfeld’s quasitriangular structure but

its dual, the Laplace pairing, which was first defined by Lyubashenko [9]. Rota and Stein called it

a Laplace pairing because, for anticommuting variables, its definition is equivalent to the Laplace

identity of determinants [10]. Borcherds calls it a bicharacter.

4.1 Laplace pairing

The problem is now that the Fock Hopf algebra is made of products of polynomials of smooth

sections and their derivatives, whereas the quantum field amplitudes are distributions. Therefore,

we need to introduce the space D ′Fock = lim
−→

D ′(Mn), which is the inductive limit of the spaces of

distributions on Mn. The Laplace pairing is an RFock-linear map (·|·) : HFock⊗RFock
HFock→D ′Fock,

such that, for a, b and c in HFock, (1|a) = (a|1) = ε(a) and (a|bc) = ∑(a(1)|b)(a(2)|c) and (ab|c) =

∑(a|c(1))(b|c(2)). Since the terms (a(1)|b)(a(2)|c) and (a|c(1))(b|c(2)) involve distributions, the product

is only done when wavefront set conditions are satisfied [11].

In the case of standard quantum field theory, where HFock is built from the fiber F = S(JE∗),

the Laplace pairing is determined for f and g in Γ(M,E∗) by ( f ⊗ 1|1⊗ g) = 〈 f ⊗ g,D+〉, where

D+ ∈D ′(M2
,E⊠2) is the Wightman propagator. This can also be written in a more physical way as

(ϕ⊗1|1⊗ϕ) = D+ or in a non-rigorous way (ϕ(x)|ϕ(y)) = D+(x,y) in the fiber over (x,y). This

definition is extended to derivatives of fields by (∂ α ϕ ⊗ 1|1⊗ ∂ β ϕ) = ∂ α∂ β D+, where α and β
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are multi-indices. This pairing is well defined because of the structural theorem [12]

D
′(M2

,E⊠2) =
(

Γc(M
2
,(E∗)⊠2)

)′
∼= D

′(M2)⊗C∞(M2) Γ(M2
,E⊠2)

∼= LC∞(M2)

(

Γ(M2
,(E∗)⊠2),D ′(M2)

)

.

4.2 Star product

Quantum group quantization was first defined by Rota and Stein [10], then developed by

Fauser and coworkers [13, 14, 15]. Its equivalence with the star product was proved by Hirsh-

feld [16]. Borcherds does not define this product.

Definition 3. Let F
π
→M be a Hopf algebra bundle and HFock the corresponding Fock Hopf alge-

bra. Then, CFock = lim
−→

D ′(Mn)⊗C∞(Mn) Γ(Mn
,F⊠n) is a HFock-Hopf module where the coaction β

is defined on c = u⊗h by βc = ∑c′⊗ c′′ = ∑(u⊗h(1))⊗h(2). The star product on CFock is defined

by

c⋆d = ∑c′d′(c′′|d′′), (4.1)

where (c′′|d′′) is identified with (c′′|d′′)⊗1. If the Hopf algebra is cocommutative, the star product

is associative.

If we consider the example c = u⊗h and d = v⊗k we find c⋆d = ∑uv(h(2)|k(2))⊗h(1)k(1). The

product ab(h(1)|k(2)) is a product of three distributions which is well-defined by the wavefront set

condition [11] for standard quantum field theory [2]. Note that CFock equipped with the star product

is a sort of generalized Frobenius algebra, in the sense that (c⋆d|e) = (c|d ⋆ e) [15].

For example if c = (1⊗1)⊗(ϕ⊗1) and d = (1⊗1)⊗(1⊗ϕ), then c⋆d = (1⊗1)⊗(ϕ⊗ϕ)+D+⊗

(1⊗1) and we recover Wick’s theorem usually written ϕ(x)⋆ϕ(y) = :ϕ(x)ϕ(y):+D+(x,y) in QFT

textbooks. This completes the quantization of the Fock Hopf algebra, i.e. the second quantization

of the Hopf algebra bundle F .

4.3 The time-ordered product

The last step to obtain Green functions of QFT is to define time-ordered products. We do

this by following the causal approach developed by Stueckelberg, Bogoliubov, Epstein, Glaser [18]

and finally Brunetti and Fredenhagen [2]. Then, the time-ordered product becomes a comodule

morphism T : CFock → CFock and the Wick expansion of time-ordered products takes the simple

form T (c) = ∑t(c′)c”, where t(c) = (1⊗ ε)(T (c)) [15]. The time-ordered product is defined

recursively by the causality relation1 saying that T (cd) = T (c) ⋆T (d) if the spacetime support of

c is not earlier than the spacetime support of d. By Stora’s lemma2, the causality relation and the

partial order imply that T is defined recursively except on the diagonals, where the distributions

have to be extended [2]. The ambiguity of this extension is organized by the renormalization group.

1Borcherds’ Gaussian property is a consequence of the causality relation [18].
2It can easily be inferred from a remark by Bergbauer [17] that Stora’s lemma only requires a (closed) partial order

on M, which is taken to be the causal order in applications to Lorentzian manifolds.
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5. Conclusion

A second quantization method was described for any theory whose Lagrangian density is

an element of a cocommutative Hopf algebra bundle. Fermions can be taken into account by

using a graded cocommutative Hopf algebra [14]. Since we do not require the Hopf algebra to be

commutative, we expect this approach to play a role in the second quantization of noncommutative

geometry.

References

[1] R. E. Borcherds. Renormalization and quantum field theory. Algebra & Number Theory, 5:627–58,

2011.

[2] R. Brunetti and K. Fredenhagen. Microlocal analysis and interacting quantum field theories:

renormalization on physical backgrounds. Commun. Math. Phys., 208:623–61, 2000.

[3] Ch. Brouder and F. Patras. One-particle irreducibility with initial correlations. In K. Ebrahimi-Fard,

M. Marcolli, and W. D. van Suijlekom, editors, Combinatorics and Physics, volume 539 of Contemp.

Math., pages 1–25. Amer. Math. Soc., 2011.

[4] J. M. Lee. Manifolds and Differential Geometry, volume 82 of Graduate Studies in Mathematics.

American Mathematical Society, Providence, 2009.

[5] C. H. Wagner. Symmetric, cyclic and permutation products of manifolds. Dissert. Math., 182:1–48,

1980.

[6] N. Bourbaki. Elements of Mathematics. Algebra I Chapters 1-3. Springer, Berlin, 1989.

[7] G. Köthe. Topological Vector Spaces I. Springer Verlag, New York, 1969.

[8] V. G. Drinfel’d. Quantum groups. In A. M. Gleason, editor, Proceedings of the International

Congress of Mathematicians (Berkeley, 1986), pages 798–820, Providence, 1988. Amer. Math. Soc.

[9] V. V. Lyubashenko. Hopf algebras and vector symmetries. Russian Math. Surv., 41:153–4, 1986.

[10] G.-C. Rota and J. A. Stein. Plethystic Hopf algebras. Proc. Natl. Acad. Sci USA, 91:13057–61, 1994.

[11] L. Hörmander. The Analysis of Linear Partial Differential Operators I. Distribution Theory and

Fourier Analysis. Springer Verlag, Berlin, second edition, 1990.

[12] M. Grosser, M. Kunzinger, M. Oberguggenberger, and R. Steinbauer. Geometric Theory of

Generalized Functions with Applications to General Relativity. Springer, Berlin, 2001.

[13] B. Fauser. On the Hopf algebraic origin of Wick normal-ordering. J. Phys. A: Math. Gen.,

34:105–116, 2001.

[14] Ch. Brouder, B. Fauser, A. Frabetti, and R. Oeckl. Quantum field theory and Hopf algebra

cohomology. J. Phys. A: Math. Gen., 37:5895–927, 2004.

[15] Ch. Brouder. Quantum field theory meets Hopf algebra. Math. Nachr., 282:1664–90, 2009.

[16] A.C. Hirshfeld and P. Henselder. Star products and quantum groups in quantum mechanics and field

theory. Ann. Phys., 308:311–28, 2003.

[17] C. Bergbauer. Epstein-Glaser renormalization, the Hopf algebra of rooted trees and the

Fulton-MacPherson compactification of configuration spaces. Diplomarbeit, Freie Universität Berlin,

2004.

6



Noncommutative Borcherds’ QFT Christian Brouder

[18] H. Epstein and V. Glaser. The role of locality in perturbation theory. Ann. Inst. Henri Poincaré,

19:211–95, 1973.

7


