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Abstract. In this article we give an extention of the L2�theory of anisotropic
singular perturbations for elliptic problems. We study a linear and some non-
linear problems involving Lp data (1 < p < 2). Convergences in pseudo
Sobolev spaces are proved for weak and entropy solutions, and rate of conver-
gence is given in cylindrical domains

1. Introduction

1.1. Preliminaries. In this article we shall give an extension of the L2�theory
of the asymptotic behavior of elliptic, anisotropic singular perturbations problems.
This kind of singular perturbations has been introduced by M. Chipot [6]. From the
physical point of view, these problems can modelize di¤usion phenomena when the
di¤usion coe¢ cients in certain directions are going toward zero. The L2 theory of
the asymptotic behavior of these problems has been studied by M. Chipot and many
co-authors. First of all, let us begin by a brief discussion on the uniqueness of the
weak solution ( by weak a solution we mean a solution in the sense of distributions)
to the problem�

�div(Aru) = f
u = 0 on @


(1)

where 
 � RN , N � 2 is a bounded Lipschitz domain, we suppose that f 2
Lp(
) (1 < p < 2). The di¤usion matrix A = (aij) is supposed to be bounded and
satis�es the ellipticity assumption on 
 ( see assumptions (2) and (3) in subsection
1.2). It is well known that (1) has at least a weak solution in W 1;p

0 (
). Moreover,
if A is symmetric and continuous and @
 2 C2 [2] then (1) has a unique solution in
W 1;p
0 (
). If A is discontinuous the uniqueness assertion is false, in [15] Serrin has

given a counterexample when N � 3. However, if N = 2 and if @
 is su¢ ciently
smooth and without any continuity assumption on A, (1) has a unique weak solution
in W 1;p

0 (
). The proof is based on the Meyers regularity theorem (see for instance
[13]). To treat this pathology, Benilin, Boccardo, Gallouet, and al have introduced
the concept of the entropy solution [4] for problems involving L1 data (or more
generally a Radon measure).
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For every k > 0 We de�ne the function Tk : R! R by

Tk(s) =

�
s ; jsj � k

ksgn(x) jsj � k

And we de�ne the space T 1;20 introduced in [4].

T 1;20 (
) =

8<: u : 
! R measurable such that for any k > 0 there exists
(�n) � H1

0 (
) : �n ! Tk(u) a.e in 

and (r�n)n2N is bounded in L2(
)

9=;
This de�nition of T 1;20 is equivalent to the original one given in [4].In fact, this

is a characterization of this space [4]. Now, more generally, for f 2 L1(
) we have
the following de�nition of entropy solution [4].

De�nition 1. A function u 2 T 1;20 (
) is said to be an entropy solution to (1) ifZ



Aru � rTk(u� ')dx �
Z



fTk(u� ')dx, ' 2 D(
), k > 0

We refer the reader to [4] for more details about the sense of this formulation.
The main results of [4] show that (1) has a unique entropy solution which is also
a weak solution of (1) moreover since 
 is bounded then this solution belongs to\
1�r< N

N�1

W 1;r
0 (
).

1.2. Description of the problem and functional setting. Throughout this
article we will suppose that f 2 Lp(
), 1 < p < 2, (we can suppose that f =2 L2(
)).
We give a description of the linear problem (some nonlinear problems will be studied
later). Consider the following singular perturbations problem�

�div(A�ru�) = f
u� = 0 on @


; (2)

where 
 is a bounded Lipschitz domain of RN . Let q 2 N�, N � q � 2. We denote
by x = (x1; :::; xN ) = (X1; X2) 2 Rq � RN�q i.e. we split the coordinates into two
parts. With this notation we set

r = (@x1 ; :::; @xN )T =
�
rX1

rX2

�
;

where

rX1 = (@x1 ; :::; @xq )
T and rX2 = (@xq+1 ; :::; @xN )

T

Let A = (aij(x)) be a N �N matrix which satis�es the ellipticity assumption

9� > 0 : A� � � � � j�j2 8� 2 RN for a.e x 2 
; (3)

and

aij(x) 2 L1(
);8i; j = 1; 2; ::::; N; (4)

We have decomposed A into four blocks

A =

�
A11 A12
A21 A22

�
;
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where A11, A22 are respectively q � q and (N � q) � (N � q) matrices. For
0 < � � 1 we have set

A� =

�
�2A11 �A12
�A21 A22

�
We denote 
X1

=
�
X2 2 RN�q : (X1; X2) 2 


	
and 
1 = P1
 where P1 : RN !

Rp is the usual projector. We introduce the space

Vp =

�
u 2 Lp(
) j rX2

u 2 Lp(
),
and for a.e X1 2 
1; u(X1; �) 2W 1;p

0 (
X1
)

�
We equip Vp with the norm

kukVp =
�
kukpLp(
) + krX2uk

p
Lp(
)

� 1
p

;

then one can show easily that (Vp; k�kVp) is a separable re�exive Banach space.
The passage to the limit (formally) in (2) gives the limit problem�

�divX2
(A22rX2

u0(X1; �)) = f (X1; �)
u0(X1; �) = 0 on @
X1 X1 2 
1

(5)

The L2-theory (when f 2 L2) of problem (2) has been treated in [8], convergence
has been proved in V2 and rate of convergence in the L2�norm has been given. For
the L2�theory of several nonlinear problems we refer the reader to [9],[10],[14].
This article is mainly devoted to study the Lp�theory of the asymptotic behavior
of linear and nonlinear singularly perturbed problems. In other words, we shall
study the convergence u� ! u0 inVp (Notice that in [9], authors have treated some
problems involving Lp data where some others data of the equations depend on p,
one can check easily that it is not the Lp theory which we expose in this manuscript).
Let us brie�y summarize the content of the paper:

� In section 2: We study the linear problem, we prove convergences for weak
and entropy solutions.

� In section 3: We give the rate of convergence in a cylindrical domain when
the data is independent of X1.

� In section 4: We treat some nonlinear problems.

2. The Linear Problem

The main results in this section are the following

Theorem 1. Assume (3), (4) then there exists a sequence (u�)0<��1 � W 1;p
0 (
)

of weak solutions to (2) and u0 2 Vp such that �rX1u� ! 0 in Lp(
), u� ! u0 in
Vp where u0 satis�es (5) for a.e X1 2 
1.

Corollary 1. Assume (3), (4) then if A is symmetric and continuous and @
 2 C2,
then there exists a unique u0 2 Vp such that u0(X1; �) is the unique solution to (5)
in W 1;p

0 (
X1) for a.e X1. Moreover the sequence (u�)0<��1 of the unique solutions
(in W 1;p

0 (
)) to (2) converges in Vp to u0 and �rX1
u� ! 0 in Lp(
).

Proof. This corollary follows immediately from Theorem 1 and uniqueness of the
solutions of (2) and (5) as mentioned in subsection 1.1 (Notice that @
X1

2 C2). �
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Theorem 2. Assume (3), (4) then there exists a unique u0 2 Vp such that u0(X1; �)
is the unique entropy solution of (5). Moreover, the sequence of the entropy solu-
tions (u�)0<��1 of (2) converges to u0 in Vp and �rX1u� ! 0 in Lp(
).

2.1. Weak convergence. Let us prove the following primary result

Theorem 3. Assume (3), (4) then there exists a sequence (u�k)k2N �W 1;p
0 (
) of

weak solutions to (2) (�k ! 0 as k !1) and u0 2 Vp such that rX2
u�k * rX2

u0,
�krX1

un�k * 0, u�k * u0 in Lp(
� weak. and u0 satis�es (5) for a.e X1 2 
1:

Proof. By density let (fn)n2N � L2(
) be a sequence such that fn ! f in Lp(
),
we can suppose that 8n 2 N :kfnkLp � M , M � 0. Consider the regularized
problem

un� 2 H1
0 (
);

Z



A�run� � r'dx =
Z



fn'dx ; ' 2 D(
) (6)

Assumptions (2) and (3) shows that un� exists and it is unique by the Lax-
Milgram theorem. (Notice that un� also belongs to W

1;p
0 (
)). We introduce the

function

�(t) =

tZ
0

(1 + jsj)p�2ds, t 2 R

This kind of function has been used in [3]. We have �0(t) = (1 + jtj)p�2 � 1 and
�(0) = 0, therefore we have �(u) 2 H1

0 (
) for every u 2 H1
0 (
). Testing with �(u

n
� )

in (6) and using the ellipticity assumption we deduce

��2
Z



(1 + jun� j)p�2 jrX1u
n
� j
2
dx+ �

Z



(1 + jun� j)p�2 jrX2u
n
� j
2
dx

�
Z



fn�(u
n
� )dx �

2

p� 1

Z



jfnj (1 + jun� j)p�1dx,

where we have used j�(t)j � 2(1+jtj)p�1
p�1 . In the other hand, by Hölder�s inequality

we haveZ



jrX2u
n
� j
p
dx �

�Z



(1 + jun� j)p�2 jrX2u
n
� j
2
dx

� p
2
�Z




(1 + jun� j)pdx
�1� p

2

From the two previous integral inequalities we deduceZ



jrX2
un� j

p
dx �

�
2

�(p� 1)

Z



jfnj (1 +
��un�k ��)p�1dx�

p
2

��Z



(1 +
��un�k ��)pdx�1�

p
2

By Hölder�s inequality we get

krX2u
n
� kLp(
) �

�
2 kfnkLp
�(p� 1)

� 1
2
�Z




(1 + jun� j)pdx
� 1

2p

(7)

Using Minkowki inequality we get

krX2u
n
� k
2
Lp(
) � C(1 + kun� kLp(
));
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Thanks to Poincaré�s inequality kun� kLp(
) � C
 krX2
un� kLp(
) we obtain

krX2
un� k

2
Lp(
) � C 0(1 + krX2

un� kLp(
));

where the constant C 0 depends on p, �, mes(
),M and C
. Whence, we deduce

kun� kLp(
) , krX2
un� kLp(
) � C 00 (8)

Similarly we obtain

k�rX1
un� kLp(
) � C 000; (9)

where the constants C 00, C 000 are independent of n and �, so

kun� kW 1;p(
) �
Const

�
(10)

Fix �, sinceW 1;p(
) is re�exive then (10) implies that there exists a subsequence
(u
nl(�)
�k )l2N and u� 2 W 1;p

0 (
) such that unl(�)� * u� 2 W 1;p
0 (
) (as l ! 1) in

W 1;p(
)�weak. Now, passing to the limit in (6) as l!1 we deduceZ



A�ru� � r'dx =
Z



f'dx ; ' 2 D(
) (11)

Whence u� is a weak solution of (2) (u� = 0 on @
 in the trace sense of
W 1;p�functions, indeed the trace operator is well de�ned since @
 is Lipschitz).
Now, from (8) and (9) we deduce

ku�kLp(
) � lim inf
l!1




unl(�)�





Lp(
)

� C 0

and similarly we obtain

k�rX1
u�kLp(
) , krX2

u�kLp(
) � C 0

Using re�exivity and continuity of the derivation operator on D0(
) one can
extract a subsequence (u�k)k2N such that rX2

u�k * rX2
u0, �krX1

un�k * 0, u�k *
u0 in Lp(
)� weak. Passing to the limit in (11) we getZ




A22rX2
u0 � rX2

'dx =

Z



f'dx ; ' 2 D(
) (12)

Now, we will prove that u0 2 Vp: Since rX2
u�k * rX2

u0 and u�k * u0 in
Lp(
) � weak then there exists a sequence (Un)n2N � conv(fu�kgk2N) such that
rX2Un ! rX2u0 in L

p(
) � strong, where conv(fu�kgk2N) is the convex hull of
the set fu�kgk2N. Notice that we have Un 2 W 1;p

0 (
) then -up to a subsequence-
we have Un(X1; �) 2 W 1;p

0 (
X1), a.e X1 2 
1. And we also have -up to a
subsequence- rX2

Un(X1; �) ! rX2
u0(X1; :) in Lp(
X1

) � strong a.e X1 2 
1.
Whence u0(X1; :) 2W 1;p

0 (
X1) for a.e X1 2 
1, so u0 2 Vp.
Finally, we will prove that u0 is a solution of (5). Let E be a Banach space, a

family of vectors fengn2N in E is said to be a Banach basis or a Schauder basis of E

if for every x 2 E there exists a family of scalars (�n)n2N such that x =
1X
n=0

�nen,

where the series converges in the norm of E. Notice that Schauder basis does not
always exist. In [11] P. En�o has constructed a separable re�exive Banach space
without Schauder basis!. However, the Sobolev space W 1;r

0 ( 1 < r < 1) has a
Schauder basis whenever the boundary of the domain is su¢ ciently smooth [12].
Now, we are ready to �nish the proof. Let (Ui�Vi)i2N be a countable covering of 
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such that Ui � Vi � 
 where Ui � Rq; Vi � RN�q are two bounded open domains,
where @Vi is smooth (Vi are Euclidian balls for example), such a covering always
exists. Now, �x  2 D(Vi) then it follows from (12) that for every ' 2 D(Ui) we
have Z

Ui

'dX1

Z
Vi

A22rX2u0 � rX2 dX2 =

Z
Ui

'dX1

Z
Vi

f dX2

Whence for a.e X1 2 Ui we haveZ
Vi

A22(X1; �)rX2
u0(X1; �) � rX2

 dX2 =

Z
Vi

f(X1; �) dX2

Notice that by density we can take  2 W 1;p0

0 (Vi) where p0 is the conjugate of
p. Using the same techniques as in [8], where we use a Schauder basis of W 1;p0

0 (Vi)
and a partition of the unity, one can easily obtainZ


X1

A22(X1; �)rX2u0(X1; �) � rX2'dx =

Z

X1

f(X1; �)'dx, ' 2 D(
),

for a.e X1 2 
1. Finally, since u0(X1; �) 2 W 1;p
0 (
X1

) (as proved above) then
u0(X1; �) is a solution of (5) (Notice that 
X1

is also a Lipschitz domain so the
trace operator is well de�ned). �

2.2. Strong convergence. Theorem 1 will be proved in three steps. the proof
is based on the use of the approximated problem (6). In the �rst step, we shall
construct the solution of the limit problem
Step1 : Let un� 2 H1

0 (
) be the unique solution to (6), existence and uniqueness
of un� follows from assumptions (3), (4) as mentioned previously. One have the
following

Proposition 1. Assume (3), (4) then there exists (un0 )n2N � V2 such that �un� ! 0
in L2(
), un� ! un0 in V2 for every n 2 N, in particular the two convergences holds
in Lp(
) and Vp respectively. And un0 is the unique weak solution in V2 to the
problem�

divX2
(A22(X1; �)rX2

un0 (X1; �)) = fn(X1; �), X1 2 
1
un0 (X1; �) = 0 on @
X1

(13)

Proof. This result follows from the L2�theory (Theorem 1 in [8]), The convergences
in Vp and Lp(
) follow from the continuous embedding V2 ,! Vp, L2(
) ,! Lp(
)
(p < 2). �

Now, we construct u0 the solution of the limit problem (5). Testing with
' = �(un0 (X1; �)) in the weak formulation of (13) (� is the function introduced
in subsection 2.1) and estimating like in the proof of Theorem 3 we obtain as in (7)

krX2u
n
0 (X1; �)kLp(
X1 )

�
 
kfn(X1; �)kLp(
X1 )

�(p� 1)

! 1
2

�
 Z


X1

(1 + jun0 (X1; �)j)pdX2

! 1
2p

(14)
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Integrating over 
1 and using Cauchy-Schwaz�s inequality in the right hand side
we get

krX2u
n
0k
p
Lp(
) � C kfnk

p
2

Lp(
)

�Z



(1 + jun0 j)pdx
� 1

2

and therefore

krX2
un0k

2
Lp(
) � C 0(1 + kun0kLp(
))

Using Poincaré�s inequality kun0kLp(
) � C
 krX2
un0kLp(
) ( which holds since

un0 (X1; �) 2W 1;p
0 (
X1) a.e X1 2 
1), one can obtain the estimate

kun0kLp(
) � C 00 for every n 2 N, (15)

where C 00 is independent of n. Now, using the linearity of the problem and (13)
with the test function �(un0 (X1; �)�um0 (X1; �)), m;n 2 N one can obtain like in (14)

krX2
(un0 (X1; �)� um0 (X1; �))kLp(
X1 )

�
 
kfn(X1; �)� fm(X1; �)kLp(
X1 )

�(p� 1)

! 1
2

�

 Z

X1

(1 + jun0 (X1; �)� um0 (X1; �)j)pdX2

! 1
2p

integrating over 
1 and using Cauchy-Schwarz and (15) yields

krX2
(un0 � um0 )kLp(
) � C kfn � fmk

1
2

Lp(
) ;

where C is independent of m and n. The Poincaré�s inequality shows that

kun0 � um0 kVp � C 0 kfn � fmk
1
2

Lp(
)

Since (fn)n2N is a converging sequence in Lp(
) then this last inequality shows
that (un0 )n2N is a Cauchy sequence in Vp, consequently there exists u0 2 Vp such
that un0 ! u0 in Vp. Now, passing to the limit in (6) as �! 0 we getZ




A22rX2
un0 � rX2

'dX2 =

Z



fn'dX2, ' 2 D(
)

Passing to the limit as n!1 we deduceZ



A22rX2
u0 � rX2

'dX2 =

Z



f'dX2, ' 2 D(
)

Then it follows as proved in Theorem 3 that u0 satis�es (5). Whence we have
proved the following

Proposition 2. Under assumption of Proposition 1 there exists u0 2 Vp solution
to (5) such that un0 ! u0 in Vp where (un0 )n2N is the sequence given in Proposition
1

Step2 : In this second step we will construct the sequence (u�)0<��1 solutions
of (2), one can prove the following
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Proposition 3. There exists a sequence (u�)0<��1 �W 1;p
0 (
) of weak solutions to

(2) such that un� ! u� in W 1;p(
) for every � �xed. Moreover, un� ! u� in Vp and
�rX2u

n
� ! �rX2u�, uniformly in �.

Proof. Using the linearity of (6) testing with �(un� � um� ), m;n 2 N we obtain as in
(7)

krX2u
n
� � um� kLp(
) �

�
kfn � fmkLp
�(p� 1)

� 1
2
�Z




(1 + jun� � um� j)p
� 1

2p

And (8) gives

krX2(u
n
� � um� )kLp(
) � C kfn � fmk

1
2

Lp

where C is independent of � and n, whence Poincaré�s inequality implies

kun� � um� kVp � C 0 kfn � fmk
1
2

Lp (16)

Similarly we obtain

k�rX2(u
n
� � um� )kLp(
) � C 00 kfn � fmk

1
2

Lp (17)

its follows that

kun� � um� kW 1;p(
) �
C

�
kfn � fmk

1
2

Lp

The last inequality implies that for every � �xed (un� )n2N is a Cauchy sequence in
W 1;p
0 (
), Then there exists u� 2 W 1;p

0 (
) such that un� ! u� in W 1;p(
), then the
passage to the limit in (6) shows that u� is a weak solution of (2). Finally (16) and
(17) show that un� ! u� (resp �rX2

un� ! �rX2
u�) in Vp ( resp in Lp(
)) uniformly

in �. �

Step3 : Now, we are ready to conclude. Proposition 1, 2 and 3 combined with
the triangular inequality show that u� ! u0 in Vp and �rX2

u� ! 0 in Lp(
), and
the proof of Theorem 1 is �nished.

2.3. Convergence of the entropy solutions. As mentioned in section 1 the
entropy solution u� of (2) exists and it is unique. We shall construct this entropy
solution. Using the approximated problem (6), one has aW 1;p�strongly converging
sequence un� ! u� 2 W 1;p

0 (
) as shown in Proposition 3. We will show that
u� 2 T 1;20 (
). Clearly we haveTk(un� ) 2 H1

0 (
) for every k > 0. Now testing with
Tk(u

n
� ) in (6) we obtainZ




A�run� � rTk(un� )dx =
Z



fnTk(u
n
� )dx

Using the ellipticity assumption we getZ



jrTk(un� )j
2 � Mk

�(1 + �2)
(18)

Fix �; k, we have un� ! u� in Lp(
) then there exists a subsequence (unl� )l2N such
that unl� ! u� a.e x 2 
 and since Tk is bounded then it follows that Tk(unl� ) !
Tk(u�) a.e in 
 and strongly in L2(
) whence u� 2 T 1;20 (
).
It follows by (18) that there exists a subsequence still labelled Tk(u

nl
� ) such

that rTk(unl� ) ! v�;k 2 L2(
).The continuity of r on D0(
) implies that v�;k =
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rTk(u�), whence Tk(unl� ) ! Tk(u�) in H1(
). Now, since Tk(unl� ) 2 H1
0 (
) then

we deduce that Tk(u�) 2 H1
0 (
).

It follows [4] thatZ



A�ru� � rTk(u� � ')dx �
Z



fTk(u� � ')dx

Whence u� is the entropy solution of (2). Similarly the function u0 (constructed
in Proposition 2) is the entropy solution to (5) for a.e X1 The uniqueness of u0 in
Vp follows from the uniqueness of the entropy solution of problem (5). Finally, the
convergences given in Theorem 2 follows from Theorem 1.

Remark 1. Uniqueness of the entropy solutions implies that it does not depend on
the choice of the approximated sequence (fn)n.

2.4. A regularity result for the entropy solution of the limit problem.
In this subsection we assume that 
 = !1 � !2 where !1; !2 are two bounded
Lipschitz domains of Rq, RN�q respectively. We introduce the space

Wp = fu 2 Lp(
) j rX1
u 2 Lp(
)g

We suppose the following

f 2Wp and A22(x) = A22(X2) i.e A22 is independent of X1 (19)

Theorem 4. Assume (3), (4), (19) then u0 2 W 1;p(
), where u0 is the entropy
solution of (5).

Proof. Let (un0 ) the sequence constructed in subsection 2.2, we have u
n
0 ! u0 in

Vp, where u0 is the entropy solution of (5) as mentioned in the above subsection.
Let !01 �� !1 be an open subset; for 0 < h < d(@!1; !

0
1) and for X1 2 !01 we

set � ihu
n
0 = un0 (X1 + hei; X2) where ei = (0; ::; 1; ::; 0) then we have by (13)Z
!2

A22rX2
(� ihu

n
0 � un0 ) � rX2

'dX2 =

Z
!2

(� ihfn � fn)'dX2 , ' 2 D(!2)

where we have used A22(x) = A22(X2):

We introduce the function ��(t) =

tZ
0

(� + jsj)p�2 ds, � > 0, t 2 R we have

0 < �0�(t) = (� + jtj)
p�2 � �p�2 and j��(t)j � 2(�+jtj)p�1

p�1

Testing with ' = 1
h��(

� ihu
n
0�u

n
0

h ) 2 H1
0 (!2). To make the notations less heavy we

set

U =
� ihu

n
0 � un0
h

,
(� ihfn � fn)

h
= F

Then we getZ
!2

�0�(U)A22rX2U � rX2UdX2 =

Z
!2

F��(U)dX2

Using the ellipticity assumption for the left hand side and Hölder�s inequality
for the right hand side of the previous inequality we deduce

�

Z
!2

�0�(U) jrX2U j
2
dX2 �

2

p� 1 kFkLp(!2)
�Z

!2

(� + jU j)p dX2

� p�1
p
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Using Hölder�s inequality we derive

krX2
UkpLp(!2) �

�Z
!2

�0�(U) jrX2
U j2 dX2

� p
2
�Z

!2

�0�(U)
p

p�2
dX2

� 2�p
2

�
 

2

�(p� 1) kFkLp(!2)
�Z

!2

(� + jU j)p dX2

� p�1
p

! p
2

�

�Z
!2

�0�(U)
p

p�2
dX2

� 2�p
2

Then we deduce

krX2Uk
2
Lp(!2)

� 2

�(p� 1) kFkLp(!2)
�Z

!2

(� + jU j)p dX2

� 1
p

Now passing to the limit as � ! 0 using the Lebesgue theorem we deduce

krX2
Uk2Lp(!2) �

2

�(p� 1) kFkLp(!2)
�Z

!2

(jU j)p dX2

� 1
p

;

and Poincaré�s inequality gives

krX2UkLp(!2) �
2C!2

�(p� 1) kFkLp(!2)

Now, integrating over !01 yields



� ihun0 � un0h






Lp(!01�!2)

� 2C!2
�(p� 1)





 (� ihfn � fn)h






Lp(!01�!2)

Passing to the limit as n ! 1 using the invariance of the Lebesgue measure
under translations we get



� ihu0 � u0h






Lp(!01�!2)

� 2C!2
�(p� 1)





 (� ihf � f)h






Lp(!01�!2)

Whence, since f 2Wp then



� ihu0 � u0h






Lp(!01�!2)

� C;

where C is independent of h, therefore we have rX1
u0 2 Lp(
). Combining this

with u0 2 Vp we get the desired result. �

3. The Rate of convergence Theorem

In this section we suppose that 
 = !1 � !2 where !1; !2 are two bounded
Lipschitz domains of Rq and RN�q respectively. We suppose that A12, A22 and f
depend on X2 only i.e A12(x) = A12(X2), A22(x) = A22(X2) and f(x) = f(X2) 2
Lp(!2) (1 < p < 2), f =2 L2(!2).
Let u�, u0 be the unique entropy solutions of (2), (5) respectively then under the

above assumptions we have the following

Theorem 5. For every !01 �� !1 and m 2 N� there exists C � 0 independent of
� such that

ku� � u0kWp(!01�!2)
� C�m
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Proof. Let u�, u0 be the entropy solutions of (2), (5) respectively, we use the ap-
proximated sequence (un� )�;n, (u

n
0 )n introduced in section 2. Subtracting (13) from

(6) we obtainZ



A�r(un� � un0 ) � r'dx = 0;

where we have used that un0 is independent of X1 (since f and A22 are indepen-
dent of X1) and that A12 is independent of X1.
Let !01 �� !1 then there exists !01 �� !001 �� !1. We introduce the function

� 2 D(!1) such that Supp(�) � !001 and � = 1 on !01( we can choose 0 � � � 1)
Testing with ' = �2��(u

n
� � un0 ) 2 H1

0 (
) (we can check easily that this function
belongs to H1

0 (
) using approximation argument) in the above integral equality we
get Z




�2�0�(u
n
� � un0 )A�r(un� � un0 ) � r(un� � un0 )dx

= �
Z



���(u
n
� � un0 )A�r(un� � un0 ) � r�dx

= ��2
Z



���(u
n
� � un0 )A11rX1

(un� � un0 ) � rX1
�dx

� �

Z



���(u
n
� � un0 )A12rX2(u

n
� � un0 ) � rX1�dx

where we have used that � is independent of X2:
Using the ellipticity assumption for the left hand side and assumption (4) for

the right hand side of previous equality we deduce

�2�

Z



�0�(u
n
��un0 ) j�rX1

(un� � un0 )j
2
dx+�

Z



�0�(u
n
��un0 ) j�rX2

(un� � un0 )j
2
dx

� �2C

Z



� j��(un� � un0 )j jrX1(u
n
� � un0 )j dx

+ �C

Z



� j��(un� � un0 )j jrX2
(un� � un0 )j dx

Where C � 0 depends on A and �. Using Young�s inequality ab � a2

2c
+ c

b2

2
for

the two terms in the right hand side of the previous inequality we obtain

�2
�

2

Z



�0�(u
n
��un0 ) j�rX1(u

n
� � un0 )j

2
dx+

�

2

Z



�0�(u
n
��un0 ) j�rX2(u

n
� � un0 )j

2
dx

� �2C 0
Z
!001�!2

j��(un� � un0 )j
2
�0�(u

n
� � un0 )

�1dx

Whence

�2
�

2

Z



�0�(u
n
��un0 ) j�rX1

(un� � un0 )j
2
dx+

�

2

Z



�0�(u
n
��un0 ) j�rX2

(un� � un0 )j
2
dx

� 4

(p� 1)2 �
2C 0

Z
!001�!2

(� + jun� � un0 j)pdx

where C 00 is independent of � and n
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Now, using Hölder�s inequality and the previous inequality we deduce

�2
�

2
k�rX1

(un� � un0 )k
2
Lp(
) +

�

2
k�rX2

(un� � un0 )k
2
Lp(
)

�

24 �2 �2

�R


�0�(u

n
� � un0 ) j�rX1

(un� � un0 )j
2
dx
�

+�
2

�R


�0�(u

n
� � un0 ) j�rX2

(un� � un0 )j
2
dx
� 35�

 Z
!001�!2

(� + jun� � un0 j)pdx
! 2�p

p

� 4C 0

(p� 1)2 �
2

 Z
!001�!2

(� + jun� � un0 j)pdx
! 2

p

Passing to the limit as � ! 0 using the Lebesgue theorem. Passing to the limit
as n!1 we get

�2 krX1(u� � u0)k
2
Lp(!01�!2)

+ krX2(u� � u0)k
2
Lp(!01�!2)

(20)

� C 00�2 k(u� � u0)k2Lp(!001�!2)

Using Poincaré�s inequality

k(u� � u0)kLp(!001�!2) � C!2 krX2
(u� � u0)kLp(!001�!2) ,

we obtain

�2 krX1
(u� � u0)k2Lp(!01�!2) + krX2

(u� � u0)k2Lp(!01�!2)
� C 00�2 krX2

(u� � u0)k2Lp(!001�!2)

Let m 2 N� then there exists !01 �� !001 �� :::!
(m+1)
1 �� !1. Iterating the

above inequality m�time we deduce

�2 krX1
(u� � u0)k2Lp(!01�!2) + krX2

(u� � u0)k2Lp(!01�!2)
� Cm�

2m krX2
(u� � u0)k2Lp(!(m)

1 �!2)

Now, from (20) (with !01 and !
00
1 replaced by !

(m)
1 and !(m+1)1 respectively) we

deduce

�2 krX1
(u� � u0)k2Lp(!01�!2) + krX2

(u� � u0)k2Lp(!01�!2)
� C 0m�

2(m+1) ku� � u0k2Lp(!(m+1)
1 �!2)

Since u� ! u0 in Lp(
) then ku� � u0kLp(
) is bounded and therefore we obtain

ku� � u0kWp(!01�!2)
� C 00m�

m

And the proof of the theorem is �nished. �

Can one obtain a more better convergence rate? In fact, the anisotropic sin-
gular perturbation problem (2) can be seen as a problem in a cylinder becoming
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unbounded. Indeed the two problems can be connected to each other via a scaling
� = 1

` (see [5] for more details). So let us consider the problem�
�div( ~Aru`) = f
u` = 0 on @
`

(21)

where ~A = (~aij) is a N �N matrix such that

~aij 2 L1(Rq � !2) (22)

9� > 0 : ~A� � � � � j�j2 8� 2 RN for a.e x 2 Rq � !2; (23)


` = `!1 � !2 a bounded domain where !1; !2 are two bounded Lipschitz
domain with !1 convex and containing 0:
We assume that f 2 Lp(!2) (1 < p < 2) and ~A22(x) = ~A22(X2), ~A12(x) =

~A12(X2).
We consider the limit problem�

�div( ~A22rX2
u1) = f

u1 = 0 on @!2
(24)

Then under the above assumptions we have

Theorem 6. Let u`, u1 be the unique entropy solutions to (21) and (24) then for
every � 2 (0; 1) there exists C � 0; c > 0 independent of ` such that

kr(u` � u1)kW 1;p(
�`)
� Ce�c`

Proof. Let u`, u1 the unique entropy solutions to (21) and (24) respectively, and
let (un` ) and (u

n
1) the approximation sequences (as in section 2). we have u

n
` ! u`

in W 1;p
0 (
`) and un1 ! u1 in W 1;p

0 (!2):Subtracting the associated approximated
problems to (21) and (24) and take the weak formulation we getZ


`

~Ar(un` � un1)r'dx = 0, ' 2 D(
) (25)

Where we have used that ~A22, ~A12, un1 are independent of X1. Now we will use
the iteration technique introduced in [7], let 0 < `0 � ` � 1, and let � 2 D(Rq) a
bump function such that

0 � � � 1, � = 1 on `0!1 and � = 0 on Rq�(`0 + 1)!1, jrX1
�j � c0

where c0 is the universal constant (see [5]). Testing with �2��(un` � un1) 2 H1
0 (
`)

in (25) we getZ

`

�2�0�(u
n
` � un1) ~Ar(un` � un1) � r(un` � un1)dx

+

Z

`

���(u
n
` � un1) ~Ar(un` � un1) � r�dx = 0

Using the ellipticity assumption (23)Z

`

�2�0�(u
n
` � un1) jr(un` � un1)j

2
dx

� 2
Z

`

� j��(un` � un1)j
��� ~Ar(un` � un1)��� jr�j dx



14 CHOKRI OGABI

Notice that r� = 0 on 
`0 , and 
`0 � 
`0+1 ( since !1 is convex and containing
0). Then by the Cauchy-Schwaz inequality we getZ


`

�2�0�(u
n
` � un1) jr(un` � un1)j

2
dx

� 2c0C
Z

`0+1�
`0

� j��(un` � un1)j jr(un` � un1)j dx

� 2c0C
�Z


`

�2�0�(u
n
` � un1) jr(un` � un1)j

2
dx

� 1
2

� Z

`0+1�
`0

j��(un` � un1)j
2
�0�(u

n
` � un1)�1dx

! 1
2

where we have used (22). Whence we get ( since � = 1 on 
`0)Z

`0

�0�(u
n
` � un1) jr(un` � un1)j

2
dx �

Z

`

�2�0�(u
n
` � un1) jr(un` � un1)j

2
dx

�
�
4c0C

p� 1

�2 Z

`0+1�
`0

(� + jun` � un1j)pdx

From Hölder�s inequality it holds that

kr(un` � un1)k
2
Lp(
`0 )

�
 Z


`0

�0�(u
n
` � un1) jr(un` � un1)j

2
dx

! Z

`0

(� + jun` � un1j)pdx
! 2�p

p

�
�
4c0C

p� 1

�2 Z

`0+1�
`0

(� + jun` � un1j)pdx
! Z


`0

(� + jun` � un1j)pdx
! 2�p

p

Passing to the limit as � ! 0 (using the Lebesgue theorem) we get

kr(un` � un1)k
2
Lp(
`0 )

� C1

 Z

`0+1�
`0

jun` � un1j
p
dx

!
�
 Z


`0

jun` � un1j
p
dx

! 2�p
p

,

where we have used 0 � � � 1. Using Poincaré�s inequality

kr(un` � un1)kLp(
`0 ) � C!2 kr(un` � un1)kLp(
`0 )
we get

kr(un` � un1)k
p
Lp(
`0 )

� C2 kun` � un1k
p
Lp(
`0+1�
`0 )

Using Poincaré�s inequality

kun` � un1kLp(
`0+1�
`0 ) � C!2 kr(un` � un1)kLp(
`0+1�
`0 )
we get

kr(un` � un1)k
p
Lp(
`0 )

� C3 kr(un` � un1)k
p
Lp(
`0+1�
`0 )
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Whence

kr(un` � un1)k
p
Lp(
`0 )

� C3
C3 + 1

kr(un` � un1)k
p
Lp(
`0+1)

Let � 2 (0; 1), iterating this formula starting from �` we get

kr(un` � un1)k
p
Lp(
�`)

�
�

C3
C3 + 1

�[�`]
kr(un` � un1)k

p
Lp(
�`+[(1��)`])

Whence

kr(un` � un1)kLp(
�`) � ce�c
0` kr(un` � un1)kLp(
`) (26)

where c; c0 > 0 are independent of ` and n:
Now we have to estimate the right hand side of (26). Testing with �(un` ) in the

approximated problem associated to (21) one can obtain as in subsection 2.1

krun` kLp(
`) � C`
q
2 (27)

Similarly testing with �(un1) in the approximated problem associated to (24).
we get

krun1kLp(
`) � C 0`
q
2 (28)

Replace (28), (27) in (26) and passing to the limit as n ! 1 we obtain the
desired result. �

Corollary 2. Under the above assumptions then for every � 2 (0; 1) there exists
C � 0, c > 0 independent of � such that

ku� � u0kW 1;p(�!1�!2) � Ce
�
c

�

where u�, u0 are the entropy solutions to (2) and (5) respectively

Remark 2. It is very di¢ cult to prove the rate convergence theorem for general
data. When f(x) = f1(X2) + f2(x) with f1 2 Lp(!2) and f2 2 W2 we only have
the estimates

� krX1(u� � u0)kLp(!01�!2) + krX2(u� � u0)kLp(!01�!2)
+ ku� � u0kLp(!01�!2) � C�

This follows from the linearity of the equation, Theorem 5 and the L2�theory [8].

4. Some Extensions to nonlinear problems and applications

4.1. A semilinear monotone problem. We consider the semilinear problem�
�div(A�ru�) = f + a(u�)

u� = 0 on @

(29)

Where the a : R! R is a continuous nonincreasing function which satis�es the
growth condition

8x 2 R : ja(x)j � K(1 + jxj), K � 0 (30)
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and f 2 Lp(
) where 1 < p < 2 ; f =2 L2(
) and A is given as in Subsection
1.2. Clearly the Nemytskii operator u ! a(u) maps Lr(
) ! Lr(
) continuously
for every 1 � r <1. The passage to the limit (formally) gives the limit problem

�
�divX2(A22(X1; �)ru0(X1; �)) = f(X1; �) + a(u0(X1; �))
u0(X1; �) = 0 on @
X1

(31)

We can suppose that a(0) = 0. Indeed, in the general case the right hand side
of (29) can be replaced by (a(0) + f) + b(x) where b(x) = a(x)� a(0). Clearly b is
continuous nonincreasing and satis�es jb(x)j � (K + ja(0)j)(1 + jxj).
First of all, suppose that f 2 L2(
);then we have the following

Proposition 4. Assume (3), (4) and a(0) = 0. Let u� be the unique weak solution
in H1

0 (
) to (29) then �rX1
u� ! 0 in L2(
) and u� ! u0 in V2 where u0 in the

unique solution in V2 to the limit problem (31).

Proof. Existence of u� follows directly by a simple application of the Schauder �xed
point theorem for example. The uniqueness follows form monotonicity of a and the
Poincaré�s inequality.
Take u� as a test function in (29) then one can obtain the estimates

� krX1
u�kL2(
) , krX2

u�kL2(
) , ku�kL2(
) � C,

where C is independent of �, we have used that
R


a(u�)u�dx � 0 (thanks to

monotonicity assumption and a(0) = 0). And we also have (thanks to assumption
(30))

ka(u�)kL2(
) � K(j
j
1
2 + C)

so there exists v 2 L2(
), u0 2 L2(
), rX2
u0 2 L2(
) and a subsequence

(u�k)k2N such that

a(u�k)! v, �krX1u�k * 0, rX2u�k * rX2u0, u�k * u0 in L2(
)-weak

(32)

Passing to the in the weak formulation of (29) we get

Z



A22rX2u0 � rX2'dx =

Z



f'dx +

Z



v'dx, ' 2 D(
) (33)

Take ' = u�k in the previous equality and passing to the limit we getZ



A22rX2
u0 � rX2

u0dx =

Z



fu0dx +

Z



vu0dx (34)
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Let us computing the quantity

0 � Ik =

Z



A�k

�
rX1u�k

rX2(u�k � u0)

�
�
�

rX1u�k
rX2(u�k � u0)

�
dx

�
Z



(a(u�k)� a(u0))(u�k � u0)dx

=

Z



fu�kdx� �
Z



A12rX2u0 � rX1u�kdx� �
Z



A21rX1u�k � rX2u0dx

�
Z



A22rX2
u�k � rX2

u0dx�
Z



A22rX2
u0 � rX2

u�kdx

+

Z



fu0dx+

Z



vu0dx+

Z



a(u0)u�kdx

+

Z



a(u�k)u0dx �
Z



a(u0)u0dx

(This quantity is positive thanks to the ellipticity and monotonicity assump-
tions).
Passing to the limit as k !1 using (32), (33), (34) we get

lim Ik = 0

And �nally The ellipticity assumption and Poincaré�s inequality show that

k�krX1u�kkL2(
) , krX2(u�k � u0)kL2(
) , ku�k � u0kL2(
) ! 0 (35)

Whence (33) becomesZ



A22rX2
u0 � rX2

'dx =

Z



f'dx +

Z



a(u0)'dx, ' 2 D(
) (36)

krX2
(u�k � u0)kL2(
) ! 0 shows that u0 2 V2, and thereforeZ

X1

A22rX2
u0 � rX2

'dx =

Z

X1

f'dx +

Z

X1

a(u0)'dx, ' 2 D(
X1
)

Hence u0(X1; �) is a solution to (31). The uniqueness in H1
0 (
X1

) of the the
solution of the limit problem (31) shows that u0 is the unique function in V2
which satis�es (36). Therefore the convergences (35) hold for the whole sequence
(u�)0<��1: �

Now, we are ready to give the main result of this subsection

Theorem 7. Suppose that f 2 Lp(
) where 1 < p < 2 (we can suppose that
f =2 L2(
)) then there exists u0 2 Vp such that u0(X1; �) is the unique entropy
solution to (31) and we have u� ! u0 in Vp, �rX1

u� ! 0 in Lp(
), where u� is the
unique entropy solution to (29).

Proof. We only give a sketch of the proof. Existence and uniqueness of the entropy
solutions to (29) and (31) follows from the general result proved in [4]. As in
proof of Theorem 2 we shall construct the entropy solution u�. we consider the
approximated problem�

�div(A�run� ) = fn + a(u
n
� )

un� = 0 on @
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We follows the same arguments as in section 2, where we use the above propo-
sition and the followingZ




(a(u)� a(v)�(u� v)dx � 0

Which holds for every u; v 2 L2(
), in fact this follows from monotonicity of a
and �. �

4.2. Nonlinear problem without monotonicity assumption. Suppose that

 = !1 � !2 where !1, !2 and consider the following nonlinear problem�

�div(A�ru�) = f +B(u�)
u� = 0 on @


(37)

Where f 2 Lp(
), 1 < p < 2 and B : Lp(
) ! Lp(
) is a continuous nonlinear

operator. We suppose that

9M � 0, 8u 2 Lp(
) : kB(u)kLp �M (38)

Proposition 5. Assume (3), (4),and (38) then:
1) There exists a sequence (u�)0<��1 �W 1;p

0 (
) of an entropy solutions to (37)
which are also a weak solutions such that

� krX1
u�kLp(
) , krX2

u�kLp(
) , ku�kLp(
) � C0,

where C0 � 0 is independent of �( the constant C0 depends only on 
, �, f and
M).
2) If (u�)0<��1 is a sequence of entropy and weak solutions to (37) then we have

the above estimates.

Proof. 1) The existence of u� is based on the Schauder �xed point theorem, we
de�ne the mapping � : Lp(
)! Lp(
) by

v 2 Lp(
)! �(v) = v� 2W 1;p
0 (
)

where v� is the entropy solution of the linearized problem�
�div(A�rv�) = f +B(v)
v� = 0 on @


(39)

Since the entropy solution is unique then � is well de�ned. we can prove easily
(by using the approximation method) that � is continuous. As in subsection 2.1
we can obtain the estimates

� krX1
u�kLp(
) , krX2

u�kLp(
) , ku�kLp(
) � C0

where C0 is independent of � and v (thanks to (38))
Now, de�ne the subset

K =
n
u 2W 1;p

0 (
) : � krX1
ukLp(
) , krX2

ukLp(
) , kukLp(
) � C0

o
The subset K is convex and compact in Lp(
) thanks to the Sobolev compact

embedding W 1;p
0 (
) � Lp(
):

The subset K is stable under � (since C0 is independent of v as mentioned
above). Whence � admits at least a �xed point u� 2 K; in other words u� is a weak
solution to (37) which is also an entropy solution, this last assertion follows from
the de�nition of �.
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2) Let (u�)0<��1 be a sequence of entropy and weak solutions to (37) u� is the
unique entropy solution to (39) with v replaced by u� and therefore we obtain the
desired estimates as proved above. �

Remark 3. In the general case the entropy solution u� of (37) is not necessarily
unique.

Now, assume that

f(x) = f(X2), A22(x) = A22(X2), A12(x) = A12(X2) (40)

And assume that for every E �Wp bounded in Lp(
) we have

conv fB(E)g �W2, (41)

where conv fB(E)g is the closed convex-hull of B(E) in Lp(
). Assumption
(41) appears strange. We shall give later some concrete examples of operators
which satisfy this assumption. Let us prove the following

Theorem 8. Assume (3), (4), (38), (40) and (41). Let (u�)0<��1 � W 1;p
0 (
) be

an entropy and weak solution to (37) then for every 
0 �� 
 there exists C
0 � 0
independent of � such that

8� : ku�kW 1;p(
0) � C
0

Proof. The proof is similar the one given in our preprint [14]. Let (
i)j2N an open
covering of 
 such that 
j � 
j+1. We equip the space Z = W 1;p

loc (
) with the
topology generated by the family of seminorms (pj)j2N de�ned by

pj(u) = ku�kW 1;p(
j)

Equipped with this topology, Z is a separated locally convex topological vector
space. We set Y = Lp(
) equipped with its natural topology. We de�ne the family
of the linear continuous mappings

�� : Y ! Z

de�ned by: g 2 Y , ��(g) = v� where v� is the unique entropy solution to�
�div(A�rv�) = g
v� = 0 on @


The continuity of �� follows immediately if we observe �� as a composition of
�� : Y ! Y and the canonical injection Y ! Z
Now, we denote Zw, Yw the spaces Z, Y equipped with the weak topology

respectively. then �� : Yw ! Zw is also continuous.
Consider the bounded (in Y ) subset

E0 =
n
u 2Wp j kukLp(
) � C0

o
;

where C0 is the constant introduced in Proposition 5. Consider the subset
G = f + conv fB(E0)g where the closure is taken in the Lp�topology. Thanks
to assumption (41) and (38) G is closed convex and bounded in Y . Now for every
g 2 G the orbit f��gg� is bounded in Z thanks to Remark 2. And therefore f��gg�
is bounded in Zw.
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Clearly the set G is compact in Yw. Then it follows by the Banach-Steinhaus
theorem (applied on the quadruple ��, G, Yw, Zw) that there exists a bounded
subset F in Zw such that

8� : ��(G) � F

The boundedness of F in Zw implies its boundedness in Z.i.e For every j 2 N
there exists Cj � 0 independent of � such that

8� : pj(��(G)) � Cj

Let u� be an entropy and weak solution to (37) then we have u� 2 E0 as proved
in Proposition 5 then ��(f +B(u�)) = u� 2 F for every �, therefore

8� : ku�kW 1;p(
j)
� Cj

Whence for every 
0 �� 
 there exists C
0 � 0 independent of � such that

8� : ku�kW 1;p(
0) � C
0

�

Now we are ready to prove the convergence theorem. Assume that

B : (Lp(
); �Lploc)! Lp(
) is continuous (42)

where (Lp(
); �Lploc) is the space L
p(
) equipped with the Lploc(
)-topology.

Notice that (42) implies that B : Lp(
)! Lp(
) is continuous. Then we have the
following

Theorem 9. Under assumptions of Theorem 8, assume in addition (42), suppose
that 
 is convex, then there exists u0 2 Vp and a sequence (u�k)k2N of entropy and
weak solution to (37) such that

�krX1u�k * 0, rX2u�k * rX2u0 in L
p(
)� weak

and u�k ! u0 in L
p
loc(
)� strong

Moreover u0 satis�es in D0(!2) the equation

�divX2(A22rX2u0(X1; �)) = f +B(u0)(X1; �)

for a.e X1 2 !1
Proof. The estimates given in Proposition 5 show that there exists u0 2 Lp(
) and
a sequence (u�k)k2N solutions to (37) such that

�krX1
u�k * 0, rX2

u�k * rX2
u0 and u�k * u0 in Lp(
)� weak (43)

As we have proved in Theorem 3 we have u0 2 Vp. The particular di¢ culty
is the passage to the limit in the nonlinear term. This assertion is guaranteed by
Theorem 8. Indeed, since 
 is convex and Lipschitz then there an open covering
(
j)j2N, 
j � 
j+1 and 
j � 
 such that each 
j is a Lipschitz domain (Take an
increasing sequence of number 0 < �j < 1 with lim�j = 1. Fix x0 2 
 and take

j = �j(
 � x0) + x0, since 
 is convex then 
j � 
. The Lipschitz character is
conserved since the multiplication by �j and translations are C

1 di¤eomorphisms).
Theorem 8 shows that for every j 2 N there exists Cj � 0 such that

ku�kW 1;p(
j)
� C
j



ON THE Lp�THEORY OF ANISOTROPIC SINGULAR... 21

Since 
j is Lipschitz then the embedding W 1;p(
j) ,! Lp(
j) is compact [1]
and therefore for each k there exists a subsequence (u�jk)k � Lp(
j) such that

u�jk
j
j! u0 j
j

By the diagonal process one can construct a sequence (u�k)k such that u�k ! u0
in Lp(
j) for every j, in other words we have

u�k ! u0 in L
p
loc(
)� strong (44)

Now passing to the limit in the weak formulation of (37) we deduce

�divX2
(A22rX2

u0(X1; �)) = f +B(u0)(X1; �),
where we have used (43) for the passage to the limit in the left hand side. For

the passage to the limit in the nonlinear term we have used (44) and assumption
(42). �

Example 1. We give a concrete example of application of the above abstract analy-
sis. Let 
 = !1 � !2 be a Lispchitz convex domain of Rq � RN�q and let A be a
bounded (N � q) � (N � q) matrix de�ned on !2 which satis�es the ellipticity as-
sumption. Let us consider the integro-di¤erential problem8<: �divX2

(A(X2)rX2
u) = f(X2) +

Z
!1

h(X 0
1; X1; X2)a(u(X

0
1; X2))dX

0
1

u(X1; �) = 0 on @!2
(45)

where h 2 L1(!1 � 
) and f 2 Lp(!2), 1 < p < 2, and a is a continuous real
bounded function.
This equation is based on the Neutron transport equation (see for instance [10])
A solution to (45) is a function u 2 Vp Which satis�es (45) in D0(!2). suppose

that

rX1
h(X 0

1; X1; X2) 2 L1(!1 � 
)
Then we have

Theorem 10. Under the assumptions of this example, (45) has at least a solution
in Vp in the sense of D0(!2) for a.e X1 2 !1
Proof. We introduce the singular perturbation problem8<: �divX(A�ru�) = f(X2) +

Z
!1

h(X 0
1; X1; X2)a(u�(X

0
1; X2))dX

0
1

u� = 0 on @


where

A� =

�
�2I 0
0 A

�
Clearly A� satis�es the ellipticity assumption and it is Clear that the operator

u!
Z
!1

h(X 0
1; X1; X2)a(u(X

0
1; X2))dX

0
1

satis�es assumption (38).
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We can prove easily that the above operator satis�es assumption (42). Indeed,
let un ! u in Lploc(
) then there exists a subsequence (unk) (constructed by the
diagonal process) such that unk ! u a.e in 
. Since a is bounded then it follows
by the Lebesgue theorem thatZ

!1

h(X 0
1; X1; X2)a(unk(X

0
1; X2))dX

0
1 !

Z
!1

h(X 0
1; X1; X2)a(u(X

0
1; X2))dX

0
1;

in Lp(
). Whence by a contradiction argument we getZ
!1

h(X 0
1; X1; X2)a(un(X

0
1; X2))dX

0
1 !

Z
!1

h(X 0
1; X1; X2)a(u(X

0
1; X2))dX

0
1;

in Lp(
)
We can prove similarly as in [14] that (41) holds, therefore the assertion of the

theorem is a simple application of theorem 9 �

Remark 4. Notice that the compacity of the operator given in the previous example
is not su¢ cient to prove a such result as in the L2 theory [10]. This shows the
importance of assumption (41) wich holds for the above operator.

Does operator whose assumption (41) holds admit necessarily an integral repre-
sentation as in (45)?.

Example 2. We shall replace the integral by a general linear operator. Let us
consider the following problem: Find u 2 Vp such that�

�divX2
(ArX2

u) = f(X2) + gP (ha(u))
u(X1; �) = 0 on @!2

;

(46)

where a, A and f are de�ned as in Example 1.
We suppose that g, h 2 L1(
) with Supp(h) � 
 compact. Assume rX1

g 2
L1(
) and P : Lp(
)! L2(!2) is a bounded linear operator.
When P is not compact then the operator u ! gP (ha(u)) is not necessarily

compact, if this is the case then this operator cannot admit an integral representa-
tion.

Theorem 11. Under the assumptions of this example there exists at least a solution
u 2 Vp to (46) in the sense of D0(!2) for a.e X1 2 !1
Proof. Similarly, the proof is a simple application of theorem 9. �

5. Some Open questions

Problem 1. Suppose that 1 > p > 2. Given f 2 Lp and consider (2), since
f 2 L2then u� ! u0 in V2. Assume that 
 and A are su¢ ciently regular .Can one
prove that u� ! u0 in Vp?

Problem 2. What happens when f 2 L1? As mentioned in the introduction there
exists a unique entropy solution to (2) which belongs to

\
1�r< N

N�1

W 1;r
0 (
). Can one

prove that u� ! u0 in Vr for some 1 � r < N
N�1? Can one prove at least weak

convergence in Lr for some 1 < r < N
N�1 as given in Theorem 4?



ON THE Lp�THEORY OF ANISOTROPIC SINGULAR... 23

References

[1] Robert A. Adams, John J. F. Fournier. Sobolev spaces, Pure and Applied Mathematics,
Academic Press 2003.

[2] S. Agmon -A. Douglis -L. Nirenberg,Estimates near the boundary for solutions of elliptic
partial di¤erential equations satisfying general boundary conditions, I, Comm. Pure Appl.
Math.,12 (1959), pp. 623�727.

[3] L. Boccardo, T. Gallouët, J. L. Vazquez. Nonlinear Elliptic Equations in Rn without Growth
Restrictions on the Data, Journal of Di¤erential Equations, Vol. 105, n 2, october 1993, p.
334-363.

[4] Ph. Bénilan, Philippe, L. Boccardo, Th. Gallouët, R. Gariepy, M. Pierre, J.-L. Vazquez, An
L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola
Norm.Sup. Pisa Cl. Sci. (4) 22 (1995), no. 2, 241�273

[5] M. Chipot, Elliptic equations, an introductory cours.Birkhauser 2009 ISBN: 978-3764399818
[6] M. Chipot, On some anisotropic singular perturbation problems, Asymptotic Analysis, 55

(2007), p.125-144
[7] M. Chipot, K. Yeressian, Exponential rates of convergence by an iteration technique, C. R.

Acad. Sci. Paris, Ser. I 346, (2008) p. 21-26.
[8] M. Chipot, S. Guesmia, On the asymptotic behaviour of elliptic, anisotropic singular pertur-

bations problems,Com. Pur. App. Ana. 8 (1) (2009), pp. 179-193.
[9] M. Chipot, S.Guesmia, M. Sengouga. Singular perturbations of some nonlinear problems. J.

Math. Sci. 176 (6), 2011, 828-843.
[10] M. Chipot, S. Guesmia, On a class of integro-di¤erential problems. Commun. Pure Appl.

Anal. 9(5), 2010, 1249�1262.
[11] P. En�o, A counterexample to the approximation problem in Banach spaces, Acta Mathe-

matica, vol. 130, 1973, p. 309-317.
[12] S. Fucik, O. John and J. Necas, On the existence of Schauder basis in Sobolev spaces, Com-

ment. Math. Univ. Carolin. 13, (1972), 163-175.
[13] T. Gallouet, R. Herbin, Existence of a solution to a coupled elliptic system, Appl.Math.

Letters 7(1994), 49�55.
[14] C. Ogabi , On a class of nonlinear elliptic, anisotropic singular perturbations problems. Sub-

mited. Preprint: https://hal.archives-ouvertes.fr/hal-01074262
[15] J. Serrin, Pathological solutions of elliptic di¤erential equations, Ann. Sc. Norm. Sup. Pisa,18

(1964), pp. 385�387.

E-mail address : chokri.ogabi@ac-grenoble.fr


