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We consider the matrix completion problem where the aim is to estimate a large data matrix for which only a relatively small random subset of its entries is observed. Quite popular approaches to matrix completion problem are iterative thresholding methods. In spite of their empirical success, the theoretical guarantees of such iterative thresholding methods are poorly understood. The goal of this paper is to provide strong theoretical guarantees, similar to those obtained for nuclear-norm penalization methods and one step thresholding methods, for an iterative thresholding algorithm which is a modification of the softImpute algorithm. An important consequence of our result is the exact minimax optimal rates of convergence for matrix completion problem which were known until know only up to a logarithmic factor.

Introduction

Suppose that we observe a small subset of entries of a large data matrix. The problem of inferring the many missing entries from this small set of observations is known as the matrix completion problem. This problem has attracted considerable attention in the past five years. The first works [START_REF] Candès | Exact matrix completion via convex optimization[END_REF][START_REF] Candès | The power of convex relaxation: near-optimal matrix completion[END_REF][START_REF] Candès | Matrix completion with noise[END_REF][START_REF] Gross | Recovering low-rank matrices from few coefficients in any basis[END_REF][START_REF] Recht | A simpler approach to matrix completion[END_REF] introduce nuclear-norm minimization method. A different approach, called OP-TISPACE has been proposed in [START_REF] Keshavan | Matrix completion from a few entries[END_REF][START_REF] Keshavan | Matrix completion from noisy entries[END_REF]. More recently, a method based on max-norm minimization was studied in [START_REF] Cai | Matrix completion via max-norm constrained optimization[END_REF][START_REF] Foygel | Concentration-based guarantees for low-rank matrix reconstruction[END_REF]. Other methods include, for example, GROUSE (Grassmannian Rank-One Update Subspace Estimation) [START_REF] Balzano | Absolute and monotonic norms[END_REF] and orthogonal rank-one matrix pursuit [START_REF] Wang | Orthogonal rankone matrix pursuit for low rank matrix completion[END_REF].

A quite popular direction in the matrix completion literature are the thresholding methods which can be divided in two groups: one-step thresholding methods and iterative thresholding methods. Strong theoretical guarantees were obtained for one-step thresholding procedures. For example, Koltchinskii et al in [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF] introduce a soft-thresholding method and show that it is minimax optimal up to a logarithmic factor. In [START_REF] Klopp | Rank penalized estimators for high-dimensional matrices[END_REF] Klopp consider a hard thresholding proceedure. Chatterjee [START_REF] Chatterjee | Matrix estimation by universal singular value thresholding[END_REF] propose an universal singular value thresholding that can be applied to a large number of matrix estimation problems, including matrix completion. Despite strong theoretical guarantees these one-step thresholding methods has two important drawbacks: they show poor behavior in practice and only work under the uniform sampling distribution which is not realistic in many practical situations.

Much better practical performances have been shown by iterative thresholding methods. For example, in [START_REF] Cai | A singular value thresholding algorithm for matrix completion[END_REF], Cai et al propose a first-order singular value thresholding algorithm SVT which approximately solves the nuclear norm minimization problem. In [START_REF] Mazumder | Spectral regularization algorithms for learning large incomplete matrices[END_REF], Mazmuder et al introduce softImpute algorithm. softImpute produces a sequence of solutions that converges to a solution of the nuclear norm regularized least-squares problem when the number of iterations goes to infinity. These iterative thresholding algorithms are simple to implement, scale to relatively large matrices and in practice achieve competitive errors compared to the state-of-the-art algorithms. More recently Dhanjal et al [START_REF] Dhanjal | Online matrix completion through nuclear norm regularisation[END_REF] propose an improvement for the softImpute algorithm using randomized SVDs along with a novel updating method. This improvement allows to bypass the bottleneck in the algorithm which consists in the use of the singular value decomposition of a large matrix at each iteration.

The majority of existing algorithms for matrix completion are batch methods, that is, they operate on the full data matrix. However in some applications such as recommendation systems or localization in sensor networks we observe a sequence of data matrix M 1 , . . . , M T reviled sequentially where from M t to M t+1 we add new observations. In such situations the predictive rule should be refined incrementally. One advantage of iterative thresholding algorithms is that they can be adapted to such sequential learning, see for example [START_REF] Dhanjal | Online matrix completion through nuclear norm regularisation[END_REF].

In spite of their empirical success, the theoretical guarantees of such iterative thresholding methods are poorly understood. The goal of this paper is to provide strong theoretical guarantees, similar to those obtained for nuclearnorm penalization methods (see, for example [START_REF] Negahban | Restricted strong convexity and weighted matrix completion: Optimal bounds with noise[END_REF][START_REF] Klopp | Noisy low-rank matrix completion with general sampling distribution[END_REF]) and one step thresholding methods (see [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF][START_REF] Klopp | Rank penalized estimators for high-dimensional matrices[END_REF][START_REF] Chatterjee | Matrix estimation by universal singular value thresholding[END_REF]) for a modification of the softImpute algorithm.

Contributions and Related Work

The contributions of the present paper to the theoretical study of the modified softImpute algorithm are multifaceted. In Section 3.2 we prove an upper bound on the estimation error of the output M of our algorithm. Let M 0 ∈ R m1×m2 be the unknown matrix of interest. Suppose, for simplicity, that each entry is observed with the same probability p, then we prove the following upper bound on the estimation error of M

M -M 0 2 2 m 1 m 2 rank(M 0 ) p min(m 1 , m 2 ) . (1) 
Here the symbol means that the inequality holds up to a multiplicative numerical constant. To the best of our knowledge, the upper bound on the estimation error given by ( 1) is strictly better than all upper bounds available in matrix completion literature.

For instance, for the same setting, Chatterjee in [START_REF] Chatterjee | Matrix estimation by universal singular value thresholding[END_REF] obtains the following larger bound

M -M 0 2 2 m 1 m 2 rank(M 0 ) p min(m 1 , m 2 )
.

On the other hand, [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF][START_REF] Negahban | Restricted strong convexity and weighted matrix completion: Optimal bounds with noise[END_REF][START_REF] Klopp | Noisy low-rank matrix completion with general sampling distribution[END_REF], among some other papers, consider a slightly different setting where the matrix completion problem is viewed as a particular case of the trace regression model. In this setting the number of observations n is fixed. The drawback here is that in this model each entry can be observed multiple times which is not the case in a large number of practical situations. We consider a different setting where each entry can be observed at most once (see Section 2.1). However, it is easy to see that these two settings are closely related if we put n = pm 1 m 2 . Comparing to (1), the bounds obtained in [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF][START_REF] Negahban | Restricted strong convexity and weighted matrix completion: Optimal bounds with noise[END_REF][START_REF] Klopp | Noisy low-rank matrix completion with general sampling distribution[END_REF] have an additional log(d 1 + d 2 ) factor. Koltchinskii et al in [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF] obtained lower bounds for the estimation error without this additional log(d 1 + d 2 ) factor. So our result answer the important theoretical question what is the exact minimax rate of convergence for matrix completion problem. As the lower bound in [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF] is obtained for a different setting, in Section 4 we adapt their proof to our setting, showing that the minimax rate of convergence for matrix completion problem is given by [START_REF] Balzano | Absolute and monotonic norms[END_REF] and that the estimator produced by our algorithm is minimax optimal. Note that our techniques can be adapted to the setting considered in [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF][START_REF] Negahban | Restricted strong convexity and weighted matrix completion: Optimal bounds with noise[END_REF][START_REF] Klopp | Noisy low-rank matrix completion with general sampling distribution[END_REF] and lead to an upper bound without the additional log(d 1 + d 2 ) factor in this setting also.

Another important point is that a large part of matrix completion literature consider uniform sampling at random setting where each entry is observed with the same probability p. In many applications, such as recommendation systems, this assumption is not realistic. The theoretical analysis in the present paper is carried out for quite general sampling distributions and show that our iterative thresholding algorithm has good performances in such situations. Finally our results give theoretical insights for the chose of the parameters in the modified softImpute algorithm.

Organisation of the paper

The remainder of this paper is organized as follows. In Section 2.1 we introduce our model and the assumptions on the sampling scheme. For the reader's convenience, we collect notation which we use throughout the paper in Section 2.2.

In Section 3.1 we present a modification of the softImpute algorithm for matrix completion. The upper bounds on the estimation error are derived in Section 3.2. Finally the lower bounds are obtained in Section 4 and the Appendix contains the proofs.

Preliminaries

Model and sampling scheme

Suppose that we observe a relatively small number of entries of a data matrix

X = M 0 + E. (2) 
Here M 0 = (m ij ) ∈ R m1×m2 is the unknown matrix of interest and E = (ξ ij ) ∈ R m1×m2 is the matrix containing the noise. We assume that the noise variables ξ ij are independent, zero mean and bounded:

Assumption 1. E(ξ ij ) = 0, E(ξ 2 ij ) = σ 2 and there exists a positive constant b > 0 such that max i,j |ξ ij | ≤ b.
We suppose that each entry of X is observed independently of the other entries. For the entry (i, j)

∈ [m 1 ] × [m 2 ]
, we denote the probability to be observed by π ij . Let η ij be the independent Bernoulli variables with parameters π ij and y ij = η ij (m ij + ξ ij ). Then, Y = (y ij ) is the matrix containing our observations. We denote by Ω the random set of observed indices.

In the simplest situation each coefficient is observed with the same probability, i.e. for every (i, j)

∈ [m 1 ]×[m 2 ], π ij = p.
Unfortunately, such an assumption on the sampling distribution is not realistic in many practical applications. In the present paper, we consider general sampling model. We suppose that each coefficient is observed with a positive probability: Assumption 2. There exists p > 0 such that for any

(i, j) ∈ {1, . . . , m 1 } × {1, . . . , m 2 } π ij ≥ p. For any A = (A ij ) ∈ R m1×m2 we define the weighted by π ij Frobenius norm of A A 2 L2(Π) = (i,j) π ij A 2 ij .
Assumption 2 implies that

A 2 L2(Π) ≥ p -1 A 2 2 . (3) 
We denote the column and row marginals by

π •j = m1 Σ i=1 π ij and π i• = m2 Σ j=1 π ij .
Suppose that we know an upper bound L on it's maximum:

max i,j (π •j , π i• ) ≤ L. (4) 
Note that we can easily get an estimation on this upper bound using the empirical frequencies

π•j = m1 i=1 η ij (i,j) η ij and πi• = m2 j=1 η ij (i,j) η ij .

Notation

We provide a brief summary of the notation used throughout this paper. Let A, B be matrices in R m1×m2 .

• For a matrix A, A ij is its (i, j)th entry.

• We denote by S λ (W ) ≡ U D λ V ′ the soft-thresholding operator where • For two matrices A, B ∈ R m1×m2 we define the scalar product A, B = tr(A T B).

D λ = diag [(d 1 -λ) + , . . . , (d r -λ) + ], U DV ′ is the SVD of W , D = diag [d 1 , . . .
• We denote by A 2 the usual l 2 -norm. Additionally, we use the following matrix norms: A * is the nuclear norm (the sum of singular values), A is the operator norm (the largest singular value), A ∞ is the largest absolute value of the entries:

A ∞ = max i,j | A ij | . • π ij is the probability to observe the (i, j)-th element. For j = 1 . . . m 2 , π •j = m1 Σ i=1 π ij and for i = 1 . . . m 1 , π i• = m2 Σ j=1 π ij . We have that max i,j (π •j , π i• ) ≤ L. • Let M = max(m 1 , m 2 ), m = min(m 1 , m 2 ) and d = m 1 + m 2 .
• Let I ⊂ {1, . . . m 1 }×{1, . . . m 2 } be a subset of indices. Given a matrix A = (A ij ), we define its restriction on I, A I , in the following way:

(A I ) ij = A ij if (ij) ∈ I and (A I ) ij = 0 if not. • We denote A 2 L2(Π) = (i,j) π ij A 2 ij and Assumption 2 implies A 2 L2(Π) ≥ p -1 A 2 2 .
• Let {ǫ ij } be an i.i.d. Rademacher sequence and X ij = e i (m 1 )e * j (m 2 ) where e k (l) are the canonical basis vectors in R l . We define

Σ R = (i,j) η ij ǫ ij X ij and Σ = (i,j) η ij ξ ij X ij . ( 5 
)
3 The Singular Value Thresholding Algorithm

In this section we introduce an iterative singular value thresholding algorithm and discuss its theoretical properties. We show that it enjoys strong theoretical guarantees and, unlike one-step thresholding procedures, is well adapted for general non-uniform sampling distributions.

Algorithm

Our algorithm is based on the softImpute algorithm proposed by Mazumder et al in [START_REF] Mazumder | Spectral regularization algorithms for learning large incomplete matrices[END_REF]. SoftImpute algorithm is inspired by SVD-Impute of Troyanskaya et al [START_REF] Troyanskaya | Missing value estimation methods for dna microarrays[END_REF]. It alternates between imputing the missing values from a current SVD, and updating the SVD using the data matrix.

Algorithm 1

Require : Matrix Y , regularization parameter λ and a, an upper bound on the sup-norm of M 0 .

1. M old = 0 2. (a) Repeat (i) Compute M new ← S λ Y + (M old )Ω . (ii) If M new -M old Ω < λ/3 and M new -M old ∞ < a exit. (iii) Put M old = M old ij M old ij =            M new ij if |M new ij | ≤ a a if M new ij > a -a if M new ij < -a. ( 6 
) (b) Assign M ← M new . 3. Output M .
This algorithm repeatedly replaces the missing entries with the current guess, update the guess by solving

M new ∈ minimize M f λ (M ) = 1 2 Y + (M old )Ω -M 2 2 + λ M * (7) 
and truncating M new . Let us denote by (M k ) k≥0 the sequence of solutions produced by Algorithm 1. We have the following result :

Lemma 1.
For the successive differences of the sequence (M k ) k≥0 we have that

M k+1 -M k 2 → 0 as k → 0 (8)
which implies

M k+1 -M k Ω → 0 and M k+1 -M k ∞ → 0 as k → 0. ( 9 
)

Upper bound on the estimation error

In this section we derive an upper bound on the estimation error of M produced by Algorithm 1. This bound is non-asymptotic and implies, in particular, that the proposed estimator is minimax optimal. We start by a general result which is proven in Appendix A.

Theorem 2. Let Assumptions 1 and 2 be satisfied and M 0 ∞ ≤ a. Assume that λ ≥ 3 Σ . Then, with probability at least 1 -8/d,

M -M 0 2 L2(Π) ≤ C p -1 rank(M 0 ) λ 2 + a 2 (E ( Σ R )) 2 + a 2 + log(d) .
where

d = m 1 + m 2 .
Using Assumption 2, Theorem 2 implies the following bound on the estimation error measured in normalized Frobenius norm Corollary 3. Under assumptions of Theorem 2 and with probability at least

1 -8/d, M -M 0 2 2 m 1 m 2 ≤ C p 2 m 1 m 2 rank(M 0 ) λ 2 + a 2 (E ( Σ R )) 2 + a 2 + log(d) .
In order to get a bound in a closed form we need to obtain a suitable upper bounds on E ( Σ R ) and, with probability close to 1, on Σ . Lemma 4. Suppose that (ξ ij ) are independent and satisfy Assumption 1. Then, there exists absolute constants c * , C * > 0 such that, for all t > 0 with probability at least 1me -t 2 we have

Σ ≤ 3σ √ 2L + c * b t ( 10 
)
where L ≤ 1 is defined in (4). Moreover, we have

E Σ R ≤ C * √ L + log m . ( 11 
)
This Lemma is proven in Appendix F. Taking t = 2 log(d) in Lemma 4, we get that with probability at least 1

-1/d, Σ ≤ 3σ √ 2L + c * b 2 log(d),
then, we can choose

λ = 3 3σ √ 2L + c * b 2 log(d) . (12) 
With this choice of λ we obtain the following Theorem.

Theorem 5. Let Assumptions 1 and 2 be satisfied and M 0 ∞ ≤ a. Then, with probability at least 1 -8/d,

M -M 0 2 L2(Π) ≤ C p -1 rank(M 0 ) (a ∨ σ) 2 L + a 2 log(m) + b 2 log(d) . and M -M 0 2 2 m 1 m 2 ≤ C rank(M 0 ) p 2 m 1 m 2 (a ∨ σ) 2 L + a 2 log(m) + b 2 log(d) .
Remark 1. Note that π ij ≥ p yields L ≥ M p. Then, the upper bound on the estimation error in the Theorem 5 is at least a constant times rank(M 0 ) pm .

So, in order to get a small estimation error, p should be larger then rank(M 0 ) m .

We denote by n = ij π ij the expected number of observations. Condition p ≥ rank(M 0 ) m implies the following condition on

n n ≥ C rank(M 0 ) M. (13) 
When the rank of the matrix M 0 is small, this necessary number of observations is close to the number of degree of freedom of the matrix M 0 , which is

(m 1 + m 2 )rank(M 0 ) -(rank(M 0 )) 2 .
Let us restrict our attention to the non-degenerated case M 0 = 0 (we can easily include this case replacing rank(M 0 ) by rank(M 0 )∨1). Assuming that the expected number of observations n is not too small, we can get simpler bound on the estimation error. Suppose that n > c * m log(d). Then, using Lm ≥ n ≥ c * m log d we get L ≥ c * log d and we can chose λ in the following way

λ = 18b √ 2L. ( 14 
)
With this choice of λ we get the following bound on the estimation error Corollary 6. Let Assumptions 1 and 2 be satisfied and M 0 ∞ ≤ a. Assume that n ≥ c * m log(d) and M 0 = 0. Then, with probability at least 1 -8/d,

M -M 0 2 2 m 1 m 2 ≤ C rank(M 0 ) (a ∨ b) 2 L p 2 m 1 m 2 .
In order to compare this result with previous results on noisy matrix completion we consider a more restrictive assumption on the sampling distribution. That is, we assume that this distribution is close to the uniform one: Assumption 3. There exists positives constants µ 1 and µ 2 independent on m 1 and m 2 and a 0 < p < 1 such that for every (i, j) ∈ {1, . . . , m 1 } × {1, . . . , m 2 } we have

µ 2 p ≤ π ij ≤ µ 1 p.

Under this assumption Theorem 2 yields

Corollary 7. Let Assumptions 1 and 3 be satisfied and M 0 ∞ ≤ a. Assume that n ≥ m log(d) and λ given by [START_REF] Klopp | Rank penalized estimators for high-dimensional matrices[END_REF]. Then, with probability at least

1 -8/d, M -M 0 2 2 m 1 m 2 ≤ C rank(M 0 ) (a ∨ b) 2 pm .
Remark 2. Let us compare the bound given by Corollary 7 with bounds available in the literature. Our model was previously considered by Chatterjee in [START_REF] Chatterjee | Matrix estimation by universal singular value thresholding[END_REF] in the case of uniform sampling distribution, that is π ij = p for any (i, j) ∈ {1, . . . , m 1 } × {1, . . . , m 2 }. In [START_REF] Chatterjee | Matrix estimation by universal singular value thresholding[END_REF], Chatterjee introduces a simple estimation procedure, called Universal Singular Value Thresholding which is applied to a number of questions in low rank matrix estimation, blockmodels, distance matrix completion, latent space models and etc. For matrix completion problem and under the additional assumption p ≥ n -1+ǫ for some ǫ > 0, the bound obtained in [START_REF] Chatterjee | Matrix estimation by universal singular value thresholding[END_REF] is the following one

M -M 0 2 2 m 1 m 2 ≤ C rank(M 0 ) (a ∨ b) 2 pm .
The rate of convergence given by Corollary 7 is faster and, as we will see in Section4, is minimax optimal. Note that the additional assumption p ≥ n -1+ǫ yields the following condition on the expected number of observations

n > m ǫ M. (15) 
For low rank matrices, this necessary number of observations is larger than the number of observations required by our method and given by [START_REF] Keshavan | Matrix completion from noisy entries[END_REF].

In [START_REF] Negahban | Restricted strong convexity and weighted matrix completion: Optimal bounds with noise[END_REF][START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF][START_REF] Klopp | Noisy low-rank matrix completion with general sampling distribution[END_REF] a closely related set up for matrix completion problem using the trace regression model was considered. The main difference between these two settings is that in the case of the trace regression the number of observations is not random and each entry may be observed multiple times. In our setting the number of observations is random and each entry is observed at most once. Comparing with Corollary 7 and using n = pm 1 m 2 we see that bounds obtained in [START_REF] Negahban | Restricted strong convexity and weighted matrix completion: Optimal bounds with noise[END_REF][START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF][START_REF] Klopp | Noisy low-rank matrix completion with general sampling distribution[END_REF] contain an additional logarithmic factor log(m 1 + m 2 ).

Minimax Lower bounds

In this section, we prove the minimax lower bound showing that the rates attained by our estimator are optimal. The minimax lower bound in a closely related problem was obtained by Koltchinskii et al in [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF]. We adapt their proof to our set up.

We will denote by inf M the infimum over all the estimators. For any M 0 ∈ R m1×m2 , let P M0 denote the probability distribution of the observations (η 11 X 11 , . . . , η m1m2 X m1m2 ) satisfying [START_REF] Bandeira | Sharp nonasymptotic bounds on the norm of random matrices with independent entries[END_REF].

For any integer 0 ≤ r ≤ min(m 1 , m 2 ) and any a > 0, we consider the class of matrices

A(r, a) = M ∈ R m1×m2 : rank(M ) ≤ r, M ∞ ≤ a, . (16) 
We will prove the lower bound in the case of the uniform sampling distribution, that is, we suppose that each entry is observed with the same probability p. As it was noted in Remark 1, in order to get a small estimation error we need to observe a sufficiently large number of entries, or, equivalently, the probability p should be larger then r/m. We prove a lower bound on the estimation risk when this condition is satisfied.

Theorem 8. Suppose that m 1 , m 2 ≥ 2 and p ≥ r m . Fix a > 0 and integer 1 ≤ r ≤ min(m 1 , m 2 ). Suppose that the variables ξ i are i.i.d. Gaussian N (0, σ 2 ), σ 2 > 0, for i = 1, . . . , n. Then, there exist absolute constants β ∈ (0, 1) and c > 0, such that

inf M sup M0∈ A(r,a) P M0 M -M 0 2 2 m 1 m 2 > c r (a ∧ σ) 2 pm ≥ β.
A Proof of Theorem 2

1. By Lemma 1 in [START_REF] Mazumder | Spectral regularization algorithms for learning large incomplete matrices[END_REF], M minimizes

f λ (M ) = 1 2 Y + (M old )Ω -M 2 2 + λ M * .
Then, using the sub-gradient stationary conditions we have

-Y + (M old )Ω -M , M -M 0 + λ V , M -M 0 ≤ 0 where V ∈ ∂ M * . A simple calculation yields M 0 -M Ω 2 2 ≤ (Y -M 0 ) Ω , M -M 0 I + M old -M Ω , M -M 0 II + λ V , M 0 -M III . (17) 
2. We estimate each term in [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF] separately. For the first term, we have that (Y -M 0 ) Ω = Σ where Σ = (i,j) η ij ξ ij X ij . Then, by the duality between the nuclear and the operator norms, we obtain

(Y -M 0 ) Ω , M -M 0 ≤ Σ M -M 0 * . (18) 
For the second term, using again the duality between the nuclear and the operator norms and the stopping criteria for the Algorithm 1, we obtain

M old -M Ω , M -M 0 ≤ M old -M Ω M -M 0 * ≤ λ/3 M -M 0 * . (19) 
3. In order to estimate the third term, we use that by monotonicity of subdifferentails of convex functions we have that V -V, M -M 0 ≥ 0, for any V ∈ ∂ M 0 * . This implies

V , M 0 -M ≤ V, M 0 -M . (20) 
Let P S be the projector on the linear vector subspace S and let S ⊥ be the orthogonal complement of S. Let u j (A) and v j (A) denote respectively the left and right orthonormal singular vectors of a matrix A. S 1 (A) is the linear span of {u j (A)}, S 2 (A) is the linear span of {v j (A)}. We set

P ⊥ A (B) = P S ⊥ 1 (A) BP S ⊥ 2 (A) and P A (B) = B -P ⊥ A (B). ( 21 
) Since P A (B) = P S ⊥ 1 (A) BP S2(A) + P S1(A) B and rank(P Si(A) B) ≤ rank(A) we have that rank(P A (B)) ≤ 2 rank(A). (22) 
Note that the subdifferential of the convex function A → A * is the following set of matrices (cf. [START_REF] Watson | Characterization of the subdifferential of some matrix norms[END_REF])

∂ A * =    rank(A) j=1 u j (A)v T j (A) + P ⊥ A (W ) : W ≤ 1    . (23) 
Inequality ( 19) and ( 23) imply

III ≤ λ R j=1 u j (M 0 )v T j (M 0 ), M 0 -M + P ⊥ M0 (W ), M 0 -M . (24) 
Using the fact that

R j=1 u j (M 0 )v T j (M 0 ) = 1 and R j=1 u j (M 0 )v T j (M 0 ), M 0 -M = R j=1 u j (M 0 )v T j (M 0 ), P M0 M 0 -M we obtain III ≤ λ P M0 M 0 -M * + P ⊥ M0 (W ), M 0 -M . (25) 
Now, by the duality between the nuclear and the operator norms, there exists W with W ≤ 1 and such that

P ⊥ M0 (W ), M 0 -M = -W, P ⊥ M0 M = -P ⊥ M0 M * . (26) 
For this particular choice of W , ( 25) and ( 26) imply

III ≤ λ P M0 M 0 -M * -P ⊥ M0 M * . (27) 
Putting ( 18), [START_REF] Mazumder | Spectral regularization algorithms for learning large incomplete matrices[END_REF], and (27) into (17) and using λ ≥ 3 Σ we obtain

M 0 -M Ω 2 2 ≤ 2λ 3 M -M 0 * + λ P M0 M 0 -M * -P ⊥ M0 M * . (28) 
4. The triangle inequality and ( 22) lead to

M 0 -M Ω 2 2 ≤ 5λ 3 P M0 M 0 -M * ≤ 5λ 2rank(M 0 ) 3 M 0 -M 2 (29) 
and

λ 3 P ⊥ M0 M * ≤ 5λ 3 P M0 M 0 -M * . ( 30 
)
Inequality (30) implies

P ⊥ M0 M * ≤ 5 P M0 M 0 -M * and M -M 0 * ≤ 6 P M0 ( M -M 0 ) * ≤ 72 rank(M 0 ) M -M 0 2 . ( 31 
)
5. For a 0 < r ≤ m we consider the following constrain set

C(r) = A ∈ R m1×m2 : A ∞ = 1, A 2 L2(Π) ≥ log(d) 0.0006 log (6/5) p , A * ≤ √ r A 2 .
(32) Note that the condition A * ≤ √ r A 2 is satisfied if rank(A) ≤ r. We have the following result for matrices in C(r). Its proof is given in Appendix C. Lemma 9. For all A ∈ C(r)

A Ω 2 2 ≥ A 2 L2(Π) 2 -44 p -1 r (E ( Σ R )) 2 + 18
with probability at least 1 -8/d.

Note that condition M -M old ∞ < a and M old ∞ < a imply M -M 0 ∞ ≤ 3a.
We now consider two cases, depending on whether the matrix M -M 0 3a belongs to the set C (72 rank(M 0 )) or not. Then (31) implies that 1 3a M -M 0 ∈ C (72 rank(M 0 )) and we can apply Lemma 9. From Lemma 9 and (29) we obtain that with probability at least 1 -8/d one has

1 2 M -M 0 2 L2(Π) ≤ 5λ 2rank(M 0 ) 3 M 0 -M 2 + 369 a 2 p -1 72 rank(M 0 ) (E ( Σ R )) 2 + 18 ≤ 6λ 2 p -1 rank(M 0 ) + p 4 M -M 0 2 2 + 369 a 2 p -1 72 rank(M 0 ) (E ( Σ R )) 2 + 18 .
Now (3) imply that, there exist numerical constants C such that

M -M 0 2 L2(Π) ≤ C p -1 rank(M 0 ) λ 2 + a 2 (E ( Σ R )) 2 + a 2 ,
which leads to the statement of the Theorem 2.

B Proof of Theorem 8

We adopt the proof of Theorem 5 in [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF] to our setting. Assume w.l.o.g. that m 1 ≥ m 2 . For a γ ≤ 1, define

L = L = (l ij ) ∈ R m1×r : l ij ∈ 0, γ(σ ∧ a) r p m 1/2 , ∀1 ≤ i ≤ m 1 , 1 ≤ j ≤ r ,
and consider the associated set of block matrices

A = L = ( L • • • L O ) ∈ R m1×m2 : L ∈ L ,
where O denotes the m 1 × (m 2 -r⌊m 2 /(2r)⌋) zero matrix, and ⌊x⌋ is the integer part of x. and, then, we replicate this matrix to obtain a block matrix L of size

m 1 × m 2 L =            L . . . L O            .
By construction, any element of A as well as the difference of any two elements of A has rank at most r. In addition, condition p ≥ r m implies that the entries of any matrix in A take values in [0, a]. Thus, A ⊂ A(r, a).

The Varshamov-Gilbert bound (cf. Lemma 2.9 in [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF]) guarantees the existence of a subset A 0 ⊂ A with cardinality Card(A 0 ) ≥ 2 (rM)/8 + 1 containing the zero m 1 × m 2 matrix 0 and such that, for any two distinct elements A 1 and

A 2 of A 0 , A 1 -A 2 2 2 ≥ M r 8 γ 2 (σ ∧ a) 2 r p m m r ≥ γ 2 16 (σ ∧ a) 2 m 1 m 2 r p m . ( 33 
)
Using that, conditionally on X i , the distributions of ξ i are Gaussian, we get that, for any A ∈ A 0 , the Kullback-Leibler divergence K P 0 , P A between P 0 and P A satisfies

K P 0 , P A = 1 2σ 2 A 2 L2(Π) ≤ γ 2 M r 2 . (34) 
From (34) we deduce that the condition 1 Card(A 0 ) -1

A∈A 0 K(P 0 , P A ) ≤ α log Card(A 0 ) -1 (35) 
is satisfied for any α > 0 if γ > 0 is chosen as a sufficiently small numerical constant depending on α. In view of (33) and (35) and using the application of Theorem 2.5 in [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF] implies

inf M sup M0∈ A(r,a) P M -M 0 2 2 m 1 m 2 > C(σ ∧ a) 2 r pm ≥ β (36) 
for some absolute constants β ∈ (0, 1), which implies the statement of Theorem 8.

C Proof of Lemma 9

This proof is close to the proof of Lemma 12 in [START_REF] Klopp | Noisy low-rank matrix completion with general sampling distribution[END_REF]. Set

E = 44 p -1 r (E ( Σ R )) 2 + 18 .
We will show that the probability of the following "bad" event is small

B = ∃ A ∈ C(r) such that A Ω 2 2 -A 2 L2(Π) > 1 2 A 2 L2(Π) + E .
Note that B contains the complement of the event that we are interested in.

In order to estimate the probability of B we use a standard peeling argument.

Let ν = log(d) 0.0006 log (6/5) p and α = 6 5 . For l ∈ N set

S l = A ∈ C(r) : α l-1 ν ≤ A 2 L2(Π) ≤ α l ν .
If the event B holds for some matrix A ∈ C(r), then A belongs to some S l and

A Ω 2 2 -A 2 L2(Π) > 1 2 A 2 L2(Π) + E > 1 2 α l-1 ν + E = 5 12 α l ν + E. (37) 
For T > ν consider the following set of matrices

C(r, T ) = A ∈ C(r) : A 2 L2(Π) ≤ T
Next we bound the expectation E (Z T ). Using a standard symmetrization argument (see e.g. [START_REF] Ledoux | The concentration of measure phenomenon[END_REF]) we obtain 

E (Z T ) = E   sup A∈C(r,T ) (i,j) η ij A 2 ij -E η ij A 2 ij   ≤ 2E   sup A∈C(r,T ) (i,j) ǫ ij η ij A 2 ij  
ǫ ij η ij A ij   = 8 E sup A∈C(r,T ) | Σ R , A |
where Σ R = (i,j) ǫ ij η ij X ij . For A ∈ C(r, T ) we have that

A * ≤ √ r A 2 ≤ r p -1 A L2(Π) ≤ r p -1 T
where we have used [START_REF] Cai | A singular value thresholding algorithm for matrix completion[END_REF]. Then, by the duality between nuclear and operator norms, we compute

E (Z T ) ≤ 8E   sup A * ≤ √ r p -1 T | Σ R , A |   ≤ 8 r p -1 T E ( Σ R ) .
Finally, using 

E Proof of Lemma 1

It is easy to see that

(M k+1 -M k ) Ω ≤ (M k+1 -M k ) Ω 2 ≤ M k+1 -M k 2

F Proof of Lemma 4

In order to prove [START_REF] Foygel | Concentration-based guarantees for low-rank matrix reconstruction[END_REF], we use the following remarkable bound on the spectral norms of random matrices. It is obtained by extension to rectangular matrices via self-adjoint dilation of Corollary 3.12 and Remark 3.13 in [START_REF] Bandeira | Sharp nonasymptotic bounds on the norm of random matrices with independent entries[END_REF] (cf., Section 3.1 in [START_REF] Bandeira | Sharp nonasymptotic bounds on the norm of random matrices with independent entries[END_REF]).

Proposition 13 ([2]

). Let A be the m 1 × m 2 rectangular matrix whose entries A ij are independent centered bounded random variables. Then, for any 0 < ǫ ≤ 1/2 there exists a universal constant c ǫ such that, for every t ≥ 0

P A ≥ (1 + ǫ)2 √ 2(σ 1 ∨ σ 2 ) + t ≤ (m 1 ∧ m 2 ) exp -t 2 c ǫ σ 2 *
where we have defined

σ 1 = max i j E[A 2 ij ] σ 2 = max j i E[A 2 ij ] σ * = max ij |A ij |.
We apply Proposition 13 to Σ = (i,j) η ij ξ ij X ij . We compute

σ 1 = max i j E[η 2 ij ξ 2 ij ] = σmax i √ π i• and σ 2 = σmax j √ π •j .
Bound (4) implies that σ 1 ∨ σ 2 ≤ σ √ L. On the other hand, Assumption 1 implies max ij |η ij ξ ij | ≤ b. Now, taking in Proposition 13 ǫ = 1/2 we get [START_REF] Foygel | Concentration-based guarantees for low-rank matrix reconstruction[END_REF].

In order to prove [START_REF] Gross | Recovering low-rank matrices from few coefficients in any basis[END_REF] we use the following result Proposition 14 (Corollary 3.3 in [START_REF] Bandeira | Sharp nonasymptotic bounds on the norm of random matrices with independent entries[END_REF]). Let A be the m 1 ×m 2 rectangular matrix with A ij independent centered bounded random variables. Then, there exists a universal constant C * such that,

E A ≤ C * σ 1 ∨ σ 2 + σ * log(m 1 ∧ m 2 )
where σ 1 , σ 2 , σ * are defined in Proposition 13.

We apply Proposition 14 to Σ R = (i,j) η ij ǫ ij X ij where {ǫ ij } is i.i.d. Rademacher sequence. We have that σ 1 ∨ σ 2 ≤ √ L and σ * ≤ 1, then Proposition 14 implies [START_REF] Gross | Recovering low-rank matrices from few coefficients in any basis[END_REF].

•

  , d r ] and t + = max(t, 0). For any set I, |I| denotes its cardinal and Ī its complement. Let a ∨ b = max(a, b) and a ∧ b = min(a, b).

Case 1 : 2 L2Case 2 : 2 L2

 1222 Suppose first that M -M 0 It remains to consider the case M -M 0 log (6/5) p .

Remark 3 .

 3 In the case m 1 < m 2 , we only need to change the construction of the low rank component of the test set. We first build a matrix L = L O ∈ R r×m2 where L ∈ R r×(m2/2) with entries in 0, γ(σ ∧ a)

P Z T ≥ 5 12 T

 12 r p -1 T E ( Σ R ) r p -1 (E ( Σ R )) 2and the concentration bound (38) we obtain that + 44 p -1 r (E ( Σ R )) 2 + 18 ≤ 4e -c1 p T with c 1 ≥ 0.0006 as stated.

  where {ǫ ij } is an i.i.d. Rademacher sequence. Then, the contraction inequality (see e.g. [16, Theorem 2.2]) yields

		
	E (Z T ) ≤ 8E	 sup

A∈C(r,T ) (i,j)

and the following event

Note that A ∈ S l implies that A ∈ C(r, α l ν). Then (37) implies that B l holds and we get B ⊂ ∪ B l . Thus, it is enough to estimate the probability of the simpler event B l and then apply the union bound. Such an estimation is given by the following lemma. Its proof is given in Appendix D. Let

Lemma 10. We have that

with c 1 ≥ 0.0006.

Lemma 10 implies that P (B l ) ≤ 4 exp(-c 1 p α l ν). Using the union bound we obtain

where we used e x ≥ x. We finally compute for ν = log(d) 0.0006 p log (6/5)

.

This completes the proof of Lemma 9.

D Proof of Lemma 10

We will start by showing that Z T concentrates around its expectation and then we will upper bound the expectation. Recall that by definition,

We use the following Talagrand's concentration inequality :

Then for any t ≥ 0,

For a proof see [START_REF] Talagrand | A new look at independence[END_REF] and [START_REF] Chatterjee | Matrix estimation by universal singular value thresholding[END_REF]. Let f (x 11 , . . . , x m1m2 ) : = sup

It is easy to see that f (x 11 , . . . , x m1m2 ) is a Lipschitz function with Lipschitz constant L = p -1 T . Indeed,

where we used ||a| -|b|| ≤ |a -b|, A ∞ ≤ 1 and A 2 L2(Π) ≤ T . Now, Theorem 11 and 2 p -1 T ≤ T + p -1 imply

Taking t = 1 9 1 3 T we get

with c 1 ≥ 0.0006. and

Thus, it is enough to show [START_REF] Chatterjee | Matrix estimation by universal singular value thresholding[END_REF]. The proof of ( 8) is close to the proof of Lemma 4 in [START_REF] Mazumder | Spectral regularization algorithms for learning large incomplete matrices[END_REF].

Let us denote for by Mk the solutions produced by Algorithm 1 after softthresholding step and before truncating step [START_REF] Candès | The power of convex relaxation: near-optimal matrix completion[END_REF]. We have that

where in the second inequality we used the following result (see, for example, Lemma 3 in [START_REF] Mazumder | Spectral regularization algorithms for learning large incomplete matrices[END_REF])

Proposition 12. The soft-thresholding operator S λ (•) satisfies the following:

The inequality (39) implies that the sequence { M k -M k-1 2 } k≥1 converges. It remains to show that it converges to zero. Note that the inequalities (39) imply that

So, we only need to show that (M k+1 -M k )Ω 2 → 0. We put

Note that [START_REF] Candès | Exact matrix completion via convex optimization[END_REF] implies

where in the last inequality we used that

The inequality (40) shows that the sequence {Q(M k , M k )} k≥1 converges. This and (40) yield

Now, it is easy to see that

Indeed, for (i, j) in Ω such that M k+1 ij = M k+1 ij we have that

and for (i, j) in Ω such that M k+1 ij = M k+1 ij we have that

where we used (41). Now (42) together with (43) imply ( 8) which completes the proof of Lemma 1.