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In this article we give an extention of the L 2 theory of anisotropic singular perturbations for elliptic problems. We study a linear and some nonlinear problems involving L p data (1 < p < 2). Convergences in pseudo Sobolev spaces are proved for weak and entropy solutions, and rate of convergence is given in cylindrical domains

1. Introduction 1.1. Preliminaries. In this article we shall give an extension of the L 2 theory of the asymptotic behavior of elliptic, anisotropic singular perturbations problems. This kind of singular perturbations has been introduced by M. Chipot [START_REF] Chipot | On some anisotropic singular perturbation problems[END_REF]. From the physical point of view, these problems can modelize di¤usion phenomena when the di¤usion coe¢ cients in certain directions are going toward zero. The L 2 theory of the asymptotic behavior of these problems has been studied by M. Chipot and many co-authors. First of all, let us begin by a brief discussion on the uniqueness of the weak solution ( by weak a solution we mean a solution in the sense of distributions) to the problem

div(Aru) = f u = 0 on @ (1) 
where R N , N 2 is a bounded Lipschitz domain, we suppose that f 2 L p ( ) (1 < p < 2). The di¤usion matrix A = (a ij ) is supposed to be bounded and satis…es the ellipticity assumption on ( see assumptions [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial di¤erential equations satisfying general boundary conditions, I[END_REF] and (3) in subsection 1.2). It is well known that (1) has at least a weak solution in W 1;p 0 ( ). Moreover, if A is symmetric and continuous and @ 2 C 2 [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial di¤erential equations satisfying general boundary conditions, I[END_REF] then (1) has a unique solution in W 1;p 0 ( ). If A is discontinuous the uniqueness assertion is false, in [START_REF] Serrin | Pathological solutions of elliptic di¤erential equations[END_REF] Serrin has given a counterexample when N 3. However, if N = 2 and if @ is su¢ ciently smooth and without any continuity assumption on A, (1) has a unique weak solution in W 1;p 0 ( ). The proof is based on the Meyers regularity theorem (see for instance [START_REF] Gallouet | Existence of a solution to a coupled elliptic system[END_REF]). To treat this pathology, Benilin, Boccardo, Gallouet, and al have introduced the concept of the entropy solution [START_REF] Ph | An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations[END_REF] for problems involving L 1 data (or more generally a Radon measure). is equivalent to the original one given in [START_REF] Ph | An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations[END_REF].In fact, this is a characterization of this space [START_REF] Ph | An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations[END_REF]. Now, more generally, for f 2 L 1 ( ) we have the following de…nition of entropy solution [START_REF] Ph | An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations[END_REF]. De…nition 1. A function u 2 T 1;2 0 ( ) is said to be an entropy solution to [START_REF] Adams | Pure and Applied Mathematics[END_REF] if

Z Aru rT k (u ')dx Z f T k (u ')dx, ' 2 D( ), k > 0
We refer the reader to [START_REF] Ph | An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations[END_REF] for more details about the sense of this formulation. The main results of [START_REF] Ph | An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations[END_REF] show that (1) has a unique entropy solution which is also a weak solution of (1) moreover since is bounded then this solution belongs to \

1 r< N N 1
W 1;r 0 ( ).

1.2. Description of the problem and functional setting. Throughout this article we will suppose that f 2 L p ( ), 1 < p < 2, (we can suppose that f = 2 L 2 ( )). We give a description of the linear problem (some nonlinear problems will be studied later). Consider the following singular perturbations problem

div(A ru ) = f u = 0 on @ ; (2) 
where is a bounded Lipschitz domain of R N . Let q 2 N , N q 2. We denote by x = (x 1 ; :::; x N ) = (X 1 ; X 2 ) 2 R q R N q i.e. we split the coordinates into two parts. With this notation we set r = (@ x1 ; :::; @ x N ) T = r X1 r X2 ;

where r X1 = (@ x1 ; :::; @ xq ) T and r X2 = (@ xq+1 ; :::; @ x N ) T

Let A = (a ij (x)) be a N N matrix which satis…es the ellipticity assumption 9 > 0 : A j j 2 8 2 R N for a.e x 2 ;

(3) and a ij (x) 2 L 1 ( ); 8i; j = 1; 2; ::::; N;

We have decomposed A into four blocks

A = A 11 A 12 A 21 A 22 ;
where A 11 , A 22 are respectively q q and (N q) (N q) matrices. For 0 < 1 we have set

A = 2 A 11 A 12 A 21 A 22
We denote X1 = X 2 2 R N q : (X 1 ; X 2 ) 2 and 1 = P 1 where P 1 : R N ! R p is the usual projector. We introduce the space

V p = u 2 L p ( ) j r X2 u 2 L p ( ),
and for a.e X 1 2 1 ; u(X 1 ; ) 2 W 1;p 0 ( X1 ) We equip V p with the norm

kuk Vp = kuk p L p ( ) + kr X2 uk p L p ( ) 1 p ;
then one can show easily that (V p ; k k Vp ) is a separable re ‡exive Banach space. The passage to the limit (formally) in (2) gives the limit problem

div X2 (A 22 r X2 u 0 (X 1 ; )) = f (X 1 ; ) u 0 (X 1 ; ) = 0 on @ X1 X 1 2 1 (5)
The L 2 -theory (when f 2 L 2 ) of problem (2) has been treated in [START_REF] Chipot | On the asymptotic behaviour of elliptic, anisotropic singular perturbations problems[END_REF], convergence has been proved in V 2 and rate of convergence in the L 2 norm has been given. For the L 2 theory of several nonlinear problems we refer the reader to [START_REF] Chipot | Singular perturbations of some nonlinear problems[END_REF], [START_REF] Chipot | On a class of integro-di¤erential problems[END_REF], [START_REF] Ogabi | On a class of nonlinear elliptic, anisotropic singular perturbations problems[END_REF]. This article is mainly devoted to study the L p theory of the asymptotic behavior of linear and nonlinear singularly perturbed problems. In other words, we shall study the convergence u ! u 0 inV p (Notice that in [START_REF] Chipot | Singular perturbations of some nonlinear problems[END_REF], authors have treated some problems involving L p data where some others data of the equations depend on p, one can check easily that it is not the L p theory which we expose in this manuscript). Let us brie ‡y summarize the content of the paper:

In section 2: We study the linear problem, we prove convergences for weak and entropy solutions. In section 3: We give the rate of convergence in a cylindrical domain when the data is independent of X 1 . In section 4: We treat some nonlinear problems.

The Linear Problem

The main results in this section are the following Theorem 1. Assume (3), (4) then there exists a sequence (u ) 0< 1 W 1;p 0 ( ) of weak solutions to (2) and u 0 2 V p such that r X1 u ! 0 in L p ( ), u ! u 0 in V p where u 0 satis…es (5) for a.e X 1 2 1 .

Corollary 1. Assume (3), (4) then if A is symmetric and continuous and @ 2 C 2 , then there exists a unique u 0 2 V p such that u 0 (X 1 ; ) is the unique solution to (5) in W 1;p 0 ( X1 ) for a.e X 1 . Moreover the sequence (u ) 0< 1 of the unique solutions (in W 1;p 0 ( )) to (2) converges in V p to u 0 and r X1 u ! 0 in L p ( ). Proof. This corollary follows immediately from Theorem 1 and uniqueness of the solutions of ( 2) and ( 5) as mentioned in subsection 1.1 (Notice that @ X1 2 C 2 ).

Theorem 2. Assume (3), (4) then there exists a unique u 0 2 V p such that u 0 (X 1 ; ) is the unique entropy solution of [START_REF] Chipot | Elliptic equations, an introductory cours[END_REF]. Moreover, the sequence of the entropy solutions (u ) 0< 1 of (2) converges to u 0 in V p and r X1 u ! 0 in L p ( ).

2.1. Weak convergence. Let us prove the following primary result Theorem 3. Assume (3), ( 4) then there exists a sequence (u k ) k2N W 1;p 0 ( ) of weak solutions to [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial di¤erential equations satisfying general boundary conditions, I[END_REF] 

( k ! 0 as k ! 1) and u 0 2 V p such that r X2 u k * r X2 u 0 , k r X1 u n k * 0, u k * u 0 in L p (
weak. and u 0 satis…es (5) for a.e X 1 2 1 :

Proof. By density let (f n ) n2N L 2 ( ) be a sequence such that f n ! f in L p ( ),
we can suppose that 8n 2 N :kf n k L p M , M 0. Consider the regularized problem

u n 2 H 1 0 ( ); Z A ru n r'dx = Z f n 'dx ; ' 2 D( ) (6) 
Assumptions ( 2) and (3) shows that u n exists and it is unique by the Lax-Milgram theorem. (Notice that u n also belongs to W 1;p 0 ( )). We introduce the function

(t) = t Z 0 (1 + jsj) p 2 ds, t 2 R
This kind of function has been used in [START_REF] Boccardo | Nonlinear Elliptic Equations in Rn without Growth Restrictions on the Data[END_REF]. We have 0 (t) = (1 + jtj) p 2

1 and (0) = 0, therefore we have (u) 2 H 1 0 ( ) for every u 2 H 1 0 ( ). Testing with (u n ) in (6) and using the ellipticity assumption we deduce 2

Z

(1 + ju n j) p 2 jr X1 u n j 2 dx +

Z (1 + ju n j) p 2 jr X2 u n j 2 dx Z f n (u n )dx 2 p 1 Z jf n j (1 + ju n j) p 1 dx,
where we have used j (t)j 

Z jf n j (1 + u n k ) p 1 dx p 2 Z (1 + u n k ) p dx 1 p
2 By Hölder's inequality we get

kr X2 u n k L p ( ) 2 kf n k L p (p 1) 1 2 Z (1 + ju n j) p dx 1 2p (7) 
Using Minkowki inequality we get

kr X2 u n k 2 L p ( ) C(1 + ku n k L p ( ) );
Thanks to Poincaré's inequality ku n k L p ( ) C kr X2 u n k L p ( ) we obtain

kr X2 u n k 2 L p ( ) C 0 (1 + kr X2 u n k L p ( ) );
where the constant C 0 depends on p, , mes( ), M and C . Whence, we deduce

ku n k L p ( ) , kr X2 u n k L p ( ) C 00 (8) 
Similarly we obtain

k r X1 u n k L p ( ) C 000 ; (9) 
where the constants C 00 , C 000 are independent of n and , so

ku n k W 1;p ( ) Const (10) 
Fix , since W 1;p ( ) is re ‡exive then [START_REF] Chipot | On a class of integro-di¤erential problems[END_REF] implies that there exists a subsequence (u

n l ( ) k
) l2N and u 2 W 1;p 0 ( ) such that u n l ( ) * u 2 W 1;p 0 ( ) (as l ! 1) in W 1;p ( ) weak. Now, passing to the limit in [START_REF] Chipot | On some anisotropic singular perturbation problems[END_REF] as l ! 1 we deduce

Z A ru r'dx = Z f 'dx ; ' 2 D( ) (11) 
Whence u is a weak solution of (2) (u = 0 on @ in the trace sense of W 1;p functions, indeed the trace operator is well de…ned since @ is Lipschitz). Now, from ( 8) and ( 9) we deduce

ku k L p ( ) lim inf l!1 u n l ( ) L p ( ) C 0
and similarly we obtain

k r X1 u k L p ( ) , kr X2 u k L p ( ) C 0
Using re ‡exivity and continuity of the derivation operator on D 0 ( ) one can extract a subsequence (u k ) k2N such that r X2 u k * r X2 u 0 , k r X1 u n k * 0, u k * u 0 in L p ( ) weak. Passing to the limit in [START_REF] ‡o | A counterexample to the approximation problem in Banach spaces[END_REF] we get

Z A 22 r X2 u 0 r X2 'dx = Z f 'dx ; ' 2 D( ) (12) 
Now, we will prove that u 0 2 V p : Since r X2 u k * r X2 u 0 and u k * u 0 in L p ( ) weak then there exists a sequence (U n ) n2N conv(fu k g k2N ) such that r X2 U n ! r X2 u 0 in L p ( ) strong, where conv(fu k g k2N ) is the convex hull of the set fu k g k2N . Notice that we have U n 2 W 1;p 0 ( ) then -up to a subsequencewe have U n (X 1 ; ) 2 W 1;p 0 ( X1 ), a.e X 1 2 1 . And we also have -up to a subsequence-r X2 U n (X 1 ; ) ! r X2 u 0 (X 1 ; :) in L p ( X1 ) strong a.e X 1 2 1 . Whence u 0 (X 1 ; :) 2 W 1;p 0 ( X1 ) for a.e X 1 2 1 , so u 0 2 V p . Finally, we will prove that u 0 is a solution of [START_REF] Chipot | Elliptic equations, an introductory cours[END_REF]. Let E be a Banach space, a family of vectors fe n g n2N in E is said to be a Banach basis or a Schauder basis of E if for every x 2 E there exists a family of scalars

( n ) n2N such that x = 1 X n=0 n e n ,
where the series converges in the norm of E. Notice that Schauder basis does not always exist. In [START_REF] ‡o | A counterexample to the approximation problem in Banach spaces[END_REF] P. En ‡o has constructed a separable re ‡exive Banach space without Schauder basis!. However, the Sobolev space W 1;r 0 ( 1 < r < 1) has a Schauder basis whenever the boundary of the domain is su¢ ciently smooth [START_REF] Fucik | On the existence of Schauder basis in Sobolev spaces[END_REF]. Now, we are ready to …nish the proof. Let

(U i V i ) i2N be a countable covering of such that U i V i
where U i R q ; V i R N q are two bounded open domains, where @V i is smooth (V i are Euclidian balls for example), such a covering always exists. Now, …x 2 D(V i ) then it follows from ( 12) that for every

' 2 D(U i ) we have Z Ui 'dX 1 Z Vi A 22 r X2 u 0 r X2 dX 2 = Z Ui 'dX 1 Z Vi f dX 2 Whence for a.e X 1 2 U i we have Z Vi A 22 (X 1 ; )r X2 u 0 (X 1 ; ) r X2 dX 2 = Z Vi f (X 1 ; ) dX 2
Notice that by density we can take 2 W 1;p 0 0 (V i ) where p 0 is the conjugate of p. Using the same techniques as in [START_REF] Chipot | On the asymptotic behaviour of elliptic, anisotropic singular perturbations problems[END_REF], where we use a Schauder basis of W 1;p 0 0 (V i ) and a partition of the unity, one can easily obtain

Z X 1 A 22 (X 1 ; )r X2 u 0 (X 1 ; ) r X2 'dx = Z X 1 f (X 1 ; )'dx, ' 2 D( ),
for a.e X 1 2 1 . Finally, since u 0 (X 1 ; ) 2 W 1;p 0 ( X1 ) (as proved above) then u 0 (X 1 ; ) is a solution of (5) (Notice that X1 is also a Lipschitz domain so the trace operator is well de…ned).

2.2. Strong convergence. Theorem 1 will be proved in three steps. the proof is based on the use of the approximated problem [START_REF] Chipot | On some anisotropic singular perturbation problems[END_REF]. In the …rst step, we shall construct the solution of the limit problem

Step1 : Let u n 2 H 1 0 ( ) be the unique solution to (6), existence and uniqueness of u n follows from assumptions (3), (4) as mentioned previously. One have the following Proposition 1. Assume (3), (4) then there exists

(u n 0 ) n2N V 2 such that u n ! 0 in L 2 ( ), u n ! u n 0 in V 2
for every n 2 N, in particular the two convergences holds in L p ( ) and V p respectively. And u n 0 is the unique weak solution in V 2 to the problem

div X2 (A 22 (X 1 ; )r X2 u n 0 (X 1 ; )) = f n (X 1 ; ), X 1 2 1 u n 0 (X 1 ; ) = 0 on @ X1 (13) 
Proof. This result follows from the L 2 theory (Theorem 1 in [START_REF] Chipot | On the asymptotic behaviour of elliptic, anisotropic singular perturbations problems[END_REF]), The convergences in V p and L p ( ) follow from the continuous embedding

V 2 ,! V p , L 2 ( ) ,! L p ( ) (p < 2).
Now, we construct u 0 the solution of the limit problem [START_REF] Chipot | Elliptic equations, an introductory cours[END_REF]. Testing with ' = (u n 0 (X 1 ; )) in the weak formulation of (13) ( is the function introduced in subsection 2.1) and estimating like in the proof of Theorem 3 we obtain as in ( 7)

kr X2 u n 0 (X 1 ; )k L p ( X 1 ) kf n (X 1 ; )k L p ( X 1 ) (p 1) ! 1 2 Z X 1 (1 + ju n 0 (X 1 ; )j) p dX 2 ! 1 2p (14) 
Integrating over 1 and using Cauchy-Schwaz's inequality in the right hand side we get

kr X2 u n 0 k p L p ( ) C kf n k p 2 L p ( ) Z (1 + ju n 0 j) p dx 1 2
and therefore

kr X2 u n 0 k 2 L p ( ) C 0 (1 + ku n 0 k L p ( ) ) Using Poincaré's inequality ku n 0 k L p ( ) C kr X2 u n 0 k L p ( ) ( which holds since u n 0 (X 1 ; ) 2 W 1;p 0 ( X1 ) a.e X 1 2 1 ), one can obtain the estimate ku n 0 k L p ( ) C 00 for every n 2 N, (15) 
where C 00 is independent of n. Now, using the linearity of the problem and ( 13) with the test function (u n 0 (X 1 ; ) u m 0 (X 1 ; )), m; n 2 N one can obtain like in ( 14)

kr X2 (u n 0 (X 1 ; ) u m 0 (X 1 ; ))k L p ( X 1 ) kf n (X 1 ; ) f m (X 1 ; )k L p ( X 1 ) (p 1) ! 1 2 Z X 1 (1 + ju n 0 (X 1 ; ) u m 0 (X 1 ; )j) p dX 2 ! 1 2p
integrating over 1 and using Cauchy-Schwarz and (15) yields

kr X2 (u n 0 u m 0 )k L p ( ) C kf n f m k 1 2
L p ( ) ; where C is independent of m and n. The Poincaré's inequality shows that

ku n 0 u m 0 k Vp C 0 kf n f m k 1 2 L p ( )
Since (f n ) n2N is a converging sequence in L p ( ) then this last inequality shows that (u n 0 ) n2N is a Cauchy sequence in V p , consequently there exists u 0 2 V p such that u n 0 ! u 0 in V p . Now, passing to the limit in [START_REF] Chipot | On some anisotropic singular perturbation problems[END_REF] as ! 0 we get

Z A 22 r X2 u n 0 r X2 'dX 2 = Z f n 'dX 2 , ' 2 D( )
Passing to the limit as n ! 1 we deduce

Z A 22 r X2 u 0 r X2 'dX 2 = Z f 'dX 2 , ' 2 D( )
Then it follows as proved in Theorem 3 that u 0 satis…es (5). Whence we have proved the following Proposition 2. Under assumption of Proposition 1 there exists u 0 2 V p solution to [START_REF] Chipot | Elliptic equations, an introductory cours[END_REF] such that u n 0 ! u 0 in V p where (u n 0 ) n2N is the sequence given in Proposition 1

Step2 : In this second step we will construct the sequence (u ) 0< 1 solutions of (2), one can prove the following Proposition 3. There exists a sequence (u ) 0< 1 W 1;p 0 ( ) of weak solutions to (2) such that u n ! u in W 1;p ( ) for every …xed. Moreover, u n ! u in V p and r X2 u n ! r X2 u , uniformly in .

Proof. Using the linearity of (6) testing with (u n u m ), m; n 2 N we obtain as in ( 7)

kr X2 u n u m k L p ( ) kf n f m k L p (p 1) 1 2 Z (1 + ju n u m j) p 1 2p
And [START_REF] Chipot | On the asymptotic behaviour of elliptic, anisotropic singular perturbations problems[END_REF] gives

kr X2 (u n u m )k L p ( ) C kf n f m k 1 2 L p
where C is independent of and n, whence Poincaré's inequality implies

ku n u m k Vp C 0 kf n f m k 1 2 L p (16) 
Similarly we obtain

k r X2 (u n u m )k L p ( ) C 00 kf n f m k 1 2 L p (17) 
its follows that

ku n u m k W 1;p ( ) C kf n f m k 1 2 L p
The last inequality implies that for every …xed (u n ) n2N is a Cauchy sequence in W 1;p 0 ( ), Then there exists u 2 W 1;p 0 ( ) such that u n ! u in W 1;p ( ), then the passage to the limit in [START_REF] Chipot | On some anisotropic singular perturbation problems[END_REF] shows that u is a weak solution of (2). Finally ( 16) and (17) show that u n ! u (resp r X2 u n ! r X2 u ) in V p ( resp in L p ( )) uniformly in .

Step3 : Now, we are ready to conclude. Proposition 1, 2 and 3 combined with the triangular inequality show that u ! u 0 in V p and r X2 u ! 0 in L p ( ), and the proof of Theorem 1 is …nished.

2.3.

Convergence of the entropy solutions. As mentioned in section 1 the entropy solution u of (2) exists and it is unique. We shall construct this entropy solution. Using the approximated problem [START_REF] Chipot | On some anisotropic singular perturbation problems[END_REF], one has a W 1;p strongly converging sequence u n ! u 2 W 1;p 0 ( ) as shown in Proposition 3. We will show that u 2 T 1;2 0 ( ).

Clearly we haveT k (u n ) 2 H 1 0 ( ) for every k > 0. Now testing with T k (u n ) in (6) we obtain Z A ru n rT k (u n )dx = Z f n T k (u n )dx
Using the ellipticity assumption we get

Z jrT k (u n )j 2 M k (1 + 2 ) (18) 
Fix ; k, we have u n ! u in L p ( ) then there exists a subsequence (u n l ) l2N such that u n l ! u a.e x 2 and since T k is bounded then it follows that T k (u n l ) ! T k (u ) a.e in and strongly in L 2 ( ) whence u 2 T 1;2 0 ( ). It follows by ( 18) that there exists a subsequence still labelled

T k (u n l ) such that rT k (u n l ) ! v ;k 2 L 2 ( ).The continuity of r on D 0 ( ) implies that v ;k = rT k (u ), whence T k (u n l ) ! T k (u ) in H 1 ( ). Now, since T k (u n l ) 2 H 1 0 ( ) then we deduce that T k (u ) 2 H 1 0 ( ). It follows [4] that Z A ru rT k (u ')dx Z f T k (u ')dx
Whence u is the entropy solution of (2). Similarly the function u 0 (constructed in Proposition 2) is the entropy solution to (5) for a.e X 1 The uniqueness of u 0 in V p follows from the uniqueness of the entropy solution of problem [START_REF] Chipot | Elliptic equations, an introductory cours[END_REF]. Finally, the convergences given in Theorem 2 follows from Theorem 1.

Remark 1. Uniqueness of the entropy solutions implies that it does not depend on the choice of the approximated sequence (f n ) n .

2.4.

A regularity result for the entropy solution of the limit problem.

In this subsection we assume that = ! 1 ! 2 where ! 1 ; ! 2 are two bounded Lipschitz domains of R q , R N q respectively. We introduce the space

W p = fu 2 L p ( ) j r X1 u 2 L p ( )g
We suppose the following

f 2 W p and A 22 (x) = A 22 (X 2 ) i.e A 22 is independent of X 1 (19) 
Theorem 4. Assume (3), ( 4), (19) then u 0 2 W 1;p ( ), where u 0 is the entropy solution of (5).

Proof. Let (u n 0 ) the sequence constructed in subsection 2.2, we have u n 0 ! u 0 in V p , where u 0 is the entropy solution of (5) as mentioned in the above subsection.

Let ! 0 1 ! 1 be an open subset; for 0 < h < d(@! 1 ; ! 0 1 ) and for X 1 2 ! 0 1 we set i h u n 0 = u n 0 (X 1 + he i ; X 2 ) where e i = (0; ::; 1; ::; 0) then we have by ( 13)

Z !2 A 22 r X2 ( i h u n 0 u n 0 ) r X2 'dX 2 = Z !2 ( i h f n f n )'dX 2 , ' 2 D(! 2 )
where we have used A 22 (x) = A 22 (X 2 ):

We introduce the function

(t) = t Z 0 ( + jsj) p 2 ds, > 0, t 2 R we have 0 < 0 (t) = ( + jtj) p 2 
p 2 and j (t)j 2( +jtj) p 1 p 1

Testing with

' = 1 h ( i h u n 0 u n 0 h ) 2 H 1 0 (! 2 ).
To make the notations less heavy we set

U = i h u n 0 u n 0 h , ( i h f n f n ) h = F Then we get Z !2 0 (U )A 22 r X2 U r X2 U dX 2 = Z !2 F (U )dX 2
Using the ellipticity assumption for the left hand side and Hölder's inequality for the right hand side of the previous inequality we deduce

Z !2 0 (U ) jr X2 U j 2 dX 2 2 p 1 kF k L p (!2) Z !2 ( + jU j) p dX 2 p 1 p
Using Hölder's inequality we derive

kr X2 U k p L p (!2) Z !2 0 (U ) jr X2 U j 2 dX 2 p 2 Z !2 0 (U ) p p 2 dX 2 2 p 2 2 (p 1) kF k L p (!2) Z !2 ( + jU j) p dX 2 p 1 p ! p 2 Z !2 0 (U ) p p 2 dX 2 2 p 2
Then we deduce

kr X2 U k 2 L p (!2) 2 (p 1) kF k L p (!2) Z !2 ( + jU j) p dX 2 1 p
Now passing to the limit as ! 0 using the Lebesgue theorem we deduce

kr X2 U k 2 L p (!2) 2 (p 1) kF k L p (!2) Z !2 (jU j) p dX 2 1 p
; and Poincaré's inequality gives

kr X2 U k L p (!2) 2C !2 (p 1) kF k L p (!2)
Now, integrating over ! 0

1 yields i h u n 0 u n 0 h L p (! 0 1 !2) 2C !2 (p 1) ( i h f n f n ) h L p (! 0 1 !2)
Passing to the limit as n ! 1 using the invariance of the Lebesgue measure under translations we get

i h u 0 u 0 h L p (! 0 1 !2) 2C !2 (p 1) ( i h f f ) h L p (! 0 1 !2) Whence, since f 2 W p then i h u 0 u 0 h L p (! 0 1 !2) C;
where C is independent of h, therefore we have r X1 u 0 2 L p ( ). Combining this with u 0 2 V p we get the desired result.

The Rate of convergence Theorem

In this section we suppose that = ! 1 ! 2 where ! 1 ; ! 2 are two bounded Lipschitz domains of R q and R N q respectively. We suppose that A 12 , A 22 and f depend on X 2 only i.e

A 12 (x) = A 12 (X 2 ), A 22 (x) = A 22 (X 2 ) and f (x) = f (X 2 ) 2 L p (! 2 ) (1 < p < 2), f = 2 L 2 (! 2
). Let u , u 0 be the unique entropy solutions of (2), (5) respectively then under the above assumptions we have the following Theorem 5. For every ! 0 1 ! 1 and m 2 N there exists C 0 independent of such that

ku u 0 k W p (! 0 1 !2) C m
Proof. Let u , u 0 be the entropy solutions of (2), ( 5) respectively, we use the approximated sequence (u n ) ;n , (u n 0 ) n introduced in section 2. Subtracting ( 13) from ( 6) we obtain Z A r(u n u n 0 ) r'dx = 0;

where we have used that u n 0 is independent of X 1 (since f and A 22 are independent of X 1 ) and that A 12 is independent of X 1 .

Let

! 0 1 ! 1 then there exists ! 0 1 ! 00 1 ! 1 .
We introduce the function 2 D(! 1 ) such that Supp( ) ! 00 1 and = 1 on ! 0 1 ( we can choose 0 1) Testing with ' = 2 (u n u n 0 ) 2 H 1 0 ( ) (we can check easily that this function belongs to H 1 0 ( ) using approximation argument) in the above integral equality we get

Z 2 0 (u n u n 0 )A r(u n u n 0 ) r(u n u n 0 )dx = Z (u n u n 0 )A r(u n u n 0 ) r dx = 2 Z (u n u n 0 )A 11 r X1 (u n u n 0 ) r X1 dx Z (u n u n 0 )A 12 r X2 (u n u n 0 ) r X1 dx
where we have used that is independent of X 2 : Using the ellipticity assumption for the left hand side and assumption (4) for the right hand side of previous equality we deduce

2 Z 0 (u n u n 0 ) j r X1 (u n u n 0 )j 2 dx+ Z 0 (u n u n 0 ) j r X2 (u n u n 0 )j 2 dx 2 C Z j (u n u n 0 )j jr X1 (u n u n 0 )j dx + C Z j (u n u n 0 )j jr X2 (u n u n 0 )j dx
Where C 0 depends on A and . Using Young's inequality ab a 2 2c + c b 2 2 for the two terms in the right hand side of the previous inequality we obtain

2 2 Z 0 (u n u n 0 ) j r X1 (u n u n 0 )j 2 dx+ 2 Z 0 (u n u n 0 ) j r X2 (u n u n 0 )j 2 dx 2 C 0 Z ! 00 1 !2 j (u n u n 0 )j 2 0 (u n u n 0 ) 1 dx Whence 2 2 Z 0 (u n u n 0 ) j r X1 (u n u n 0 )j 2 dx+ 2 Z 0 (u n u n 0 ) j r X2 (u n u n 0 )j 2 dx 4 (p 1) 2 2 C 0 Z ! 00 1 !2 ( + ju n u n 0 j) p dx
where C 00 is independent of and n Now, using Hölder's inequality and the previous inequality we deduce

2 2 k r X1 (u n u n 0 )k 2 L p ( ) + 2 k r X2 (u n u n 0 )k 2 L p ( ) 2 4 2 2 R 0 (u n u n 0 ) j r X1 (u n u n 0 )j 2 dx + 2 R 0 (u n u n 0 ) j r X2 (u n u n 0 )j 2 dx 3 5 Z ! 00 1 !2 ( + ju n u n 0 j) p dx ! 2 p p 4C 0 (p 1) 2 2 Z ! 00 1 !2 ( + ju n u n 0 j) p dx ! 2 p
Passing to the limit as ! 0 using the Lebesgue theorem. Passing to the limit as n ! 1 we get

2 kr X1 (u u 0 )k 2 L p (! 0 1 !2) + kr X2 (u u 0 )k 2 L p (! 0 1 !2) (20) C 00 2 k(u u 0 )k 2 L p (! 00 1 !2) Using Poincaré's inequality k(u u 0 )k L p (! 00 1 !2) C !2 kr X2 (u u 0 )k L p (! 00 1 !2) ,
we obtain

2 kr X1 (u u 0 )k 2 L p (! 0 1 !2) + kr X2 (u u 0 )k 2 L p (! 0 1 !2) C 00 2 kr X2 (u u 0 )k 2 L p (! 00 1 !2)
Let m 2 N then there exists ! 0 1 ! 00

1 :::! (m+1) 1 ! 1 .
Iterating the above inequality m time we deduce

2 kr X1 (u u 0 )k 2 L p (! 0 1 !2) + kr X2 (u u 0 )k 2 L p (! 0 1 !2) C m 2m kr X2 (u u 0 )k 2 L p (! (m) 1 !2)
Now, from (20) (with ! 0 1 and ! 00 1 replaced by ! (m) 1

and

! (m+1) 1 
respectively) we deduce

2 kr X1 (u u 0 )k 2 L p (! 0 1 !2) + kr X2 (u u 0 )k 2 L p (! 0 1 !2) C 0 m 2(m+1) ku u 0 k 2 L p (! (m+1) 1 !2)
Since u ! u 0 in L p ( ) then ku u 0 k L p ( ) is bounded and therefore we obtain

ku u 0 k W p (! 0 1 !2) C 00 m m
And the proof of the theorem is …nished.

Can one obtain a more better convergence rate? In fact, the anisotropic singular perturbation problem (2) can be seen as a problem in a cylinder becoming Notice that r = 0 on `0 , and `0 `0+1 ( since ! 1 is convex and containing 0). Then by the Cauchy-Schwaz inequality we get

Z ` 2 0 (u n ` u n 1 ) jr(u n ` u n 1 )j 2 dx 2c 0 C Z `0+1 `0 j (u n ` u n 1 )j jr(u n ` u n 1 )j dx 2c 0 C Z ` 2 0 (u n ` u n 1 ) jr(u n ` u n 1 )j 2 dx 1 2 Z `0+1 `0 j (u n ` u n 1 )j 2 0 (u n ` u n 1 ) 1 dx ! 1 2
where we have used ( 22). Whence we get ( since

= 1 on `0 ) Z `0 0 (u n ` u n 1 ) jr(u n ` u n 1 )j 2 dx Z ` 2 0 (u n ` u n 1 ) jr(u n ` u n 1 )j 2 dx 4c 0 C p 1 2 Z `0+1 `0 ( + ju n ` u n 1 j) p dx
From Hölder's inequality it holds that

kr(u n ` u n 1 )k 2 L p ( `0 ) Z `0 0 (u n ` u n 1 ) jr(u n ` u n 1 )j 2 dx ! Z `0 ( + ju n ` u n 1 j) p dx ! 2 p p 4c 0 C p 1 2 Z `0+1 `0 ( + ju n ` u n 1 j) p dx ! Z `0 ( + ju n ` u n 1 j) p dx ! 2 p p
Passing to the limit as ! 0 (using the Lebesgue theorem) we get

kr(u n ` u n 1 )k 2 L p ( `0 ) C 1 Z `0+1 `0 ju n ` u n 1 j p dx ! Z `0 ju n ` u n 1 j p dx ! 2 p p ,
where we have used 0 1. Using Poincaré's inequality

kr(u n ` u n 1 )k L p ( `0 ) C !2 kr(u n ` u n 1 )k L p ( `0 ) we get kr(u n ` u n 1 )k p L p ( `0 ) C 2 ku n ` u n 1 k p L p ( `0+1 `0 ) Using Poincaré's inequality ku n ` u n 1 k L p ( `0+1 `0 ) C !2 kr(u n ` u n 1 )k L p ( `0+1 `0 ) we get kr(u n ` u n 1 )k p L p ( `0 ) C 3 kr(u n ` u n 1 )k p L p ( `0+1 `0 ) Whence kr(u n ` u n 1 )k p L p ( `0 ) C 3 C 3 + 1 kr(u n ` u n 1 )k p L p ( `0+1 )
Let 2 (0; 1), iterating this formula starting from `we get

kr(u n ` u n 1 )k p L p ( `) C 3 C 3 + 1 [ `] kr(u n ` u n 1 )k p L p ( `+[(1 )`] ) Whence kr(u n ` u n 1 )k L p ( `) ce c 0 `kr(u n ` u n 1 )k L p ( `) (26) 
where c; c 0 > 0 are independent of `and n: Now we have to estimate the right hand side of (26). Testing with (u n `) in the approximated problem associated to (21) one can obtain as in subsection 2.1

kru n `kL p ( `) C`q 2 (27) 
Similarly testing with (u n 1 ) in the approximated problem associated to (24). we get

kru n 1 k L p ( `) C 0 `q 2 (28) 
Replace ( 28), ( 27) in (26) and passing to the limit as n ! 1 we obtain the desired result. Corollary 2. Under the above assumptions then for every 2 (0; 1) there exists C 0, c > 0 independent of such that

ku u 0 k W 1;p ( !1 !2) Ce c
where u , u 0 are the entropy solutions to (2) and ( 5) respectively Remark 2. It is very di¢ cult to prove the rate convergence theorem for general data. When

f (x) = f 1 (X 2 ) + f 2 (x) with f 1 2 L p (! 2
) and f 2 2 W 2 we only have the estimates

kr X1 (u u 0 )k L p (! 0 1 !2) + kr X2 (u u 0 )k L p (! 0 1 !2) + ku u 0 k L p (! 0 1 !2)

C

This follows from the linearity of the equation, Theorem 5 and the L 2 theory [8].

4. Some Extensions to nonlinear problems and applications

4.1.

A semilinear monotone problem. We consider the semilinear problem

div(A ru ) = f + a(u ) u = 0 on @ (29) 
Where the a : R ! R is a continuous nonincreasing function which satis…es the growth condition

8x 2 R : ja(x)j K(1 + jxj), K 0 (30) 
and f 2 L p ( ) where 1 < p < 2 ; f = 2 L 2 ( ) and A is given as in Subsection 1.2. Clearly the Nemytskii operator u ! a(u) maps L r ( ) ! L r ( ) continuously for every 1 r < 1. The passage to the limit (formally) gives the limit problem

div X2 (A 22 (X 1 ; )ru 0 (X 1 ; )) = f (X 1 ; ) + a(u 0 (X 1 ; )) u 0 (X 1 ; ) = 0 on @ X1 (31) 
We can suppose that a(0) = 0. Indeed, in the general case the right hand side of (29) can be replaced by (a(0) + f ) + b(x) where b(x) = a(x) a(0). Clearly b is continuous nonincreasing and satis…es jb(x)j (K + ja(0)j)(1 + jxj).

First of all, suppose that f 2 L 2 ( );then we have the following Proposition 4. Assume (3), ( 4) and a(0) = 0. Let u be the unique weak solution in H 1 0 ( ) to (29) then r X1 u ! 0 in L 2 ( ) and u ! u 0 in V 2 where u 0 in the unique solution in V 2 to the limit problem (31).

Proof. Existence of u follows directly by a simple application of the Schauder …xed point theorem for example. The uniqueness follows form monotonicity of a and the Poincaré's inequality.

Take u as a test function in (29) then one can obtain the estimates

kr X1 u k L 2 ( ) , kr X2 u k L 2 ( ) , ku k L 2 ( ) C,
where C is independent of , we have used that R a(u )u dx 0 (thanks to monotonicity assumption and a(0) = 0). And we also have (thanks to assumption (30))

ka(u )k L 2 ( ) K(j j 1 2 + C) so there exists v 2 L 2 ( ), u 0 2 L 2 ( ), r X2 u 0 2 L 2 ( ) and a subsequence (u k ) k2N such that a(u k ) ! v, k r X1 u k * 0, r X2 u k * r X2 u 0 , u k * u 0 in L 2 ( )-weak (32) 
Passing to the in the weak formulation of (29) we get

Z A 22 r X2 u 0 r X2 'dx = Z f 'dx + Z v'dx, ' 2 D( ) (33) 
Take ' = u k in the previous equality and passing to the limit we get

Z A 22 r X2 u 0 r X2 u 0 dx = Z f u 0 dx + Z vu 0 dx (34) 
Let us computing the quantity

0 I k = Z A k r X1 u k r X2 (u k u 0 ) r X1 u k r X2 (u k u 0 ) dx Z (a(u k ) a(u 0 ))(u k u 0 )dx = Z f u k dx Z A 12 r X2 u 0 r X1 u k dx Z A 21 r X1 u k r X2 u 0 dx Z A 22 r X2 u k r X2 u 0 dx Z A 22 r X2 u 0 r X2 u k dx + Z f u 0 dx + Z vu 0 dx + Z a(u 0 )u k dx + Z a(u k )u 0 dx Z a(u 0 )u 0 dx
(This quantity is positive thanks to the ellipticity and monotonicity assumptions).

Passing to the limit as k ! 1 using (32), ( 33), (34) we get

lim I k = 0
And …nally The ellipticity assumption and Poincaré's inequality show that

k k r X1 u k k L 2 ( ) , kr X2 (u k u 0 )k L 2 ( ) , ku k u 0 k L 2 ( ) ! 0 (35) 
Whence (33) becomes

Z A 22 r X2 u 0 r X2 'dx = Z f 'dx + Z a(u 0 )'dx, ' 2 D( ) (36) 
kr X2 (u k u 0 )k L 2 ( ) ! 0 shows that u 0 2 V 2 , and therefore

Z X 1 A 22 r X2 u 0 r X2 'dx = Z X 1 f 'dx + Z X 1 a(u 0 )'dx, ' 2 D( X1 )
Hence u 0 (X 1 ; ) is a solution to (31). The uniqueness in H 1 0 ( X1 ) of the the solution of the limit problem (31) shows that u 0 is the unique function in V 2 which satis…es (36). Therefore the convergences (35) hold for the whole sequence (u ) 0< 1 :

Now, we are ready to give the main result of this subsection Theorem 7. Suppose that f 2 L p ( ) where 1 < p < 2 (we can suppose that f = 2 L 2 ( )) then there exists u 0 2 V p such that u 0 (X 1 ; ) is the unique entropy solution to (31) and we have u ! u 0 in V p , r X1 u ! 0 in L p ( ), where u is the unique entropy solution to (29).

Proof. We only give a sketch of the proof. Existence and uniqueness of the entropy solutions to (29) and (31) follows from the general result proved in [START_REF] Ph | An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations[END_REF]. As in proof of Theorem 2 we shall construct the entropy solution u . we consider the approximated problem

div(A ru n ) = f n + a(u n ) u n = 0 on @
We follows the same arguments as in section 2, where we use the above proposition and the following Z (a(u) a(v) (u v)dx 0

Which holds for every u; v 2 L 2 ( ), in fact this follows from monotonicity of a and .

4.2.

Nonlinear problem without monotonicity assumption. Suppose that = ! 1 ! 2 where ! 1 , ! 2 and consider the following nonlinear problem

div(A ru ) = f + B(u ) u = 0 on @ (37)
Where f 2 L p ( ), 1 < p < 2 and B : L p ( ) ! L p ( ) is a continuous nonlinear operator. We suppose that

9M 0, 8u 2 L p ( ) : kB(u)k L p M (38) 
Proposition 5. Assume (3), (4),and (38) then: 1) There exists a sequence (u ) 0< 1 W 1;p 0 ( ) of an entropy solutions to (37) which are also a weak solutions such that

kr X1 u k L p ( ) , kr X2 u k L p ( ) , ku k L p ( ) C 0 ,
where C 0 0 is independent of ( the constant C 0 depends only on , , f and M ).

2) If (u ) 0< 1 is a sequence of entropy and weak solutions to (37) then we have the above estimates.

Proof. 1) The existence of u is based on the Schauder …xed point theorem, we de…ne the mapping : L p ( ) ! L p ( ) by v 2 L p ( ) ! (v) = v 2 W 1;p 0 ( ) where v is the entropy solution of the linearized problem

div(A rv ) = f + B(v) v = 0 on @ (39)
Since the entropy solution is unique then is well de…ned. we can prove easily (by using the approximation method) that is continuous. As in subsection 2.1 we can obtain the estimates

kr X1 u k L p ( ) , kr X2 u k L p ( ) , ku k L p ( ) C 0
where C 0 is independent of and v (thanks to (38)) Now, de…ne the subset

K = n u 2 W 1;p 0 ( ) : kr X1 uk L p ( ) , kr X2 uk L p ( ) , kuk L p ( ) C 0 o
The subset K is convex and compact in L p ( ) thanks to the Sobolev compact embedding W 1;p 0 ( ) L p ( ): The subset K is stable under (since C 0 is independent of v as mentioned above). Whence admits at least a …xed point u 2 K; in other words u is a weak solution to (37) which is also an entropy solution, this last assertion follows from the de…nition of .

2) Let (u ) 0< 1 be a sequence of entropy and weak solutions to (37) u is the unique entropy solution to (39) with v replaced by u and therefore we obtain the desired estimates as proved above.

Remark 3. In the general case the entropy solution u of (37) is not necessarily unique.

Now, assume that

f (x) = f (X 2 ), A 22 (x) = A 22 (X 2 ), A 12 (x) = A 12 (X 2 ) (40) 
And assume that for every E W p bounded in L p ( ) we have

conv fB(E)g W 2 , (41) 
where conv fB(E)g is the closed convex-hull of B(E) in L p ( ). Assumption (41) appears strange. We shall give later some concrete examples of operators which satisfy this assumption. Let us prove the following Theorem 8. Assume (3), ( 4), (38), ( 40) and (41). Let (u ) 0< 1 W 1;p 0 ( ) be an entropy and weak solution to (37) then for every 0 there exists C 0 0 independent of such that

8 : ku k W 1;p ( 0 ) C 0
Proof. The proof is similar the one given in our preprint [START_REF] Ogabi | On a class of nonlinear elliptic, anisotropic singular perturbations problems[END_REF]. Let ( i ) j2N an open covering of such that j j+1 . We equip the space Z = W 1;p loc ( ) with the topology generated by the family of seminorms (p j ) j2N de…ned by

p j (u) = ku k W 1;p ( j )
Equipped with this topology, Z is a separated locally convex topological vector space. We set Y = L p ( ) equipped with its natural topology. We de…ne the family of the linear continuous mappings : Y ! Z de…ned by: g 2 Y , (g) = v where v is the unique entropy solution to div(A rv ) = g v = 0 on @ The continuity of follows immediately if we observe as a composition of : Y ! Y and the canonical injection Y ! Z Now, we denote Z w , Y w the spaces Z, Y equipped with the weak topology respectively. then : Y w ! Z w is also continuous. Consider the bounded (in Y ) subset

E 0 = n u 2 W p j kuk L p ( ) C 0 o ;
where C 0 is the constant introduced in Proposition 5. Consider the subset G = f + conv fB(E 0 )g where the closure is taken in the L p topology. Thanks to assumption (41) and (38) G is closed convex and bounded in Y . Now for every g 2 G the orbit f gg is bounded in Z thanks to Remark 2. And therefore f gg is bounded in Z w .

Since j is Lipschitz then the embedding W 1;p ( j ) ,! L p ( j ) is compact [START_REF] Adams | Pure and Applied Mathematics[END_REF] and therefore for each k there exists a subsequence (u j k ) k L p ( j ) such that u j k j j ! u 0 j j By the diagonal process one can construct a sequence (u k ) k such that u k ! u 0 in L p ( j ) for every j, in other words we have

u k ! u 0 in L p loc ( ) strong (44) 
Now passing to the limit in the weak formulation of (37) we deduce

div X2 (A 22 r X2 u 0 (X 1 ; )) = f + B(u 0 )(X 1 ; ),
where we have used (43) for the passage to the limit in the left hand side. For the passage to the limit in the nonlinear term we have used (44) and assumption (42).

Example 1. We give a concrete example of application of the above abstract analysis. Let = ! 1 ! 2 be a Lispchitz convex domain of R q R N q and let A be a bounded (N q) (N q) matrix de…ned on ! 2 which satis…es the ellipticity assumption. Let us consider the integro-di¤ erential problem 8 < :

div X2 (A(X 2 )r X2 u) = f (X 2 ) + Z !1 h(X 0 1 ; X 1 ; X 2 )a(u(X 0 1 ; X 2 ))dX 0 1 u(X 1 ; ) = 0 on @! 2 (45) 
where h 2 L 1 (! 1 ) and f 2 L p (! 2 ), 1 < p < 2, and a is a continuous real bounded function.

This equation is based on the Neutron transport equation (see for instance [START_REF] Chipot | On a class of integro-di¤erential problems[END_REF]) A solution to (45) is a function u 2 V p Which satis…es (45) in D 0 (! 2 ). suppose that r X1 h(X 0 1 ; X 1 ; X 2 ) 2 L 1 (! 1 )

Then we have Theorem 10. Under the assumptions of this example, (45) has at least a solution in V p in the sense of D 0 (! 2 ) for a.e X 1 2 ! 1

Proof. We introduce the singular perturbation problem

8 < : div X (A ru ) = f (X 2 ) + Z !1
h(X 0 1 ; X 1 ; X 2 )a(u (X 0 1 ; X 2 ))dX 0 h(X 0 1 ; X 1 ; X 2 )a(u(X 0 1 ; X 2 ))dX 0 1 satis…es assumption (38).

We can prove easily that the above operator satis…es assumption (42). Indeed, let u n ! u in L p loc ( ) then there exists a subsequence (u n k ) (constructed by the diagonal process) such that u n k ! u a.e in . Since a is bounded then it follows by the Lebesgue theorem that Z !1 h(X 0 1 ; X 1 ; X 2 )a(u n k (X 0 1 ; X 2 ))dX 0 1 ! Z !1

h(X 0 1 ; X 1 ; X 2 )a(u(X 0 1 ; X 2 ))dX 0 1 ;

in L p ( ). Whence by a contradiction argument we get Z

!1 h(X 0 1 ; X 1 ; X 2 )a(u n (X 0 1 ; X 2 ))dX 0 1 ! Z !1
h(X 0 1 ; X 1 ; X 2 )a(u(X 0 1 ; X 2 ))dX 0 1 ;

in L p ( ) We can prove similarly as in [START_REF] Ogabi | On a class of nonlinear elliptic, anisotropic singular perturbations problems[END_REF] that (41) holds, therefore the assertion of the theorem is a simple application of theorem 9 Remark 4. Notice that the compacity of the operator given in the previous example is not su¢ cient to prove a such result as in the L 2 theory [START_REF] Chipot | On a class of integro-di¤erential problems[END_REF]. This shows the importance of assumption (41) wich holds for the above operator. Does operator whose assumption (41) holds admit necessarily an integral representation as in (45)?.

Example 2. We shall replace the integral by a general linear operator. Let us consider the following problem: Find u 2 V p such that div X2 (Ar X2 u) = f (X 2 ) + gP (ha(u)) u(X 1 ; ) = 0 on @! 2 ;

(46) where a, A and f are de…ned as in Example 1. We suppose that g, h 2 L 1 ( ) with Supp(h) compact. Assume r X1 g 2 L 1 ( ) and P : L p ( ) ! L 2 (! 2 ) is a bounded linear operator.

When P is not compact then the operator u ! gP (ha(u)) is not necessarily compact, if this is the case then this operator cannot admit an integral representation.

Theorem 11. Under the assumptions of this example there exists at least a solution u 2 V p to (46) in the sense of D 0 (! 2 ) for a.e X 1 2 ! 1 Proof. Similarly, the proof is a simple application of theorem 9.

Some Open questions

Problem 1. Suppose that 1 > p > 2. Given f 2 L p and consider (2), since f 2 L 2 then u ! u 0 in V 2 . Assume that and A are su¢ ciently regular .Can one prove that u ! u 0 in V p ? Problem 2. What happens when f 2 L 1 ? As mentioned in the introduction there exists a unique entropy solution to (2) which belongs to \

1 r< N N 1
W 1;r 0 ( ). Can one prove that u ! u 0 in V r for some 1 r < N N 1 ? Can one prove at least weak convergence in L r for some 1 < r < N N 1 as given in Theorem 4?

For every k > 0

 0 We de…ne the function T k : R ! R byT k (s) = s ; jsj k ksgn(x) jsj kAnd we de…ne the space T 1R measurable such that for any k > 0 there exists( n ) H 1 0 ( ) : n ! T k (u) a.e in and (r n ) n2N is bounded in L 2 ( )

1 u

 1 Clearly A satis…es the ellipticity assumption and it is Clear that the operatoru ! Z !1

unbounded. Indeed the two problems can be connected to each other via a scaling = 1 `(see [START_REF] Chipot | Elliptic equations, an introductory cours[END_REF] for more details). So let us consider the problem div( Ãru `) = f u `= 0 on @ ` (21) where à = (ã ij ) is a N N matrix such that

9 > 0 : Ã j j 2 8 2 R N for a.e x 2 R q ! 2 ;

(23) `= `!1 ! 2 a bounded domain where ! 1 ; ! 2 are two bounded Lipschitz domain with ! 1 convex and containing 0:

We assume that

We consider the limit problem

Then under the above assumptions we have Theorem 6. Let u `, u 1 be the unique entropy solutions to (21) and (24) then for every 2 (0; 1) there exists C 0; c > 0 independent of `such that kr(u ` u 1 )k W 1;p ( `) Ce cP roof. Let u `, u 1 the unique entropy solutions to (21) and ( 24) respectively, and let (u n `) and (u n 1 ) the approximation sequences (as in section 2). we have u n `! u ìn W 1;p 0 ( `) and u n 1 ! u 1 in W 1;p 0 (! 2 ):Subtracting the associated approximated problems to (21) and (24) and take the weak formulation we get Z `Ãr(u n `

Where we have used that Ã22 , Ã12 , u n 1 are independent of X 1 . Now we will use the iteration technique introduced in [START_REF] Chipot | Exponential rates of convergence by an iteration technique[END_REF], let 0 < `0 ` 1, and let 2 D(R q ) a bump function such that 0 1, = 1 on `0! 1 and = 0 on R q (`0 + 1)! 1 , jr X1 j c 0 where c 0 is the universal constant (see [START_REF] Chipot | Elliptic equations, an introductory cours[END_REF]). Testing with 2 (u n `

Using the ellipticity assumption (23)

Clearly the set G is compact in Y w . Then it follows by the Banach-Steinhaus theorem (applied on the quadruple , G, Y w , Z w ) that there exists a bounded subset F in Z w such that 8 :

(G) F

The boundedness of F in Z w implies its boundedness in Z.i.e For every j 2 N there exists C j 0 independent of such that 8 : p j ( (G)) C j Let u be an entropy and weak solution to (37) then we have u 2 E 0 as proved in Proposition 5 then (f + B(u )) = u 2 F for every , therefore

Whence for every 0 there exists C 0 0 independent of such that

Now we are ready to prove the convergence theorem. Assume that

where (L p ( ); L p loc ) is the space L p ( ) equipped with the L p loc ( )-topology. Notice that (42) implies that B : L p ( ) ! L p ( ) is continuous. Then we have the following Theorem 9. Under assumptions of Theorem 8, assume in addition (42), suppose that is convex, then there exists u 0 2 V p and a sequence (u k ) k2N of entropy and weak solution to (37) such that

Proof. The estimates given in Proposition 5 show that there exists u 0 2 L p ( ) and a sequence (u k ) k2N solutions to (37) such that

As we have proved in Theorem 3 we have u 0 2 V p . The particular di¢ culty is the passage to the limit in the nonlinear term. This assertion is guaranteed by Theorem 8. Indeed, since is convex and Lipschitz then there an open covering ( j ) j2N , j j+1 and j such that each j is a Lipschitz domain (Take an increasing sequence of number 0 < j < 1 with lim j = 1. Fix x 0 2 and take j = j ( x 0 ) + x 0 , since is convex then j . The Lipschitz character is conserved since the multiplication by j and translations are C 1 di¤eomorphisms).

Theorem 8 shows that for every j 2 N there exists C j 0 such that ku k W 1;p ( j ) C j