
An in-between “implicit” and “explicit”
complexity: Automata

DICE 2015

Clément Aubert

Queen Mary University of London
12 April 2015

Introduction: Motivation

(Dal Lago, 2011, p. 90)

Question
Is there an in-between?

Answer
One can also restrict the quality of the resources.

ICC is
machine-independent and without explicit bounds.

2

Introduction: What is ICC?

Machine-dependant

Machine-independant

E
xp

lic
it

bo
un

ds

Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), . . .

Im
pl

ic
it

bo
un

ds Automaton,
Auxiliary pushdown machine,
(Boolean circuit,) . . .

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), . . .

(Girard et al., 1992, p. 18)

(Ibarra, 1971, p. 88)

3

Introduction: What is ICC?

Machine-dependant Machine-independant

E
xp

lic
it

bo
un

ds

Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), . . .

Im
pl

ic
it

bo
un

ds Automaton,
Auxiliary pushdown machine,
(Boolean circuit,) . . .

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), . . .

(Girard et al., 1992, p. 18)

(Ibarra, 1971, p. 88)

3

Introduction: What is ICC?

Machine-dependant Machine-independant

E
xp

lic
it

bo
un

ds

Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), . . .

Im
pl

ic
it

bo
un

ds Automaton,
Auxiliary pushdown machine,
(Boolean circuit,) . . .

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), . . .

(Girard et al., 1992, p. 18)

(Ibarra, 1971, p. 88)

3

Introduction: What is ICC?

Machine-dependant Machine-independant

E
xp

lic
it

bo
un

ds

Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), . . .

Im
pl

ic
it

bo
un

ds Automaton,
Auxiliary pushdown machine,
(Boolean circuit,) . . .

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), . . .

(Girard et al., 1992, p. 18)
(Ibarra, 1971, p. 88)

3

Introduction: What is ICC?

Machine-dependant Machine-independant

E
xp

lic
it

bo
un

ds

Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), . . .

Im
pl

ic
it

bo
un

ds

Automaton,
Auxiliary pushdown machine,
(Boolean circuit,) . . .

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), . . .

(Girard et al., 1992, p. 18)

(Ibarra, 1971, p. 88)

3

Introduction: What is ICC?

Machine-dependant Machine-independant

E
xp

lic
it

bo
un

ds

Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), . . .

Im
pl

ic
it

bo
un

ds Automaton,
Auxiliary pushdown machine,
(Boolean circuit,) . . .

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), . . .

(Girard et al., 1992, p. 18)

(Ibarra, 1971, p. 88)

3

Introduction: What is ICC?

Machine-dependant Machine-independant

E
xp

lic
it

bo
un

ds

Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), . . .

Im
pl

ic
it

bo
un

ds Automaton,
Auxiliary pushdown machine,
(Boolean circuit,) . . .

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), . . .

(Girard et al., 1992, p. 18)

(Ibarra, 1971, p. 88)

3

Automata and Complexity: Definition

Definition (2NFA(k, j))
For k > 1, j > 0, a 2-way non-deterministic finite automaton with
k-heads and j pushdown stacks is a tuple
M = {S,A,B,B,C,�, σ} where:

S is the finite set of states;

A is the input alphabet, B is the stack alphabet;

B and C are the left and right endmarkers, B,C/∈ A;

� is the bottom symbol of the stack, � /∈ B;
σ ⊆ (S× (A ∪ {B,C})k × (B ∪ {�})j)
× (S× {−1,0,+1}k × {pop,peek,push(b)}j)

2NFA(k, j) = {L(M) | M a 2NFA(k, j)}
2NFA(∗, j) = ∪k>12NFA(k, j)

4

Automata and Complexity: Main Characterizations

Theorem (Main characterizations)

Automata Language / Predicate

2NFA(1,2) Computable
2NFA(∗,1) Polynomial time
2NFA(∗,0) Logarithmic space
2NFA(1,1) Context-free
2NFA(1,0) Regular

5

Automata and Complexity: Main Characterizations

2NFA(1, 2) ⊇ Computable.
Let P be computable

Let M be a Turing Machine that computes it

Take M ′ with 1 read-only head and 1 read-write tape

Simulate the content of the tape with the pushdown tapes

2NFA(1, 2) ⊆ Computable.
Finite automata are restrictions of Turing Machines.

6

Automata and Complexity: Main Characterizations

2NFA(∗, 1) ⊇ Polynomial Time.
Restrict the Turing Machine.

2NFA(∗, 1) ⊆ Polynomial Time.
A plain simulation?

Memoization!

Corollary
Some FA with exponential runs can be simulated in linear
time (Cook, 1971).

7

Automata and Complexity: Main Characterizations

2NFA(∗, 1) ⊇ Polynomial Time.
Restrict the Turing Machine.

2NFA(∗, 1) ⊆ Polynomial Time.
A plain simulation?

Memoization!

Aho, Hopcroft, and Ullman, 1968, p. 197

Corollary
Some FA with exponential runs can be simulated in linear
time (Cook, 1971).

7

Automata and Complexity: Main Characterizations

2NFA(∗, 1) ⊇ Polynomial Time.
Restrict the Turing Machine.

2NFA(∗, 1) ⊆ Polynomial Time.
A plain simulation? Memoization!

Corollary
Some FA with exponential runs can be simulated in linear
time (Cook, 1971).

7

Automata and Complexity: Main Characterizations

2NFA(∗, 1) ⊇ Polynomial Time.
Restrict the Turing Machine.

2NFA(∗, 1) ⊆ Polynomial Time.
A plain simulation? Memoization!

Corollary
Some FA with exponential runs can be simulated in linear
time (Cook, 1971).

7

Automata and Complexity: Main Characterizations

2NFA(∗, 0) ⊆ Logarithmic space.
Write and update the heads’ addresses in log-space.

2NFA(∗, 0) ⊇ Logarithmic space.
Encode the content of the tapes as positions (tallies).

Remark (Hofmann and Schöpp, 2010)
The input tape must be ordered.

Reminder
A binary string of length log(|n|) cannot express an integer
greater than |n|.

8

Automata and Complexity: Main Characterizations

TM

Input tape
0 1 1

r

Working tape

0 1 . . . 0 1. . .10 1.

e e′

FA

B
Input tape

C0 1 1

r

01 1

bin−1(e)

. 1 11

bin−1(e′)

.

9

Automata and Complexity: Main Characterizations

TM

Input tape
0 1 1

r

Working tape

0 1 . . . 0 1. . .10 1.

e e′

FA

B
Input tape

C0 1 1

r

01 1

bin−1(e)

. 1 11

bin−1(e′)

.

9

Automata and Complexity: Main Characterizations

2NFA(1, 1) = Context-free
and
2NFA(1, 0) = Regular.
So well-known it became the definition.

FA exist in deterministic and 1-way variants.

Theorem (Equalities)
2NFA(∗,0) = NL

2DFA(∗,0) = L

2NFA(∗,1) = 2DFA(∗,1) = P

1DFA(1,0) = 2DFA(1,0) = 1NFA(1,0) = 2DFA(1,0)

10

Automata and Complexity: Main Characterizations

2NFA(1, 1) = Context-free
and
2NFA(1, 0) = Regular.
So well-known it became the definition.

FA exist in deterministic and 1-way variants.

Theorem (Equalities)
2NFA(∗,0) = NL

2DFA(∗,0) = L

2NFA(∗,1) = 2DFA(∗,1) = P

1DFA(1,0) = 2DFA(1,0) = 1NFA(1,0) = 2DFA(1,0)

10

Automata and Complexity: Main Characterizations

2NFA(1, 1) = Context-free
and
2NFA(1, 0) = Regular.
So well-known it became the definition.

FA exist in deterministic and 1-way variants.

Theorem (Equalities)
2NFA(∗,0) = NL

2DFA(∗,0) = L

2NFA(∗,1) = 2DFA(∗,1) = P

1DFA(1,0) = 2DFA(1,0) = 1NFA(1,0) = 2DFA(1,0)

10

Automata and Complexity: Results of Interest

Theorem (Inequalities)
k > 1, j 6 1

__FA(k, j) (__FA(k + 1, j) (Too many to list)

1DFA(k,0) (2DFA(k,0) (Holzer et al., 2008)

1NFA(k,0) (2NFA(k,0) (")

1DFA(k,0) (1NFA(2,0) (Yao and Rivest, 1978)

1NFA(k,0) ⊆ 2DFA(k,0) (Sudborough, 1977b)

2NFA(k,0) ⊆ 2NFA(2× k,1) (")

2NFA(k,1) ⊆ 2DFA(4× k,1) (Sudborough, 1977a)

1DFA(k,1) (1NFA(k,1) (Chrobak, 1986)

1DFA(k,1) (1NFA(k,1) (")

NL = L iff (Sudborough, 1973)

1NFA(2,0) ⊆ 2DFA(k,0)
11

Conclusion: What are Automata?

Automata are

well-studied;

closely related to complexity;

a place where many fundamental techniques have been
discovered;

implicit in an unexpected way;

explicit in an expected way.

The quality of their storage impacts directly on their expressive
power.

12

Conclusion: A Source of Inspiration

Inspiration to formalize computation in GoI (Aubert and Seiller,
2014; Aubert and Seiller, 2015).

Theorem (Aubert, Bagnol, Pistone, and Seiller, 2014)
“Logic programs where all the variables are at the same height
characterize Logarithmic space.”

Theorem (Aubert, Bagnol, and Seiller, 2015)
“Logic programs using only unary functions characterize
polynomial time.”

Thanks!

F=f

13

Conclusion: A Source of Inspiration

Inspiration to formalize computation in GoI (Aubert and Seiller,
2014; Aubert and Seiller, 2015).

Theorem (Aubert, Bagnol, Pistone, and Seiller, 2014)
“Logic programs where all the variables are at the same height
characterize Logarithmic space.”

Theorem (Aubert, Bagnol, and Seiller, 2015)
“Logic programs using only unary functions characterize
polynomial time.”

Thanks!

F=f

13

Conclusion: References

Aho, Alfred V., John E. Hopcroft, and Jeffrey D. Ullman (1968).
“Time and Tape Complexity of Pushdown Automaton
Languages”. In: Inform. Control 13.3, pp. 186–206.

Aubert, Clément, Marc Bagnol, Paolo Pistone, and
Thomas Seiller (2014). “Logic Programming and Logarithmic
Space”. In: APLAS. Ed. by Jacques Garrigue. Vol. 8858.
LNCS. Springer, pp. 39–57.

Aubert, Clément, Marc Bagnol, and Thomas Seiller (2015).
Memoization for Unary Logic Programming: Characterizing
Ptime. Research Report, p. 12. arXiv: 1501.05104
[cs.LO].

Aubert, Clément and Thomas Seiller (2014). “Characterizing
co-NL by a group action”. In: Mathematical Structures in
Computer Science FirstView, pp. 1–33.

14

http://arxiv.org/abs/1501.05104
http://arxiv.org/abs/1501.05104

Conclusion: References

Aubert, Clément and Thomas Seiller (2015). “Logarithmic Space
and Permutations”. In: Information and Computation. to
appear.

Bellantoni, Stephen J. and Stephen Arthur Cook (1992). “A New
Recursion-Theoretic Characterization of the Polytime
Functions (Extended Abstract)”. In: STOC. Ed. by
S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and
John A. Ellis. ACM, pp. 283–93.

Buss, Samuel R. (1986). Bounded Arithmetic. Ed. by Bibliopolis.
Vol. 3. Studies in Proof Theory. Lecture Notes.

Chrobak, Marek (1986). “Hierarchies of One-Way Multihead
Automata Languages”. In: Theoret. Comput. Sci. 48.3,
pp. 153–181.

15

Conclusion: References

Cobham, Alan (1965). “The intrinsic computational difficulty of
functions”. In: Logic, methodology and philosophy of science:
Proceedings of the 1964 international congress held at the
Hebrew university of Jerusalem, Israel, from August 26 to
September 2, 1964. Ed. by Yehoshua Bar-Hillel. Studies in
Logic and the foundations of mathematics. North-Holland
Publishing Company, pp. 24–30.

Cook, Stephen Arthur (1971). “Linear Time Simulation of
Deterministic Two-Way Pushdown Automata”. In: IFIP
Congress (1). Ljubljana, Yugoslavia, August 23-28, 1971:
North-Holland, pp. 75–80.

Dal Lago, Ugo (2011). “A Short Introduction to Implicit
Computational Complexity”. In: ESSLLI. Ed. by
Nick Bezhanishvili and Valentin Goranko. Vol. 7388. LNCS.
Springer, pp. 89–109.

16

Conclusion: References

Fagin, Ronald (1973). “Contributions to the Model Theory of
Finite Structures”. PhD thesis. University of California,
Berkeley.

Girard, Jean-Yves, Andre Scedrov, and Philip J. Scott (1992).
“Bounded linear logic: a modular approach to polynomial-time
computability”. In: Theoret. Comput. Sci. 97.1, pp. 1–66.

Hofmann, Martin and Ulrich Schöpp (2010). “Pure Pointer
Programs with Iteration”. In: ACM Transactions on
Computational Logic 11.4.

Holzer, Markus, Martin Kutrib, and Andreas Malcher (2008).
“Multi-Head Finite Automata: Characterizations, Concepts and
Open Problems”. In: CSP. Ed. by Turlough Neary,
Damien Woods, Anthony Karel Seda, and Niall Murphy. Vol. 1.
EPTCS, pp. 93–107.

17

Conclusion: References

Ibarra, Oscar H. (1971). “Characterizations of Some Tape and
Time Complexity Classes of Turing Machines in Terms of
Multihead and Auxiliary Stack Automata”. In: J. Comput. Syst.
Sci. 5.2, pp. 88–117.

Leivant, Daniel (1993). “Stratified Functional Programs and
Computational Complexity”. In: POPL. Ed. by
Mary S. Van Deusen and Bernard Lang. Charleston, South
Carolina, USA: ACM Press, pp. 325–333.

Sudborough, Ivan Hal (1973). “On Tape-Bounded Complexity
Classes and Multi-Head Finite Automata”. In: SWAT (FOCS).
IEEE Computer Society, pp. 138–144.

– (1977a). “Separating Tape Bounded Auxiliary Pushdown
Automata Classes”. In: STOC. Ed. by John E. Hopcroft,
Emily P. Friedman, and Michael A. Harrison. ACM,
pp. 208–217.

18

Conclusion: References

Sudborough, Ivan Hal (1977b). “Some Remarks on Multihead
Automata”. In: Theor. Inform. Appl. 11.3, pp. 181–195.

Yao, Andrew Chi-Chih and Ronald L. Rivest (1978). “k + 1 Heads
Are Better Than k ”. In: J. ACM 25.2, pp. 337–340.

19

	Introduction
	Automata and Complexity
	Conclusion

