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Introduction: Motivation

(Dal Lago, 2011, p. 90)

Question
Is there an in-between?

Answer
One can also restrict the quality of the resources.

ICC is
machine-independent and without explicit bounds.
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Introduction: What is ICC?

Machine-dependant

Machine-independant

E
xp

lic
it

bo
un

ds

Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), . . .

Im
pl

ic
it

bo
un

ds Automaton,
Auxiliary pushdown machine,
(Boolean circuit,) . . .

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), . . .

(Girard et al., 1992, p. 18)

(Ibarra, 1971, p. 88)
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Automata and Complexity: Definition

Definition (2NFA(k, j))
For k > 1, j > 0, a 2-way non-deterministic finite automaton with
k-heads and j pushdown stacks is a tuple
M = {S,A,B,B,C,�, σ} where:

S is the finite set of states;

A is the input alphabet, B is the stack alphabet;

B and C are the left and right endmarkers, B,C/∈ A;

� is the bottom symbol of the stack, � /∈ B;
σ ⊆ (S× (A ∪ {B,C})k × (B ∪ {�})j )
× (S× {−1,0,+1}k × {pop,peek,push(b)}j )

2NFA(k, j) = {L(M) | M a 2NFA(k, j)}
2NFA(∗, j) = ∪k>12NFA(k, j)
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Automata and Complexity: Main Characterizations

Theorem (Main characterizations)

Automata Language / Predicate

2NFA(1,2) Computable
2NFA(∗,1) Polynomial time
2NFA(∗,0) Logarithmic space
2NFA(1,1) Context-free
2NFA(1,0) Regular
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Automata and Complexity: Main Characterizations

2NFA(1, 2) ⊇ Computable.
Let P be computable

Let M be a Turing Machine that computes it

Take M ′ with 1 read-only head and 1 read-write tape

Simulate the content of the tape with the pushdown tapes

2NFA(1, 2) ⊆ Computable.
Finite automata are restrictions of Turing Machines.
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Automata and Complexity: Main Characterizations

2NFA(∗, 1) ⊇ Polynomial Time.
Restrict the Turing Machine.

2NFA(∗, 1) ⊆ Polynomial Time.
A plain simulation?

Memoization!

Corollary
Some FA with exponential runs can be simulated in linear
time (Cook, 1971).
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Automata and Complexity: Main Characterizations

2NFA(∗, 0) ⊆ Logarithmic space.
Write and update the heads’ addresses in log-space.

2NFA(∗, 0) ⊇ Logarithmic space.
Encode the content of the tapes as positions (tallies).

Remark (Hofmann and Schöpp, 2010)
The input tape must be ordered.

Reminder
A binary string of length log(|n|) cannot express an integer
greater than |n|.
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Automata and Complexity: Main Characterizations

TM

Input tape
0 1 1 . . .. . .

r

Working tape

0 1 . . . 0 1. . .10 1. . . . . .

e e′

FA

B
Input tape

C0 1 1 . . .. . .

r

01 1

bin−1(e)

. . .. . . 1 11

bin−1(e′)

. . . . . .
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Automata and Complexity: Main Characterizations

2NFA(1, 1) = Context-free
and
2NFA(1, 0) = Regular.
So well-known it became the definition.

FA exist in deterministic and 1-way variants.

Theorem (Equalities)
2NFA(∗,0) = NL

2DFA(∗,0) = L

2NFA(∗,1) = 2DFA(∗,1) = P

1DFA(1,0) = 2DFA(1,0) = 1NFA(1,0) = 2DFA(1,0)

10



Automata and Complexity: Main Characterizations

2NFA(1, 1) = Context-free
and
2NFA(1, 0) = Regular.
So well-known it became the definition.

FA exist in deterministic and 1-way variants.

Theorem (Equalities)
2NFA(∗,0) = NL

2DFA(∗,0) = L

2NFA(∗,1) = 2DFA(∗,1) = P

1DFA(1,0) = 2DFA(1,0) = 1NFA(1,0) = 2DFA(1,0)

10



Automata and Complexity: Main Characterizations

2NFA(1, 1) = Context-free
and
2NFA(1, 0) = Regular.
So well-known it became the definition.

FA exist in deterministic and 1-way variants.

Theorem (Equalities)
2NFA(∗,0) = NL

2DFA(∗,0) = L

2NFA(∗,1) = 2DFA(∗,1) = P

1DFA(1,0) = 2DFA(1,0) = 1NFA(1,0) = 2DFA(1,0)

10



Automata and Complexity: Results of Interest

Theorem (Inequalities)
k > 1, j 6 1

__FA(k, j) ( __FA(k + 1, j) (Too many to list)

1DFA(k,0) ( 2DFA(k,0) (Holzer et al., 2008)

1NFA(k,0) ( 2NFA(k,0) (")

1DFA(k,0) ( 1NFA(2,0) (Yao and Rivest, 1978)

1NFA(k,0) ⊆ 2DFA(k,0) (Sudborough, 1977b)

2NFA(k,0) ⊆ 2NFA(2× k,1) (")

2NFA(k,1) ⊆ 2DFA(4× k,1) (Sudborough, 1977a)

1DFA(k,1) ( 1NFA(k,1) (Chrobak, 1986)

1DFA(k,1) ( 1NFA(k,1) (")

NL = L iff (Sudborough, 1973)

1NFA(2,0) ⊆ 2DFA(k,0)
11



Conclusion: What are Automata?

Automata are

well-studied;

closely related to complexity;

a place where many fundamental techniques have been
discovered;

implicit in an unexpected way;

explicit in an expected way.

The quality of their storage impacts directly on their expressive
power.
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Conclusion: A Source of Inspiration

Inspiration to formalize computation in GoI (Aubert and Seiller,
2014; Aubert and Seiller, 2015).

Theorem (Aubert, Bagnol, Pistone, and Seiller, 2014)
“Logic programs where all the variables are at the same height
characterize Logarithmic space.”

Theorem (Aubert, Bagnol, and Seiller, 2015)
“Logic programs using only unary functions characterize
polynomial time.”

Thanks!

F=f
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