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Accurate steam-water equation of state for two-phase flow
LMNC model with phase transition¶

Stéphane Dellacherie† Gloria Faccanoni‡ Bérénice Grec∗§ Yohan Penel‖

Abstract
This paper is concerned with the design of incomplete equations of state for a two-phase flow with phase

transition that are specific to the low Mach number regime. It makes use of the fact that the thermodynamic
pressure has small variations in this regime. These equations of state supplement the 2D Lmnc model introduced
in previous works.

Our innovative strategy relies on tabulated values and is proven to satisfy crucial thermodynamic requirements
such as positivity, monotonicity and continuity. In particular, saturation values are exact. This procedure is
assessed by means of analytical steady solutions and comparisons with standard analytical equations of state, and
shows a great improvement in accuracy.

Keywords. Thermal-hydraulics; Low Mach number regime; Phase transition; Tabulated equations of state; Ther-
modynamic consistency; Numerical simulations.

1 Introduction

The present paper follows previous articles and conference proceedings [1–4] devoted to the modelling and the numer-
ical simulation of the coolant fluid in a nuclear reactor of Pressurised Water Reactor (PWR) type. We are interested
in situations where the Mach number can be considered small (typically of order O(10−2)), which is equivalent to
assuming that the material velocity is much smaller than the speed of sound. It is in particular the case in nominal
and some incidental situations, and this makes this approach relevant as a preliminary study for safety evaluations.
The low Mach number assumption strongly influences both theoretical and numerical approaches in the modelling
process. It has been proven in numerous works that issues may occur in a compressible framework when the Mach
numberM is quite small (see for instance [5,6] and references therein). The pressure variable is mainly held responsible
for such instabilities, due to the singularity of the pressure terms with respect toM, and due to the propagation of
initial perturbations. Let us recall some results:

• First, solutions of a compressible model are expected to formally converge to incompressible solutions whenM
goes to 0. However, this only happens under suitable conditions on inputs to the model: the initial conditions
(of correct orders of magnitude, i.e.well-prepared), the domain of the flow and the equation of state modelling
water properties (see for instance [7–11] and references therein).

• Second, even with well-prepared initial conditions, classic numerical schemes may lead to inaccurate solutions,
i.e. that are not consistent with the compressible model and exhibit spurious waves [6,12]. It has been proven
that the numerical schemes do not have steady states that are consistent approximations of the steady states
of the model [5].

• Third, in addition to accuracy issues, efficiency of numerical methods is also pointed out. Indeed, low Mach
number flows correspond to cases where time scales induced by the speed of sound and by the flow velocity are
quite different. An explicit stability condition would take the speed of sound into account and over-constrain
the computations. By contrast, an implicit scheme would fail to reproduce fast physical phenomena.
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For all these reasons, three main strategies have been considered in the literature:

¬ From the numerical point of view, splitting strategies have been introduced to simulate compressible flows.
They rely on a decomposition of the compressible operators between non-stiff terms (handled explicitly) and
stiff terms (handled implicitly). Stiff terms are classically the pressure [13–15] or more generally acoustic
terms [16–18]. Other methods are based on a Lagrange-projection [19] or on a Hodge decomposition [20].
In [21,22], preconditioning techniques are used to deal with diffusion terms.

­ The inaccuracy of classic schemes has been analysed by means of asymptotic expansions with respect to the Mach
number. This resulted in modified versions of the compressible schemes to treat the low Mach regime [23, 24].
In particular, some corrected Godunov-type schemes have been derived so that the kernel of the continuous
operator matches its discrete counterpart.

® Another strategy consists in deriving models of reduced complexity which are specific to the low Mach number
regime [3, 25–28]. Asymptotic expansions with respect to the Mach number are applied to the compressible
model, and this leads to a hierarchy of intermediate (simpler) models between compressible and incompress-
ible systems. However, applications of those simplified models are restricted to cases where acoustics can be
neglected, since the truncation of the asymptotic expansion amounts to filtering out acoustic waves.

The present paper is based on Approach ®, since acoustic phenomena are not predominant in the context we are
investigating. Models derived in this way have several advantages from both theoretical and numerical points of
view. First, their mathematical structure is much simpler than compressible systems. For the Euler equations,
the hyperbolic operator becomes a mixed hyperbolic-elliptic operator due to the low Mach number assumption. It
comprises a divergence constraint whose source term is not zero (as it would be in the incompressible limit). Second,
unlike incompressible models, low Mach number systems account for large heat transfer (through variations of the
density). Third, the asymptotic expansion leads to a decoupling of the pressure field into a dynamic pressure P
appearing in the momentum equation and a reference thermodynamic pressure p∗ – involved in the equation of state
–, which turns out to be independent from the space variable. The global pressure is recovered by summing the two
fields p∗ +M2P: this means that when the Mach number M is small, the pressure is constant equal to p∗ up to
small variations of order O(M2).
The latter characteristic is crucial and has major consequences, of which we are making use in this paper:

• First, it enables the computation of explicit analytical solutions in the 1D case [2, 29], which provides reliable
tools to assess compressible solvers in the low Mach regime.

• Second, it leads to simple robust and efficient numerical schemes, since it turns the standard stability condition
for explicit schemes (where acoustics is involved) into a purely convective stability condition. Time steps can
thus be chosen to be larger, and the computational cost significantly decreases.

• Third, the fact that the reference thermodynamic pressure can be considered constant in space allows a lower
number of evaluations of the equation of state (only once per time iteration) which also reduces the computa-
tional cost. The latter consequence is the key-point of the paper.

Most nuclear thermal-hydraulics codes (such as Cathare, Flica4, Thyc, Relap5 and Trace [30–35]) are based on the
resolution of the compressible Navier-Stokes system. On the other hand, here we propose to work on a simplified
model, obtained by filtering out the acoustic waves in such a compressible system. This approach dedicated to the low
Mach number regime is complementary to the traditional studies, which are potentially richer but a lot more complex.
On the one hand, it provides new theoretical and numerical information useful for understanding thermal-hydraulics
in the low Mach number regime, especially for innovative concepts with high power density. On the other hand, it
can serve as a support for compressible industrial codes to assess them in the low Mach number regime, a regime that
is mostly encountered in nuclear thermal-hydraulics, and whose approximation by a compressible numerical scheme
can be tricky.
The model investigated in the present paper is named Lmnc for Low Mach Nuclear Core model and was designed
in [3] for monophasic flows. It is derived from the Navier-Stokes equations in an open bounded domain with a heating
source term. Only terms of order 0 are kept in the asymptotic expansion with respect to the Mach number.
In addition to the PDE system, we want to describe water properties using thermodynamics. Classically, PDEs are
supplemented with an equation of state (EOS), which is a relation between pressure, density and entropy variables.
This relation is expected to describe the behaviour of water over a specific range of physical conditions (temperature
and pressure). Analytical EOS have been proposed in the literature such as the ideal gas law or the stiffened gas (SG)
law [36,37]. They have the advantage of a simple formulation leading to explicit computations. In particular, the SG
law corresponds to a rational function, involving five parameters to be tuned depending on the range of temperature
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under investigation. However, it turns out that any tuning provides inaccurate results for the values relevant in our
context, namely for a pressure equal to 15.5 MPa and for high temperatures close to saturation. A similar 6-parameter
law (NASG) has been recently designed [38] to cover an extended range of temperature, but the inaccuracy close to
saturation still remains. The SG law was mainly used in previous works [1, 2, 4], in order to take advantage of its
simple formulation leading to explicit solutions in dimension 1. Analytical laws such as SG and NASG are academic
tools which are quite useful to assess models and numerical strategies, but they are known to be restricted to simple
cases and could be quite inaccurate, as we shall show in this paper: the SG law yields a delayed vaporisation that
can have dramatic consequences in terms of safety. Hence, to provide more reliable results in particular for safety
evaluations, another strategy is necessary for defining equations of state in the range of temperature of interest.
Physical values of main thermodynamic variables are measured over a wide range of pressure/temperature values
for water and available for researchers in [39]. A strategy thus consists in constructing fitting polynomials for each
physical variable involved in the model which match tabulated data. It would be an expensive computation in a
compressible framework since an equation of state depends on two variables [40–42]. But in the low Mach number
regime, low Mach number models exhibit a constant thermodynamic pressure which makes the equation of state a
function of a single variable (which is not the temperature as in classic works, but rather the enthalpy, for reasons
explained below). Even if the resulting equation of state has a more complex expression than the SG/NASG laws, it is
expected to provide more accurate results in the physical context we are interested in. To this end, fitting polynomials
should be very carefully designed [43] to satisfy basic thermodynamic requirements (positivity, monotonicity, . . . ).
We present in this paper an innovative procedure to construct such relevant EOS for pure phases (liquid and vapour)
at low Mach numbers.
The challenge is then more tricky when phase transition occurs. In addition to the design of accurate specific equations
of state for water and steam, one has to model equilibria across phase transition and saturation phenomena. In the
present work, we consider mechanical and thermodynamic equilibria, which amounts to assuming that phases move
at the same velocity, and that vaporisation, condensation and heat transfer processes are instantaneous. This is why
the Lmnc model is a system with 3 equations and a single velocity field. It can be seen as the zero Mach limit of
the HEM model [44] with source terms. Other equilibria can also be considered and would lead to 4- to 7-equation
systems.
Under these equilibrium assumptions, water appears as liquid and vapour phases but also as a mixture of the two. The
mixture must thus be modelled through the evolution of thermodynamic and mechanical variables. In particular,
temperature is constant within the mixture phase. As the differential model must account for the three phases,
temperature cannot be chosen as a main variable. This is why the unknown variables involved in the Lmnc model
are the enthalpy, the velocity and the dynamic pressure. While complete equations of state are functions of two
variables, EOS for low Mach number models are functions of the enthalpy only1. For SG or NASG EOS, the
saturation is determined by the equality of Gibbs potentials, which may result in inaccurate values at saturation.
Figure 1 shows the physical irrelevance of these equations of state. The temperature at saturation for these EOS is
larger than the critical temperature at p = 15.5 MPa.
The strength of the procedure described in this work is that analytic equations of state are derived from tabulated
values and satisfy exactly the saturation. It takes advantage of the fact that the thermodynamic pressure is constant,
which enables us to guarantee crucial properties for the well-posedness of the model as well as for the physical
relevance of its solutions. Naively, density and temperature could be fitted as functions of enthalpy and then the
compressibility coefficient (2) and the heat capacity would be deduced by differentiation. That would raise some
consistency and stability issues. By means of thermodynamic relations (see Proposition 3.1), it is possible to do
this in reverse: fitting2 the compressibility coefficient and then integrating to deduce the density. This turns out to
be an essential procedure as it ensures positivity, monotonicity and continuity of the density. Moreover, saturation
values exactly match with tabulated ones (Proposition 3.2). The same procedure can be applied independently to the
temperature, which is deduced from the isobaric heat capacity with the same mathematical properties. Coefficients
of the tabulated equation of state are only computed once (as for SG/NASG laws) as a pre-processing and hold for
all iterations. Such an incomplete equation of state is obviously restricted to constant pressure regimes but in the
present context, it is a very efficient and stable method to incorporate water physics in the Lmnc model.

The paper is organised as follows. We first present in Section 2 the Lmnc model, which consists of 3 equations
involving velocity, enthalpy and dynamic pressure. We mention that viscosity and thermal conductivity are taken
into account. Boundary conditions are also specified. The core of the paper is detailed in Section 3: we briefly recall
the modelling of mixture (see also [2]) and the expression of the Stiffened Gas and Noble-Abel – Stiffened Gas laws.
We then explain the construction of the dedicated equations of state for pure phases based on the fitting of tabulated
values [39]. This amounts to specifying the dependency of all thermodynamic and physical variables with respect to

1The reader is reminded that the second variable – the thermodynamic pressure – is constant in this study.
2The choice of the fitting procedure is left to the reader. The least square method applied in the present work is not exclusive at all.
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the enthalpy. Two strategies are investigated to fit the compressibility coefficient β and the isobaric heat capacity cp:3
NIST-p which corresponds to high order polynomial-fitting and NIST-0 which is a phasewise constant approximation.
We state the crucial properties satisfied by the corresponding equations of state. In Section 4, we provide mathematical
assumptions on data and on the smoothness of solutions (jump conditions across phase transition), and we compare
the accuracy of the aforementioned equations of state upon an analytical steady solution. Section 5 is dedicated to
numerical simulations to compare the equations of state on a stiff test case, and highlight the influence of the thermal
conductivity and of the gravity field.

2 Low Mach two-phase flow model with phase transition and thermal
diffusion

2.1 Equations

Fluid flows are often described by the Navier-Stokes equations. When the flow regime is such that the Mach number
is small (typically,M = O(10−2)), they can be replaced by simplified models such as the Lmnc model derived in [3].
The latter system is mainly investigated under its non-conservative formulation [2, 4]

∇·u =
β(h, p∗)
p∗

[
∇·
(
Λ(h, p∗)∇h

)
+ Φ

]
, (1a)

%(h, p∗)×
[
∂th+ u · ∇h

]
= ∇·

(
Λ(h, p∗)∇h

)
+ Φ, (t,x) ∈ R+ × Ωd, (1b)

%(h, p∗)×
[
∂tu+ (u · ∇)u

]
−∇·σ(u) +∇P = %(h, p∗)g, (1c)

for some bounded domain4 Ωd ⊂ Rd, d ∈ {1, 2}. The unknowns involved in this model are the velocity u, the enthalpy
h and the dynamic pressure P. The data are the constant5 thermodynamic pressure p∗, the power density Φ(t,x),
which models the heating of the coolant fluid due to the fission reactions in the nuclear core, and the constant gravity
field g. To close the model, we have to provide the expression of the density % = %(h, p∗) and the compressibility
coefficient β(h, p∗) – i.e. specify the equation of state, see § 3.1 –, the viscous stress tensor σ(u) – see § 3.2 – and the
coefficient Λ = Λ(h, p∗) which is related to thermal conduction effects – see § 3.3. The present article is dedicated
to the modelling of these terms which characterise properties of water through equations of state and physical laws
when phase transition is taken into account.
More precisely, the compressibility coefficient is the key variable in this work, and is originally defined by

β(h, p∗)
def=− p∗

%(h, p∗)2
· ∂%
∂h

∣∣∣∣
p

(h, p∗). (2)

Another expression of β is designed in Proposition 3.1 which turns out to be crucial for the study. Notice that
the term compressibility has been originally chosen to remind us of its relation with the compressibility of the flow
through the divergence constraint. It is also referred to as the thermal expansion coefficient in previous works.
Both denominations are imprecise as they are also respectively used in the literature to refer to βT def=− 1

τ
∂τ
∂p

∣∣∣
T
or to

βp
def= 1

τ
∂τ
∂T

∣∣
p
, where τ = 1/% (see for instance [45–47]). We keep the denomination compressibility coefficient in what

follows, keeping in mind its relation with other thermodynamic coefficients.6

As for viscous effects, they include the classic internal friction in the fluid, as well as the friction on the fluid due to
technological devices in the nuclear core (e.g. the friction on the fluid due to the fuel rods):

σ(u) = µ(h, p∗)×
(
∇u+∇Tu

)
+ η(h, p∗)× (∇·u) Id.

The exact expression of the viscous term is not important in the 1D framework as (1c) decouples from the other
equations [2]. The computation of P is then only a postprocessing. This is no longer the case in higher dimensions
where the latter equation is a real part of the coupled system.
When a monophasic flow is considered, System (1) is then coupled to an equation of state and to physical laws
dedicated to a pure phase. To go further by taking into account phase transition, it is necessary to specify the

3Unlike the SG/NASG laws where β and cp are fully determined by the parameters of the laws, in the NIST strategy, they are computed
independently from each other.

4In 1D, Ω1 = [0, Ly ], x = y and u = v, whereas in 2D Ω2 = [0, Lx]× [0, Ly ], x = (x, y) and u = (u, v). We do not study the 3D case
in this paper but the extension is straightforward.

5In the low Mach approximation, the thermodynamic pressure p∗ does not depend on space but in general it can be considered a
function of time [1, 26]. We focus here on applications where it can be assumed to be constant.

6In particular, we have β =
pτβp
cp

.
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equilibria at play between phases. In the present case, we assume that phases are in thermodynamic and mechanic
equilibria which induces the equality of temperatures, pressures, Gibbs potentials and velocities. As a consequence,
this model has a single velocity for all phases in which water appears. As we shall see below, System (1) has a simpler
structure than the Navier-Stokes equations, which makes it easier to treat phase transition.
We must also emphasise that System (1) is characterised by two pressure fields, which is classic in low Mach number
approaches: the thermodynamic pressure p∗ is involved in the equation of state while the dynamic pressure P appears
in Equation (1c). This pressure decomposition results from an asymptotic expansion with respect to the Mach number
which induces the filtering out of the acoustic waves which are not involved anymore in System (1).

2.2 Boundary conditions

Boundary conditions are specified in 2D but adapt directly to 1D (see Figure 2). We denote by n the unit outer
normal vector to each boundary, and by τ a unit tangential vector so that (n, τ ) is a direct basis.

• The fluid is injected at the bottom y = 0 of the core at a given density %e and at a given vertical flow rate De:

%
(
h(t, x, 0), p∗

)
= %e(t, x), (3a)

(%u)(t, x, 0) =
(
0, De(t, x)

)
. (3b)

The entrance enthalpy he(t, x) is implicitly defined by the equation %(he, p∗) = %e. The vertical entrance velocity
ve(t, x) applied at y = 0 is deduced from the relation ve(t, x) = De(t, x)/%e(t, x).

• As for the temperature, we impose adiabatic conditions on all boundaries, except at the entry:

Λ(h, p∗)∇h · n(t, 0, y) = Λ(h, p∗)∇h · n(t, Lx, y) = 0, [lateral walls]
Λ(h, p∗)∇h · n(t, x, Ly) = 0. [top]

• On the lateral walls we consider Robin conditions on the velocity:

(u · n)(t, 0, y) = (u · n)(t, Lx, y) = 0,

σ(u)n · τ (t, 0, y) = σ(u)n · τ (t, Lx, y) = 0.

• Finally, at the top of the core, we consider a free outflow[
σ(u)n− Pn

]
(t, x, Ly) = 0. (3c)

Let us mention that condition (3c) comes from the following boundary condition for the “parent model” (Navier-
Stokes for a compressible fluid)7 [

σ(u)n− pn
]
(t, x, Ly) = −p∗n.

Remark 2.1. In a previous 1D work [2], we considered slightly different boundary conditions. First, (3a) replaces
h(t, x, 0) = he(t, x) for a given he in [2]. Imposing %e or he is not completely equivalent since it depends on the
choice of the equation of state %(·, p∗). In particular, it implies that steady states for distinct EOS are different (see
Proposition 4.1 and Figure 7(a)). Nevertheless, for any accurate EOS, both choices lead to similar results.
Second, (3c) replaces P(t, x, Ly) = 0 in [2]. They are the same when no viscous effects are taken into account
(µ ≡ η ≡ 0). However, in the viscous case, they are actually different. In the 1D case, we can determine analytical
steady and unsteady solutions and the results are of the same order due to the values of viscosity. In 2D, (3c) is
necessary for theoretical reasons (see the weak formulation in § 5.2), as well as for physical reasons since P = 0 is
hard to impose.

3 Accurate steam-water closures for the two-phase flow Lmnc model
with phase transition

In this section, we present different strategies to close the model by means of equations of state (EOS) and physical
laws. These relations between thermodynamic and physical variables are expected to accurately describe properties
of water over a range of enthalpy values (hmin, hmax) – to be specified –, so that we can reproduce the behaviour

7The physical pressure field p is recovered from pressure in the low Mach number model by p = p∗ + P. Thus P = O(M2) is a
perturbation around the mean value p∗.
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of the flow in a realistic way. On the one hand, we mention that the narrower the interval, the more accurate the
modelling. On the other hand, we have to take an interval large enough to handle incidental values close to phase
transition (hence close to the enthalpy at saturation in liquid water and vapour phase).
An EOS is related to thermodynamic properties of a fluid and consists of an algebraic/differential relation between
thermodynamic variables. An EOS must satisfy thermodynamic constraints: the term inside the square root in the
definition of the speed of sound – see (28) in Appendix C – must be positive; the density must be a monotone-
decreasing function of the enthalpy. The other issue is to derive an EOS that models not only pure liquid and vapour
phases of water but also the transition from one phase to another in a relevant and accurate way. A badly calibrated
EOS may dramatically modify the temperature at saturation in the fluid and cause unphysical phase transition from
liquid to vapour.
Since the fluid is considered a continuum (see e.g. [48,49] for a review of multiphase flow modelling), we consider here
that water can appear as liquid phase (referred to by the index κ = ˜l), vapour phase (κ = `g), or a mixture of liquid
and vapour (κ = ”mffl). The overall problem could be treated by means of distinct models for each phase supplemented
with transmission conditions when phase transition occurs as it is the case for immiscible fluids. Our model relies
on the assumption of local kinematic and thermodynamic equilibria between phases. This means that phases are
assumed to evolve at the same velocity, and that vaporisation, condensation and heat transfer processes are assumed
to be instantaneous. As a result, we rather model the two-phase flow by means of a single system of PDEs (with a
single velocity field), governing physical variables no matter what the phase they are related to. This process holds
provided the EOS has a wide domain of validity including phase transition. For more details on the construction of
these EOS and their applications to CFD for compressible fluid flows, see for instance [44,50–53].
Variables to be defined as functions of (h, p∗) are %, β, Λ, µ and η involved in (1) as well as cp and T for postprocessing.
In classic thermodynamics, two variables are sufficient to represent a thermodynamic state for a pure single-phase
fluid through the EOS. In the literature, there exist numerous EOS specific to each fluid under investigation. The case
of liquid-vapour phase transitions is schematically depicted on Figure 3 and represented by means of experimental
data extracted from [39] on Figure 4. When phase transition is taken into account, a mixture zone appears where
the two phases co-exist: it is called the saturation zone (Figs. 3a and 4a). This region is bounded by two saturation
curves connected at the critical point (1/%c, pc) which also belongs to the critical isotherm T = Tc. Since phase
transition appears at constant pressure and temperature, the physical isotherm is horizontal.
Once an EOS is provided for both liquid and vapour phases, the equality of Gibbs potentials leads to the definition
of the temperature at saturation and then to enthalpies at saturation hs˜l (p∗) and hs`g (p∗) [36, 46]. To model phase
transition, we introduce a phasewise decomposition for any variable ζ ∈ {%, β, T,Λ, cp, µ, η}:

ζ(h, p∗) =


ζ˜l(h, p∗), if h ≤ hs˜l (p∗),
ζ ”mffl(h, p∗), if hs˜l (p∗) < h < hs`g (p∗),

ζ`g(h, p∗), if h ≥ hs`g (p∗).
(4)

From now on, we shall ignore the dependency with respect to p∗ for thermodynamic variables, as the thermodynamic
pressure is constant throughout this study.
To construct the global EOS, we aim at constructing explicit functions h 7→ ζ̃κ(h), κ ∈ {˜l, `g}, approximating h 7→
ζκ(h, p∗) so that each pure phase has its own thermodynamics described in an accurate way. Then, the modelling of
the mixture ζ̃ ”mffl is carried out by means of an analytical formula based on thermodynamic principles [2, § 3.2].

Notations. In what follows, we shall adopt the following notations:

• ζκ refers to the generic thermodynamic variable in phase κ;

• ζ̃κ is a polynomial-fitting approximating ζκ: the core of this paper is to present different approaches to design
such functions;

• (ζ̂κ)i are the tabulated values for ζκ extracted from the NIST tables [39];

• In case when ζκ can be considered constant, the corresponding constant value is denoted by ζκ.

A natural approach is to try to design a complete EOS in which T (h, p∗) and %(h, p∗) are constructed in the first
place, and then β(h, p∗) and cp(h, p∗) are deduced from (2) and (26). However, as we shall see in the following, for
stability and consistency reasons we prefer to construct an incomplete EOS based on β(h, p∗).
In this work, we detail several strategies to derive an EOS for pure phases. We shall consider analytical EOSs such
as ¶ the Stiffened Gas (SG) law (see for instance [36,37]) or · the Noble-Abel – Stiffened Gas (NASG) law [38]. We
also investigated strategies based on experimental measurements gathered in tables [39, 40], which will be referred
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to as ¸ NIST-p for high-degree polynomial-fitting h 7→ ζ̃κ(h) and ¹ NIST-0 for constant approximations ζκ. We
underline that this is a strength of the low Mach number approach: in a compressible framework, one would have to
derive a function (h, p) 7→ ζ̃κ(h, p) that fits a surface of tabulated values, whereas in the low Mach framework, the
procedure reduces to fitting a curve, since the polynomial only depends on h (p ≡ p∗ here).
Since these fitting functions cannot model the behaviour of water for all values of h, we focus on a restricted interval
of values, prescribed in the following Hypothesis.

Hypothesis 3.1. Functions %, β, T , Λ, cp, µ and η are defined over the interval (hmin, hmax) where hmin and hmax
satisfy:

1. there exists a unique he ∈ (hmin, hmax) satisfying %(he, p∗) = %e in order to apply the boundary condition (3a);

2. hmin > hs˜l −
p∗

%s˜l max
h∈[hmin,hs˜l ]

β(h, p∗)
and hmin > hs˜l −

T s

max
h∈[hmin,hs˜l ]

1

cp(h, p∗)

.

Hypothesis 3.1-2. is necessary in order to ensure the positivity of % over [hmin, h
s
˜l ] for the construction (12) of 1/%

and the positivity of T over [hmin, h
s
˜l ] for the construction (18).

3.1 Compressibility coefficient and density

Let us now detail how we construct the global fitting function β̃ defined phasewise as in (4) via the EOS β̃κ in each
phase κ ∈ {˜l, ”mffl, `g}.

3.1.1 Compressibility coefficient and density in the mixture phase

As detailed in [2, § 3.2], the compressibility coefficient in the mixture is phasewise constant and given by

β ”mffl
def= p∗

1/%s`g − 1/%s˜l

hs`g − hs˜l
. (5a)

The derivation is much simpler than in the fully compressible case [54].
Let us mention that the expression of β ”mffl does not depend on the EOS in pure phases but only on values at saturation,
which may differ from one strategy to another (see Table 4). As for the density, it reads

%”mffl(h) def=
%s`g %

s
˜l (h

s
`g − hs˜l )

%s`gh
s
`g − %s˜l hs˜l − (%s`g − %s˜l )h

. (5b)

Given the two latter definitions, we can write

1

% ”mffl(h)
=
β ”mffl
p∗

(h− q ”mffl)

where

q ”mffl
def=
%s`gh

s
`g − %s˜l hs˜l
%s`g − %s˜l

. (5c)

Hence this process, which results from thermodynamic arguments, makes the mixture EOS look like the Stiffened
Gas law (7).

3.1.2 Compressibility coefficient and density in pure phases

Let us then present the construction of β̃˜l and β̃`g, as well as %̃˜l and %̃`g, for the different approaches we consider.

¶-· SG-NASG: The Stiffened Gas (SG) law and the Noble-Abel Stiffened Gas (NASG) law result from the same
construction process, namely a complete equation of state (after Menikoff and Plohr [36]) which is a smooth
relation between the specific entropy S, the specific volume τ def= 1/% and the specific energy ε

(τ, ε) 7→ S(τ, ε) = cv
[
ln
(
ε−Q− π(τ − b)

)
+ (γ − 1) ln(τ − b)

]
+ S0, (6)
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ĥκ %̂κ T̂κ ĉ∗κ ĉpκ ĉvκ λ̂κ µ̂κ
κ [kJ · kg−1] [kg ·m−3] [K] [m · s−1] [J · kg−1 ·K−1] [J · kg−1 ·K−1] [W ·m−1 ·K−1] [Pa · s]
˜l 978.702 842.783 500.000 1293.67 4561.5 3218.0 0.657 1.209×10−4

˜l 980.223 842.359 500.336 1292.50 4563.5 3217.0 0.657 1.207×10−4

...
...

...
...

...
...

...
...

...
˜l 1627.450 595.733 617.667 624.66 8871.0 3098.1 0.459 6.850×10−5

˜l ĥs˜l %̂s˜l T̂ s 621.43 8950.0 3101.0 0.458 6.833×10−5

`g ĥs`g %̂s`g T̂ s 433.40 14 000.6 3633.1 0.121 2.311×10−5

`g 2596.965 101.816 618.00 433.69 13 931.7 3627.6 0.121 2.310×10−5

...
...

...
...

...
...

...
...

...
`g 3066.962 60.540 699.667 573.70 3670.7 2173.2 0.0803 2.615×10−5

`g 3068.184 60.473 700.000 574.02 3664.7 2171.5 0.0803 2.616×10−5

Table 1: Sample of water values [39] at p∗ = 15.5 MPa with data at saturation ĥs˜l = 1629.880 kJ · kg−1; ĥs`g =

2596.119 kJ · kg−1; %̂s˜l = 594.379 kg ·m−3; %̂s`g = 101.930 kg ·m−3; T̂ s = 617.939 K

where six constant parameters have to be tuned: cv, Q, π, γ, S0 and b (b = 0 for the SG law). The tuning
depends on the range of enthalpy values and on the phase under consideration. More details on these complete
EOS are given in Appendix A. In particular, examples of values for all parameters are given in Table 8.
Temperature at saturation T s is deduced from the equality of Gibbs potentials associated to (6) in the liquid
and in the vapour. Enthalpies at saturation are given by hsκ = qκ + γκcvκT

s. All saturation values are given in
Table 4.

SG and NASG laws lead to the same expression for the density

1

%̃(h)
=
β̃(h)

p∗

(
h− q̃(h)

)
. (7a)

The phasewise constant compressibility coefficient is defined by

β̃(h) =


β ˜l, if h ≤ hs˜l ,

β ”mffl, if hs˜l < h < hs`g ,

β `g, if h ≥ hs`g ,
(7b)

where β ”mffl is given by (5a) and

q̃(h) =


q ˜l, if h ≤ hs˜l ,

q ”mffl, if hs˜l < h < hs`g ,

q `g, if h ≥ hs`g ,
(7c)

with qm defined in (5c). For our study, SG [37] and NASG [38] EOS only differ from the values of constant
parameters βκ and qκ which are given in Table 5. Let us mention that Hypothesis 3.1-2 reduces in that case to
hmin > q ˜l. Hence those analytical EOS are defined over (0,+∞) since q ˜l < 0.

¸ NIST-p: A sample of tabulated values is given in Table 1 over the range (hmin, hmax) with

hmin = 978.702 kJ · kg−1 and hmax = 3068.184 kJ · kg−1.

We remark that β does not belong to the set of variables referenced in NIST tables. Consequently, we have
to find out a strategy to express the compressibility coefficient. One could have used Formula (2) to define
β from the fitting function h 7→ ρ̃(h). Deriving the fitting function would raise some stability issues as well
as positivity problems. One may also think of a finite-difference approximation of (2), but that would violate
the consistency of thermodynamics (see [43] for more details). This is why we propose here an innovative idea
which consists in deriving another expression for β involving tabulated variables but no derivative. From such
an expression of β, we shall then deduce a consistent expression for %. We shall see how this idea solves all the
aforementioned issues.
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Proposition 3.1. In a pure phase, the compressibility coefficient β satisfies the relation

β =
p

%c∗
√
T

√
1

cv
− 1

cp
> 0, (8)

where p is the pressure, % the density, T the temperature, c∗ the speed of sound, cv the isochoric heat capacity
and cp the isobaric heat capacity.

Let us observe that, by construction, β is positive. Moreover, this relation is satisfied by the Stiffened Gas/Noble-
Abel – Stiffened Gas laws.

Remark 3.1. Let us introduce the Joule-Thomson coefficient ∂T
∂p

∣∣∣
h
which is also provided in the NIST tables.

Then we have the following additional relation, that also enables to compute β from tabulated data:

β =
p

T

(
∂T

∂p

∣∣∣∣
h

+
τ

cp

)
. (9)

Computations show that similar numerical results are obtained when using (9) or (8).

The proof of Proposition 3.1 and of expression (9) can be found in Appendix B.

Proposition 3.1 is crucial insofar as it provides tabulated values (β̂κ)i given pointwise values (%̂κ)i, (T̂κ)i, (ĉ∗κ)i,
(ĉvκ)i and (ĉpκ)i for each phase κ ∈ {˜l, `g}. Consequently, we can determine the functions

h 7→ β̃κ(h) =

dβ,κ∑
j=0

bκ,j

(
h

106

)j
κ ∈ {˜l, `g}, (10)

as adequate fitting polynomials over the intervals H˜l
def=(hmin, ĥ

s
˜l ) and H`g

def=(ĥs`g , hmax) matching the resulting

values (β̂κ)i in each phase.

Any numerical method can be used to determine the fitting polynomials (degrees dβ,κ and coefficients bκ,j)
providing that it ensures the positivity of both functions β̃˜l and β̃`g, since the values (β̂κ)i are positive
according to (8). In the present work, we apply a least-square regression technique. Degrees of the polynomial
were increased until an expected accuracy was reached, i.e. when the relative errors defined by

maxi

∣∣∣β̃κ(hi)− (β̂κ)i

∣∣∣
maxi (β̂κ)i

are smaller than a chosen threshold. For example, coefficients obtained for a threshold of 10−2 at p∗ = 15.5 MPa,
as well as the values of the corresponding relative errors, are given in Table 2(a). The resulting function (10)
is plotted on Figure 5(a). It can be noticed on Figure 5(a) that for the least-square method we used here, β̃˜l
and β̃`g are positive over H˜l and H`g. There is a large variety of fitting procedures in the literature which are
a lot more accurate than the least-square method. However, we do not need here this level of accuracy, since
the relative errors we obtain are satisfactory for our applications. Notice that interpolation methods where the
fitting function must match the sampled values are not mandatory here, since β is globally discontinuous.

Hence the global expression of β̃ is given by

β̃(h) =


β̃˜l(h), if h ≤ ĥs˜l ,

β̃ ”mffl(h) def= β ”mffl, if ĥs˜l < h < ĥs`g ,

β̃`g(h), if h ≥ ĥs`g ,

(11)

where β ”mffl is given by (5a) with (hsκ, %
s
κ) replaced by (ĥsκ, %̂

s
κ) (see corresponding data in Table 4). Orders of

magnitude of β̃κ are given in the third column of Table 5.

Observe that the second item in Hypothesis 3.1 is satisfied by the chosen range of enthalpies, since

hmin = 9.787× 105 J · kg−1 > ĥs˜l −
p∗

%̂s˜l β̃(ĥs˜l )
= 5.646× 105 J · kg−1.

11



κ = ˜l κ = `g
dβ,κ 6 3

bκ,0 6.129 697 412× 10−2 −5.395 575 381× 10−1

bκ,1 −1.378 946 053× 10−1 3.591 468 350× 10−1

bκ,2 8.329 391 618× 10−2 9.759 257 397× 10−3

bκ,3 6.045 509 171× 10−3 −1.465 520 061× 10−2

bκ,4 2.341 456 057× 10−2

bκ,5 −4.623 916 770× 10−2

bκ,6 1.637 507 485× 10−2

Error 6.718 624 276× 10−3 3.328 803 232× 10−3

(a) Coefficients for β̃κ.

κ = ˜l κ = `g
d%,κ 7 4

rκ,0 −0.155 983 180× 10−3 2.916 351 682× 10−2

rκ,1 3.954 643 492× 10−3 −3.481 016 375× 10−2

rκ,2 −4.448 213 074× 10−3 1.158 538 178× 10−2

rκ,3 1.791 267 015× 10−3 2.098 765 032× 10−4

rκ,4 9.750 821 242× 10−5 −2.363 742 034× 10−4

rκ,5 3.021 233 622× 10−4

rκ,6 −4.971 953 517× 10−4

rκ,7 1.509 223 489× 10−4

Error 8.627 504 234× 10−5 9.467 155 751× 10−5

(b) Coefficients for 1/%̃κ.

Table 2: Coefficients of fitting polynomials in the NIST-p strategy at p∗ = 15.5 MPa.

Let us now focus on a consistent construction of the density variable by integrating β̃κ using (2), which also
reads ∂

∂h

(
1
%̃

)
= β̃(h)

p∗
:

1

%̃(h)
=



1

%̃˜l(h)
def=

1

%̂s˜l
+

∫ h

ĥs˜l

β̃˜l(h)

p∗
dh, if h ≤ ĥs˜l ,

1

% ”mffl(h)
, if ĥs˜l < h < ĥs`g ,

1

%̃`g(h)
def=

1

%̂s`g
+

∫ h

ĥs`g

β̃`g(h)

p∗
dh, if h ≥ ĥs`g ,

(12)

where % ”mffl is defined by (5b).8 We write in a global way

1

%̃κ(h)
=

d%,κ∑
j=0

rκ,j

(
h

106

)j
, (13)

where the coefficients are stored in Table 2(b) and the curves are plotted on Figure 5(b). The values of the
relative errors are also given in Table 2(b). Obviously d%,κ = dβ,κ + 1.
By construction, the following properties are satisfied:

Proposition 3.2. Provided that β̃˜l and β̃`g are positive, the density %̃ defined by (12) is such that

(a) Under Hypothesis 3.1-2., h 7→ %̃(h) is positive over (hmin, hmax);
(b) h 7→ %̃(h) is continuous over (hmin, hmax) and satisfies exactly the tabulated values at saturation; in

particular, %̃κ(ĥsκ) = % ”mffl(ĥ
s
κ) = %̂sκ, κ ∈ {˜l, `g};

(c) h 7→ %̃(h) is decreasing over (hmin, hmax);
(d) Relation (2) exactly holds.

These properties are of great importance in thermodynamics and they would not have been fulfilled necessarily
by a fitting of the density using only the values (%̂κ)i.
A straightforward consequence of this proposition is that h 7→ %̃(h) is invertible, which in particular enables
determination of a unique he such that %̃(he) = %e (cf. Hypothesis 3.1-1.).

¹ NIST-0: In the previous strategy, degrees dβ,κ of the fitting polynomials were chosen large enough to make the
approximation error as small as desired. However it is also possible to choose dβ,κ = 0 to construct a phasewise
approximation like (11) but with constant phase functions β̃κ(h) ≡ βκ. We choose here the average between
the minimal and the maximal value in each phase

βκ
def=

mini (β̂κ)i + maxi (β̂κ)i
2

> 0, κ ∈ {˜l, `g}, (14a)

8In particular, the definition of %”mffl ensures that
1

% ”mffl(h)
=

1

%̂s˜l
+

∫ h

ĥs˜l

β ”mffl
p∗

dh =
1

%̂s`g
+

∫ h

ĥs`g

β ”mffl
p∗

dh.
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κ = ˜l κ = `g
d%,κ 1 1

rκ,0 7.416× 10−5 −2.643× 10−2

rκ,1 9.867× 10−10 1.396× 10−8

Table 3: Coefficients for 1/%̃κ in the NIST-0 strategy

¶ SG · NASG ¸-¹ NIST [39]

hs˜l 1.627× 106 J · kg−1 1.596× 106 J · kg−1 ĥs˜l
hs`g 3.004× 106 J · kg−1 2.861× 106 J · kg−1 ĥs`g

%s˜l 632.663 kg ·m−3 737.539 kg ·m−3 %̂s˜l
%s`g 52.937 kg ·m−3 55.486 kg ·m−3 %̂s`g

T s 654.65 K 636.47 K T̂ s

Table 4: Values at saturation for p∗ = 15.5 MPa found in the NIST tables [39], or deduced from the parameters of [37]
for SG and of [38] for NASG.

and β ”mffl as in (5a) with (hsκ, %
s
κ) replaced by (ĥsκ, %̂

s
κ). Resulting values are given in the fourth column of Table 5.

We then apply the same construction (12) for the density as in the NIST-p strategy. In this phasewise constant
case, we notice that this construction procedure leads to an expression of the density which is similar to the
(NA)SG law (7), namely

1

%̃(h)
=
β̃(h)

p∗

(
h− q̃(h)

)
, (14b)

where

q̃(h) =


q ˜l

def= ĥs˜l −
1

%̂s˜l

p∗
β ˜l
, if h ≤ ĥs˜l ,

q ”mffl, if ĥs˜l < h < ĥs`g ,

q `g
def= ĥs`g −

1

%̂s`g

p∗
β `g
, if h ≥ ĥs`g ,

(14c)

with q ”mffl defined by (5c). The values of qκ are stored in Table 5, those of %̂sκ and ĥsκ are given in the caption
of Table 1 and coefficients of the polynomials 1/%̃κ in Table 3. It is straightforward that Proposition 3.2 still
holds for the NIST-0 strategy.

With our construction, the saturation is exactly satisfied, unlike for the EOS obtained with parameters of [37] for SG
or with parameters of [38] for NASG. Nevertheless, observe that the NIST-p/NIST-0 EOS are not complete equations
of state, so that we cannot use these laws in a compressible model, However, it is the simplest and most accurate
analytical law to obtain an exact analytical solution not only for the steady 1D Lmnc model but also for transient
versions. The four strategies will be compared below (see § 4.3). The comparison shows that assuming β to be
constant is not a restriction, but that the most crucial point is to satisfy accurately the saturation.
In conclusion, the definitions β̃ and %̃ depending on the EOS are summarised in Table 6.

3.2 Viscosity coefficients

We also have to specify how to compute the viscosity coefficients in the stress tensor involved in (1c). Let µ and η be
respectively the dynamic and bulk viscosities. As previously, we split the modelling into three parts corresponding
to each phase. More precisely, we set:

µ̃(h) =


µ̃˜l(h), if h ≤ hs˜l ,
µ̃”mffl(h) def= α̃(h)µ̃`g

(
hs`g
)

+
(
1− α̃(h)

)
µ̃˜l
(
hs˜l
)
, if hs˜l < h < hs`g ,

µ̃`g(h), if h ≥ hs`g .
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Figure 5: Fitting polynomials for compressibility coefficient (Tab. 2a) and specific volume (Tab. 2b).

¶ SG · NASG ¸ NIST-p ¹ NIST-0

β̃˜l 8.769× 10−3 4.803× 10−3 6.143× 10−3 to 2.437× 10−2 1.529× 10−2

β ”mffl 1.949× 10−1 2.042× 10−1 1.303× 10−1 1.303× 10−1

β̃`g 3.007× 10−1 4.872× 10−1 2.022× 10−1 to 2.310× 10−1 2.163× 10−1

q ˜l −1.167× 106 J · kg−1 −2.779× 106 J · kg−1 N/A −7.654× 104 J · kg−1

q ”mffl 1.501× 106 J · kg−1 1.493× 106 J · kg−1 1.429× 106 J · kg−1 1.429× 106 J · kg−1

q `g 2.030× 106 J · kg−1 2.287× 106 J · kg−1 N/A 1.893× 106 J · kg−1

Table 5: Orders of magnitude of the compressibility coefficient β and the equivalent binding energy q at p∗ = 15.5 MPa.
For pure phases: values obtained thanks to (8) using NIST tables [39], or using formulae introduced in [2] for SG and
NASG. For values in the mixture: values given by (5a) and (5c).

Law ¶ SG and · NASG ¸ NIST-p ¹ NIST-0

β̃ (7b)-(5a) (11)-(10)-(5a) (11)-(14a)-(5a)
ρ̃ (7)-(5) (12)-(13)-(5) (14)-(5)

Table 6: Definitions β̃ and %̃ depending on the EOS

14



As for the bulk viscosity, we take η̃(h) = − 2
3 µ̃(h) under the Stokes hypothesis. The expression in the mixture is

defined by means of a linear approximation involving the volume fraction α, given by

α̃(h) =


0, if h ≤ hs˜l ,(

h− hs˜l
)
%s˜l

%s`gh
s
`g − %s˜l hs˜l − (%s`g − %s˜l )h

, if hs˜l < h < hs`g ,

1, if h ≥ hs`g .

As for other NIST data, the viscosity could be approximated by a polynomial expression µ̃κ(h) fitting tabulated
values, for example by means of a least-square regression technique. However, due to the weak variability of the
viscosity, we approximate µ by a phasewise constant function, also computed from the NIST data, as the average
between the minimal and the maximal value in each phase

µ̃˜l(h) ≡ µ˜l = 9.462× 10−5 Pa · s, µ̃`g(h) ≡ µ`g = 2.464× 10−5 Pa · s.

3.3 Thermal effects

Low Mach number models allows us to deal with large heat transfers unlike incompressible models. It is thus
interesting to investigate the influence of the thermal conductivity.
Since the temperature is constant within the mixture phase, T is not an appropriate unknown for the modelling of
phase transition at this scale. This is why we rather expressed the model in terms of enthalpy, which is not constant
in the mixture phase. Let us denote by λ the thermal conductivity of water. We mention that this physical variable is
referenced in the NIST tables (see Table 1). Then the classic term ∇·(λ∇T ) which models heat conduction (Fourier’s
law) becomes in a pure phase ∇ · (Λ∇h), where Λ is defined by

Λ def=
λ

cp
.

As previously, cp is the isochoric heat capacity (defined by (23) or (26)), which is involved in the classic thermodynamic
equality dh = cpdT . We then define Λ over the whole range of enthalpy values by

Λ̃(h) =



λ̃˜l(h)×
(

1̃
cp

)
˜l
(h), if h ≤ ĥs˜l ,

0, if ĥs˜l < h < ĥs`g ,

λ̃`g(h)×
(

1̃
cp

)
`g
(h), if h ≥ ĥs`g .

(15)

The coefficient is set to 0 for h ∈ (hs˜l , h
s
`g ) because the temperature is constant within the mixture phase, and there

is no thermal conduction therein.

Isobaric heat coefficient To construct functions
(

1̃/cp

)
κ
(κ ∈ {˜l, `g}), we may use the same strategies as in § 3.1.2

for the computation of β, namely ¶-· for the SG/NASG EOS, ¸ for high-order polynomial-fitting and ¹ for constant
approximations. In the cases ¶-·, the heat coefficients are constant and given by

cpκ = γκcvκ, (16)

κ ∈ {˜l, `g}, with values of parameters γκ and cvκ recalled in Table 8.

For strategies ¸-¹, a least-square regression technique is used to fit values from the NIST tables [39]:

h 7→
(

1̃

cp

)
κ

(h) =

dcp,κ∑
j=0

cκ,j

(
h

106

)j
. (17)

Note that we decided to fit 1/cp instead of cp since it appears as such in the definitions of Λ and of T (see below).
Let us notice that strategies for the computation of β and cp are decoupled, since we are considering incomplete
equations of state. It corresponds to numerical techniques to approximate thermodynamic variables using the most
suitable way. In particular, a NIST-0 (for β) – NIST-0 (for 1/cp) strategy would mimic the SG-NASG EOS in
terms of algebraic formulation (constant) except that constant values are not related to each other. No matter which
numerical method one applies in order to fit the NIST values of 1/cp, it must be ensured that the resulting function
is positive over (hmin, hmax). In the present case, we decided to apply a NIST-p strategy, whose coefficients are given
in Table 7(a), and the curves can be seen on Figure 6(a).
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κ = ˜l κ = `g
dcp,κ 7 6

cκ,0 1.689 602 951× 10−4 5.382 374 281× 10−4

cκ,1 1.232 572 675× 10−4 −2.539 666 705× 10−4

cκ,2 2.380 465 421× 10−5 −2.690 479 385× 10−4

cκ,3 −1.311 465 424× 10−4 1.079 811 811× 10−4

cκ,4 −1.531 310 649× 10−5 1.163 418 815× 10−5

cκ,5 6.360 562 483× 10−5 −3.873 402 400× 10−7

cκ,6 −7.958 443 754× 10−6 −1.196 179 285× 10−6

cκ,7 −7.446 866 275× 10−6

Error 2.840 610 126× 10−3 1.731 914 106× 10−3

(a) Coefficients for
(

1̃
cp

)
κ
.

κ = ˜l κ = `g
dT,κ 8 7

tκ,0 293.445 144 7 300.584 284 2
tκ,1 168.960 295 1 538.237 428 1
tκ,2 61.628 633 75 −126.983 335 2
tκ,3 7.934 884 737 −89.682 646 17
tκ,4 −32.786 635 60 26.995 295 28
tκ,5 −3.062 621 298 2.326 837 630
tκ,6 10.600 937 47 −6.455 670 667× 10−2

tκ,7 −1.136 920 536 −1.708 827 550× 10−1

tκ,8 −0.930 858 284 4

Error 7.340 188 470× 10−6 4.820 515 518× 10−6

(b) Coefficients for T̃κ.

Table 7: Coefficients of fitting polynomials in the NIST-p strategy at p∗ = 15.5 MPa.

Temperature Although the temperature is not involved in the Lmnc system (1), it is useful to compute it, for the
purpose of analysing numerical results and for safety evaluations. For strategies ¶-·, the temperature reads

T̃ (h) =



h− q ˜l
cp ˜l

, if h ≤ hs˜l ,

T s, if hs˜l < h < hs`g ,

h− q `g

cp `g
, if h ≥ hs`g ,

where cpκ was introduced in (16) and qκ is stored in Table 5. Values at saturation T s and hsκ are recalled in Table 4.
For strategies ¸-¹, similarly to the way we defined the density ρ from the compressibility coefficient β, we deduce
the expression of the temperature T by integrating 1/cp from (17) according to (26). Hence

T̃ (h) =



T̃˜l(h) def= T̂ s +

∫ h

ĥs˜l

(
1̃

cp

)
˜l

(h)dh, if h ≤ ĥs˜l ,

T̃”mffl(h) def= T̂ s, if ĥs˜l < h < ĥs`g ,

T̃`g(h) def= T̂ s +

∫ h

ĥs`g

(
1̃

cp

)
`g

(h)dh, if h ≥ ĥs`g .

(18)

We write in a global way

T̃κ(h) =

dT,κ∑
j=0

tκ,j

(
h

106

)j
, (19)

where the coefficients are stored in Table 7(b) and the curves are plotted on Figure 6(b). The values of the relative
errors are also given in Table 7(b). Obviously dT,κ = dcp,κ + 1.
This construction automatically ensures the following properties (see Figure 6(b)):

Proposition 3.3. Provided that (1̃/cp)˜l and (1̃/cp)`g are positive, the temperature T̃ defined by (18) satisfies:

• Under Hypothesis 3.1.2, h 7→ T̃ (h) is continuous and positive over (hmin, hmax);

• h 7→ T̃ (h) is increasing over (hmin, hmax);9

• The differential relation (26) exactly holds.

9h 7→ T̃ (h) is constant over (ĥs˜l , ĥ
s`g ).
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Thermal conductivity Similarly to other NIST data, the thermal conductivity could have been approximated by
a polynomial expression λ̃κ(h) by means of a least-square regression technique. However, due to the weak variability
of the thermal conductivity, we approximate λ by a phasewise constant function, also computed from the NIST data
as the average between the minimal and the maximal value in each phase:

λ̃˜l(h) ≡ λ˜l = 5.578× 10−1 W ·m−1 ·K−1, λ̃`g(h) ≡ λ`g = 1.008× 10−1 W ·m−1 ·K−1.

4 Analytical results on the model and comparison of the EOS

The model we actually address in this work is thus
∇·u =

β̃(h)

p∗

[
∇·
(
Λ̃(h)∇h

)
+ Φ

]
, (20a)

%̃(h)×
[
∂th+ u · ∇h

]
= ∇·

(
Λ̃(h)∇h

)
+ Φ, (t,x) ∈ R+ × Ωd, (20b)

%̃(h)×
[
∂tu+ (u · ∇)u

]
−∇·

[
µ̃(h)

(
∇u+ (∇u)T

)]
−∇ [η̃(h)∇ · u] +∇P = %̃(h)g, (20c)

where the expressions of β̃ and %̃ are detailed in § 3.1, those of µ̃ and η̃ in § 3.2 and the one of Λ̃ in § 3.3.

4.1 Jump conditions

Taking into account thermal diffusion modifies the nature of the differential problem in depth. As detailed in § 3.3, Λ̃
defined by (15) is discontinuous when phase transition occurs. Then Equation (20b) – which governs the evolution of
the enthalpy – is a degenerate parabolic equation: it reduces to a nonlinear transport equation in the mixture phase.
This requires us to increase the regularity of h in the variational approach (see § 5.1).
Moreover, the diffusion coefficient is discontinuous across phase transition curves. Consequently, we have to define
rigorously the conservative second-order differential term in (20).
Let us introduce some notations. We set

Ωd˜l (t) def={x ∈ Ωd : h(t,x) < hs˜l }, Ωd”mffl(t)
def={x ∈ Ωd : hs˜l < h(t,x) < hs`g } and Ωd`g (t) def={x ∈ Ωd : h(t,x) > hs`g }

the domains occupied by each phase. Each of them may be an empty set depending on the evolution of h.
Phase domains are separated by level sets of the enthalpy

Γ˜l(t) = {x ∈ Ωd : h(t,x) = hs˜l } and Γ`g(t) = {x ∈ Ωd : h(t,x) = hs`g }.

From now on, a solution (h,u,P) to System (20) must be understood as follows:

• In each phase domain Ωdκ(t), (h,u,P)(t, ·) is a strong solution.

• Where phase transition occurs, we impose the following jump conditions over Γ˜l(t) and Γ`g(t)[[
Λ̃(h)∇h

]]
· n = 0, (21a)[[

µ̃(h)
(
∇u+ (∇u)T

)
+ η̃(h)(∇ · u)Id − PId

]]
n = 0. (21b)

• Moreover, h satisfies the continuity condition
[[h]] = 0 (21c)

only where the flow goes into the mixture phase, i.e. over
⋃

κ∈{˜l,`g}
{x ∈ Γκ(t) : u(t,x) · n”mffl(t,x) > 0}, where n”mffl

is the normal vector pointing towards the mixture phase.

This problem can be considered a coupling issue between two models: one of hyperbolic nature, one of parabolic
nature. Such a coupling has been investigated in the literature (e.g. [55,56]) but in the case of fixed boundaries. An
additional obstacle in the present case is that the discontinuity location moves with time (level set of the enthalpy).
The theoretical analysis of the model (20-3-21) is left to future work.
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4.2 Assumptions

For the problem to be well-posed, we impose some assumptions upon the data. We first suppose that physical data
satisfy:

Hypothesis 4.1.

1. For all (t,x) ∈ R+ × Ωd, Φ(t,x) is non-negative.

2. For all (t, x) ∈ R+ × [0, Lx], De(t, x) is non-negative.

3. p∗ is a positive constant.

The first assumption characterises the fact that we study a nuclear core where the coolant fluid is heated. In a nuclear
power plant of PWR or BWR type, water is injected at the bottom of the core with a positive velocity, which is the
meaning of the second assumption. Notice that De can be compactly supported in (x1, x2) ⊂ (0, Lx).
We make the following modelling hypothesis which somehow restricts the range of experiments as we cannot predict
the orientation of the output velocity field.

Hypothesis 4.2. The velocity field is outgoing, i.e. u · n(t,x)|y=Ly > 0 for all (t,x) ∈ R+ × Ωd.

This hypothesis is necessary because no Dirichlet boundary conditions is imposed at the exit of the core upon the
enthalpy. It means that no downward flow (recirculation) occurs at the exit. In dimension 1 when Λ̃ ≡ 0, Hypothe-
sis 4.2 is a direct consequence of Hypothesis 4.1 and of the positivity of β; in dimensions 2 and 3, Hypothesis 4.2 is
needed.

4.3 Influence of the equation of state on 1D steady states

In dimension 1 and without thermal diffusion, we can explicitly compute steady solutions of the Lmnc model, no
matter what the equation of state.

Proposition 4.1 (Steady states). We consider the 1D steady case without thermal diffusion, i.e. %e, De and Φ do
not depend on time and Λ̃ ≡ 0. Then, System (20) admits a unique steady solution, where h and v are given by

h(y) = %̃−1(%e) +
1

De

∫ y

0

Φ(z) dz, v(y) =
De

%̃(h(y))
.

Proof. System (20a)-(20b) reduces to
∂yv = − 1

%̃(h)2
%̃ ′(h)Φ(y), v(t, 0) = De/%e > 0, (22a)

v∂yh =
1

%̃(h)
Φ(y), h(t, 0) = he, (22b)

with he such that %̃(he) = %e > 0. Then

∂y
(
%̃(h)v

)
= %̃ ′(h)v∂yh+ %̃∂yv

(22a)
= %̃ ′(h)v∂yh−

%̃ ′(h)

%̃(h)
Φ

(22b)
= 0.

Hence %̃(h(y))v(y) = De and finally ∂yh(y) = 1
%̃(h(y))v(y)Φ(y) = Φ(y)

De
.

Remark 4.1.

1. A distinctive feature of the Lmnc model is that the steady enthalpy does not depend on the equation of state
except through the computation of he. Moreover as Φ is non-negative (Hypothesis 4.1), the enthalpy is monotone
increasing.

2. There is no proof of existence for an asymptotic state of System (1) (in the sense t → +∞) in the general
case.10 But if such an asymptotic solution exists, it is necessary the one described in Proposition 4.1.

3. Given the expression of h in Proposition 4.1, it can be stated whether the steady flow involves only (pure) liquid
(if h(Ly) < hs˜l ) or mixture (hs˜l ≤ h(Ly) ≤ hs`g ) or (pure) vapour (h(Ly) > hs`g ).

10It has been proven for the Stiffened Gas law and for simple expressions of Φ in [2].
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To compare the influence of the equation of state on the steady solution, we consider values of a pressurised water
reactor, with water injected at liquid state:

• thermodynamic pressure: p∗ = 15.5 MPa,

• height of the core: L = 4.2 m,

• power density: Φ? = 170× 106 W ·m−3,

• injection: ve = 0.5 m · s−111 and %e = 750 kg ·m−3, so that De = 375 kg · s−1 ·m−2.

As mentioned above, the computation of he depends on the equation of state. For NIST-0, SG and NASG, the
computation is exact: he = q ˜l + p∗

β ˜l
1
%e
. For NIST-p, we have to solve numerically %(he, p∗) = %e. We obtain

¶ SG · NASG ¸ NIST-p ¹ NIST-0

he 1.190× 106 J · kg−1 1.523× 106 J · kg−1 1.274× 106 J · kg−1 1.276× 106 J · kg−1

The NIST tables provide an approximate value he = 1.273 78× 106 J · kg−1.
The discrepancy between the four values at y = 0 remains the same over the whole domain as the steady solutions
y 7→ h(y) are linear with the same slope (see Figure 7a).
It can also be stated where the fluid is present only as a (pure) liquid phase (if h(y) < hs˜l ) or as a mixture (hs˜l ≤
h(y) ≤ hs`g ) or also as a (pure) vapour phase (h(y) > hs`g ) by solving level sets h(ysκ) = hsκ:

¶ SG · NASG ¸ NIST-p ¹ NIST-0

ys˜l 0.964 m 0.160 m 0.786 m 0.780 m
ys`g 4.002 m 2.950 m 2.917 m 2.912 m

The errors upon the enthalpies at saturation and at the entrance when the EOS is ill-approximated result in dra-
matic consequences: the computations with the SG EOS provide a late vaporisation as we can see in the schematic
comparison of Figure 7(b), which describes the distribution of pure liquid, steam-water mixture and vapour phases
in the reactor core. We therefore highlight the importance of a precise description of the EOS when dealing with
safety and design of PWR.

5 Numerical strategy and simulations

5.1 Numerical scheme

Let us first recall what was investigated from the numerical point of view in our previous works with the SG law.
In [2], the 1D Lmnc model with phase transition is simulated by means of two distinct numerical schemes based
on the method of characteristics. Unconditionally stable, they ensure the positivity of the density. In [4], we derive
a 2D weak formulation for the monophasic version of the model in a finite-element framework. It is extended to
multiphasic flows in [1] with a weak formulation requiring an interface tracking algorithm.
In this section, we present a new version of the weak formulation which overcomes the previous issues and deals with
tabulated values in the context of phase transition. Moreover, thermal conduction is taken into account.
For the transport terms, we use the method of characteristics. This feature is embedded in the Finite-Element
software FreeFem++ [57] through the function convect. For reasons described below in Remark 5.1, we do not
consider Equation (20a) as such, but under the equivalent form

∇·u =
β̃(h)%̃(h)

p∗
[∂th+ u · ∇h] . (20a’)

Applying the method of characteristics to discretise the convection operators, the weak formulation reads
11We choose here a much smaller entrance velocity ve to get a 3-phase flow.
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Figure 6: Fitting polynomials for isobaric heat capacity (Table 7a) and temperature (Table 7b).
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“At time tn+1, find (un+1, hn+1,Pn+1) ∈ (ue + U)× (he +H)× L2(Ω2) such that∫∫
Ω2

ptest∇·un+1 dx =

∫∫
Ω2

β̃(hn)%̃(hn)

p∗

hn+1 − hn(ξn)

∆t
ptest dx, ∀ ptest ∈ L2,∫∫

Ω2

%̃(hn)
hn+1 − hn(ξn)

∆t
htest dx =

∫∫
Ω2

Φ(tn+1, ·)htest dx−
∫∫

Ω2

Λ̃(hn)∇hn+1 · ∇htest dx, ∀ htest ∈ H,∫∫
Ω2

%̃(hn)
un+1 − un(ξn)

∆t
· utest dx+

∫∫
Ω2

µ̃(hn)

2

(
∇un+1 + (∇un+1)T

)
: :
(
∇utest +∇uTtest

)
dx

+

∫∫
Ω2

η̃(hn) (∇·un+1)(∇·utest) dx−
∫∫

Ω2

Pn+1∇·utest dx =

∫∫
Ω2

%̃(hn)g · utest dx, ∀ utest ∈ U , ”

where

H =
{
θ ∈ H1(Ω2) : θ(x, 0) = 0

}
,

U =
{
v ∈

(
H1(Ω2)

)2
: v(x, 0) = 0, v · n(0, y) = v · n(Lx, y) = 0

}
,

and ξn is a numerical approximation of ξ(tn; tn+1,x) where ξ is the solution of the characteristic equation:
dχ

dτ
= u

(
τ,χ(τ ; t,x)

)
,

χ(t; t,x) = x.

Notice that due to discontinuities of most coefficients across (potential) level sets Γ˜l and Γ`g, there should be some
interface terms in the weak formulation, but they vanish due to jump conditions (21). In particular, there is no need
to track the interfaces, which reduces the computational costs.
We do not give more details either about the mathematical content or the numerical treatment, since the problem is
simulated by means of FreeFem++ [57], which solves directly the weak formulation given above.

We recall that the parameters β̃ and %̃ are given in Table 6.

Remark 5.1. The substitution of Equation (20a) by (20a’) makes the weak formulation easier to solve. Equation
(20a) would lead to∫∫

Ω2

ptest∇·un+1 dx =

∫∫
Ω2

β(hn)ptest
p∗

Φ dx−
∫∫

Ω2

Λ(hn, p∗)∇hn+1 ·
[
∂β

∂h
(hn, p∗)

ptest
p∗
∇hn +

β(hn)

p∗
∇ptest

]
dx.

This would require increasing of the regularity of ptest and to approximation of the function ∂β
∂h , which may induce

instabilities. Replacing the right hand side in (20a) by the left hand side in (20b) enables us to overcome all these
issues.

5.2 Data

Choice of the equation of state First, let us observe that a first comparison between the Stiffened Gas law, the
Noble-Abel Stiffened Gas one, and the two different tabulated approaches (NIST-p and NIST-0) has been done in
Section 4.3, since the differences can already be observed on the steady states in 1D. Further comparisons in 2D are
performed in § 5.4.2.

Physical and numerical parameters Based on the numerical scheme detailed above, we perform some simula-
tions with our tabulated EOS, aiming at:

1. verifying our code by means of comparisons with explicit steady solutions inferred from dimension 1 (see § 5.3);

2. highlighting the accuracy of the tabulated approach to describe the physics of water in a PWR (see § 5.4.2);

3. showing the low influence of thermal conduction for physically relevant data in a PWR (see § 5.4.3);

4. showing the ability of the model and of the 2D scheme to capture the flow complexity by emphasizing the
influence of the gravity orientation (see § 5.4.4).

Parameters are set as follows to simulate a PWR:
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• Geometry: Lx = 1 m, Ly = 2 m.

• Discretisation parameters: 40 nodes on the horizontal boundaries, 80 nodes on the vertical boundaries, which
results in an unstructured mesh generated by FreeFem++ with 3740 vertices and a characteristic length h of
the mesh around 2 cm. The mesh can be seen on Figures 9.

• Reference values: p∗ = 15.5 MPa, Φ? = 170× 106 W ·m−3, %e = 750 kg ·m−3, De = 375 kg ·m−2 · s−1.

• Initial data: h0(x, y) = %−1(%e), u0(x, y) = (u0(x, y), v0(x, y)) = (0, De/%e).

• The power density Φ (constant or not) is specified in each section.

• The use of the method of characteristics makes the numerical schemes unconditionally stable. Consequently,
there is no constraint upon the time step. But to ensure a good accuracy, we cannot let the time step be too
large. We set ∆t = 0.01 s∼ h

ve
.

In every test case, we check that the Mach number remains small in all phases during the whole computation, in
order to ensure the validity of our low Mach number model. The Mach number is computed from the speed of sound,
with NIST-p tabulated values for pure phases, and Formula (29) given in Appendix C for the mixture.

5.3 Validation of the 2D numerical scheme

In this test case, we aim at validating our two-dimensional numerical scheme. To this end, we chose the power density
Φ(x, y) to be uniformly constant equal to 2Φ?, which produces a quasi 1D case. Starting from a domain initially
filled with liquid, this leads to the appearance of both mixture and vapour. The computation is performed with the
NIST-p data given in Table 2. In order to compare with the predicted asymptotic solution given in Proposition 4.1,
we neglect thermal conductivity for this test case. Thus, the steady solution for the enthalpy in 1D is given by

h(y) = %̃−1(%e) +
2Φ?
De

y ' 1.273× 106 + 1.36× 106y.

In our computation, we observe a numerical convergence towards an asymptotic solution. The relative difference
between this asymptotic solution and the 1D steady solution is of order 10−2, and reaches a maximum value of 1%
at the top of the domain. This shows the good matching between the two solutions.
Moreover, we observe that this 2D computation on unstructured mesh allows capture of a 2D solution independent
of the variable x, as shown on Figure 8.

5.4 Phase transition with a compactly supported heating

In all the test cases of this section, the power density is chosen to be compactly supported within a disc in the lower
part of the core, which yields a genuine 2D case:

Φ(x, y) = 20Φ?1{(x−0.5)2+(y−0.5)260.1252}(x, y).

We can see on Figure 9(a) the location of the power density (where the fluid is heated).

5.4.1 Reference test case

The values given in § 5.2 with λ ≡ 0 lead to a scenario in which the temperature increases as the flow passes through
the heat source and some mixture appears, as seen on Figure 10(a). The NIST-p approach described in § 3.1.2 is
used for the equation of state. The mixture phase has a lower density than the liquid phase. Hence, as the flow
goes upwards and the gravity field is pointing downwards, a Rayleigh-Taylor instability occurs (see Figure 9(b)): the
gravity makes the lighter phase speed up through the heavier phase above (Archimedes’ principle). The instability is
well captured by the numerical scheme over this mesh.
In addition, we plot the Mach number of the flow at time t = 0.55 s on Figure 10(d), which is the time for which the
flow is the most mixed up. We notice that it remains small (of order 10−2 at the maximum), which guarantees the
validity of our low Mach number model for such flows. It is in particular the case in the mixture phase where the
speed of sound is decreasing. The temperature and the norm of the velocity are also plotted at the same time on
Figure 10. The location of mixture in the flow is in particular observed on Figure 10(c), where the temperature is
constant and equal to T̂ s = 617.939 K.
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Figure 8: Isolines of enthalpy at time t = 1.6 s (asymptotic state) (test case of § 5.3)

(a) t = 0.10 s (b) t = 0.40 s (c) t = 0.55 s (d) t = 0.80 s

Figure 9: Enthalpy for a 2D flow with phase transition at different times (test case of § 5.4.1, EOS : NIST-p)

(a) Volume fraction (b) Magnitude of the velocity (c) Temperature (d) Mach number

Figure 10: Density, velocity, temperature and Mach number at time t = 0.55 s (test case of § 5.4.1, EOS : NIST-p)
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5.4.2 Influence of the EOS

In this section, we observe the discrepancy induced by the use of different EOS in a 2D unsteady test case. In practical
terms, we compare the strategies we introduced in Section 3, namely ¶-· for the SG/NASG EOS, ¸ for high-order
polynomial-fitting and ¹ for constant approximations.
We observe on Figure 11 that NIST-p and NIST-0 approaches lead to very similar results, whereas the SG EOS
induces a greatly over-estimated temperature. The NASG EOS is not presented here, since we already observed
on Figure 7(a) that it overestimates the entrance enthalpy he computed from %e, and it thus leads here to very
different results, with a much higher temperature. We conclude that for such accidental situations, academic EOS
like SG/NASG are not appropriate.

5.4.3 Influence of the thermal conductivity

In this test case, the influence of thermal conductivity is investigated. The computations are performed with the
NIST-p data given in Tables 2 and 7.
The order of magnitude of the thermal conductivity is given in Table 1 (around 10−1). We observe on Figure 12 the
difference between numerical solutions with and without thermal diffusion at time 0.55 s. The error is of order 10−4,
which shows that for the physical situations we are interested in, the thermal conductivity does not play a major
role.

5.4.4 Influence of the gravity field

Since our choice of 2D power density generates hydrodynamic instabilities apparently driven by gravity effects, we
focus on the impact of the gravity field direction. Again, the computations are performed with the NIST-p data given
in Tables 2 and 7.
Figure 13 depicts the same test case as in § 5.4.3 except for the gravity field whose orientation varies (down-
wards/null/upwards/to the right).
In the classic situation where the gravity is oriented downwards (Figure 13(a)), the flow driven by the material velocity
is sped up by the gravity effects which makes the mixture phase (which is lighter than the liquid phase) go upwards
(see § 5.4.3 for more details about the appearance of the Rayleigh-Taylor instability). Without gravity (Figure 13(b)),
there is a unique physical phenomenon (forced convection) that governs the motion of fluid. This explains that at
the same time of evolution, the mixture cloud is lower than in the previous case (but hotter as the fluid remained
longer within the core) and no Rayleigh-Taylor instability occurs. If the gravity field is upward (Figure 13(c)), there
is a balance between the two aforementioned phenomena. The flow velocity makes the mixture go to the top while
the gravity makes it go to the bottom, as it is lighter than the pure liquid phase. The motion is even slower than
without gravity. As for the horizontal case (Figure 13(d)), we observe that the mixture tends to the left which is the
opposite direction to the gravity field, as expected. Hence, we see that our numerical scheme enables to catch various
types of behaviour depending on the data.

Conclusion & Perspectives

The ultimate strategy to simulate a fluid flow in a nuclear core would rely on À a compressible model coupled to a
tabulated equation of state satisfying thermodynamic laws and accounting for phase transition and on Á an accurate
and robust numerical scheme able to treat any Mach regime with a “reasonable” computational cost. In our opinion,
this seems currently out of reach. That is why we propose in this paper a compromise between accuracy and efficiency
by focusing on a specific regime – namely the low Mach number regime – by means of a reduced-complexity model
which turns out to be physically relevant [58]: the hypothesis of a small Mach number indeed holds in nominal regime.
The low Mach number model under study (Lmnc) is supplemented with an original construction of an incomplete
equation of state dedicated to constant thermodynamic pressure states. It relies on a polynomial-fitting procedure
whose degree can be chosen by the user. This leads to a natural numerical scheme which is easy to implement, which
satisfies basic thermodynamic requirements and which leads to a much smaller computational cost than it would be
with a compressible model coupled to a tabulated law like IAPWS [40–42]. The overall method is assessed by means
of analytical and stiff test cases involving phase transition, where classic analytical EOS fail to provide relevant values.
We investigated two cases for the degree of fitting polynomials: NIST-p (high-order) and NIST-0 (low-order). Theo-
retical (§ 4.3) and numerical (§ 5.4.2) results tend to show that the choice of the degree does not have a significant
impact on the accuracy. On the contrary, comparisons between NIST-0 and the Stiffened Gas law (for which the
density has a similar algebraic expression) prove that the crucial point is to exactly satisfy saturation points. The
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(a) ¸ for NIST-p (b) ¹ for NIST-0 (c) ¶ for the SG EOS

Figure 11: Temperature at time t = 0.55 s with different EOS (test case of § 5.4.2)

Figure 12: Relative difference between numerical enthalpies with λ = 0 and λ 6= 0 at time t = 0.55 s (test case of
§ 5.4.3, EOS : NIST-p)

(a) g = (0,−g) (b) g = (0, 0) (c) g = (0, g) (d) g = (g, 0)

Figure 13: Enthalpy at time 0.55 s for several orientations of the gravity field (test case of § 5.4.4)
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discrepancy between hsκ deduced from the SG law and ĥsκ used in our strategy produces quite different results as
presented in § 5.4.2. We mention that the procedure described in this paper can be adapted by end-users (numerical
method to fit polynomials, range of temperatures, pressure value, . . . ) depending on the applications.
Previous papers on the Lmnc model were based on the SG law in order to develop and assess the numerical strat-
egy. The present results henceforth enable treatment of more realistic applications and provide reliable forecasts in
incidental situations. Future works will deal with more general equilibria implying a hierarchy of n-equation models
(see for instance [59,60]).

A Stiffened Gas (SG) and Noble-Abel – Stiffened Gas (NASG) equations
of state

Let us give some details about the complete equation of state (6). Parameters cv, γ, π, b, Q and S0 are constants
describing thermodynamic properties of the fluid: cv > 0 is the isochoric heat capacity, γ =

cp
cv

> 1 the ratio of
isobaric and isochoric heat capacities12, π ≥ 0, b > 0 is the co-volume, Q the binding energy and S0 a reference
entropy. The latter parameter may often be replaced by the following one

Q
′ def= S0 + cv [γ ln(cv) + (γ − 1) ln(γ − 1)] .

The domain of definition of S is the set τ > b and ε−Q− π(τ − b) > 0. The parameters used in this law describing
a pure phase are determined by using a reference curve, usually in the (τ, p)-plane. For example, values for water
and steam computed in [37] for SG and in [38] for NASG are given in Table 8. These values yield reasonable
approximations over a range of temperature from 300 K to 500 K.
Using the fundamental thermodynamic relation TdS = dε+ pdτ and introducing classic potentials, we have

(τ, ε) 7→ T (τ, ε) =
1

∂S
∂ε

∣∣
τ

=
ε−Q− π(τ − b)

cv
, [temperature]

(τ, ε) 7→ p(τ, ε) = T
∂S
∂τ

∣∣∣∣
ε

= (γ − 1)
ε−Q
τ − b

− γπ, [pressure]

(τ, ε) 7→ h(τ, ε) = ε+ pτ = ε+ τ

[
(γ − 1)

ε−Q
τ − b

− γπ
]
, [enthalpy]

(τ, ε) 7→ c2(τ, ε) def=
∂p

∂%

∣∣∣∣
s

= −τ
2

T

(
∂2S
∂τ2

∣∣∣∣
ε

− 2p
∂2S
∂τ∂ε

+ p2 ∂
2S
∂ε2

∣∣∣∣
τ

)
= γ(γ − 1)

(
ε−Q− π(τ − b)

) τ2

(τ − b)2
. [speed of sound]

Set Q̂(p) def=Q+ bp. Thus, by inverting the function (τ, ε) 7→ (h, p)

(h, p) 7→ τ(h, p) =
γ − 1

γ

h− Q̂(p)

p+ π
+ b, [volume]

(h, p) 7→ β(�Ah, p)
def= p

∂τ

∂h

∣∣∣∣
p

=
γ − 1

γ

p

p+ π
, [compressibility coefficient]

(h, p) 7→ q(�Ah, p)
def= Q̂(p)− p

β(�Ah, p)
b,

(h, p) 7→ %(h, p) =
1

τ(h, p)
=

p/β(�Ah, p)

h− q(�Ah, p)
, [density]

(h, p) 7→ T (h, p) =
h− Q̂(p)

γcv
. [temperature]

The case of a stiffened gas law is recovered by setting b = 0 (so that q = Q̂ = Q). The case of a perfect gas law is
recovered by setting b = Q = π = 0.

12Adopting the same convention as in [36, 61], the polytropic coefficient or adiabatic exponent γ is defined by γ(τ,S) def= − τ
P

∂P
∂τ

∣∣∣
S
.

Except in the case of polytropic gases, this coefficient differs from the widely used ratio of heat capacities. For the NASG EOS, γ is
related to the ratio of heat capacities by the relation γ = (1 + π

p
)γ.
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Phase cv [J ·K−1] γ π [Pa] Q [J · kg−1] b [m3 · kg−1] Q
′

[J · kg−1]

Liquid NASG 3202 1.39 8899× 105 −1244.191× 103 4.78× 10−4 0

Steam NASG 462 1.95 0 2287.484× 103 0 6417

Liquid SG 1816.2 2.35 109 −1167.056× 103 0 0

Steam SG 1040.14 1.43 0 2030.255× 103 0 −23 310

Table 8: Water and steam. Values for NASG laws from [38]. Values for SG laws from [37].

B Expressions of the compressibility coefficient β

We note τ def= 1/%, so that β = p
∂τ

∂h

∣∣∣∣
p

. We recall the following classic definitions:

(c∗)2(τ,S) def=−τ2 ∂p

∂τ

∣∣∣∣
S
, cv

def= T
∂S
∂T

∣∣∣∣
τ

, cp
def= T

∂S
∂T

∣∣∣∣
p

, (23)

where S is the specific entropy. We first remark that13

cp
cv

=
T ∂S

∂T

∣∣
p

T ∂S
∂T

∣∣
τ

=
− ∂T

∂τ

∣∣
S
∂τ
∂S
∣∣
T

− ∂p
∂S

∣∣∣
T

∂T
∂p

∣∣∣
S

=
∂p

∂τ

∣∣∣∣
S

∂τ

∂p

∣∣∣∣
T

= − (c∗)2

τ2

∂τ

∂p

∣∣∣∣
T

. (24)

Then

cp − cv = T

(
∂S
∂T

∣∣∣∣
p

− ∂S
∂T

∣∣∣∣
τ

)
= T

(
∂S
∂T

∣∣∣∣
τ

+
∂S
∂τ

∣∣∣∣
T

∂τ

∂T

∣∣∣∣
p

− ∂S
∂T

∣∣∣∣
τ

)
= T

∂S
∂τ

∣∣∣∣
T

∂τ

∂T

∣∣∣∣
p

= T
∂p

∂T

∣∣∣∣
τ

∂τ

∂T

∣∣∣∣
p

due to the Maxwell relation associated to the free energy F that satisfies dF = −pdτ − SdT . Hence

cp − cv = −T
∂τ
∂T

∣∣
p

∂T
∂τ

∣∣
p
∂τ
∂p

∣∣∣
T

(24)
= T

cv
cp

(c∗)2

τ2

(
∂τ

∂T

∣∣∣∣
p

)2

. (25)

Since the enthalpy satisfies the principle dh = TdS + τdp, then T ∂S
∂T

∣∣
p

= ∂h
∂T

∣∣
p
so that

1

cp
=
∂T

∂h

∣∣∣∣
p

. (26)

Finally

β = p
∂τ

∂h

∣∣∣∣
p

= p
∂τ

∂T

∣∣∣∣
p

∂T

∂h

∣∣∣∣
p

(26)
=

p

cp

∂τ

∂T

∣∣∣∣
p

(25)
=

pτ

c∗
√
T

√
1

cv
− 1

cp
,

which proves (8).
Further, we can compute

∂T

∂P

∣∣∣∣
h

= −

∂h

∂P

∣∣∣∣
T

∂h

∂T

∣∣∣∣
P

= −

∂h

∂P

∣∣∣∣
T

cp
= −

τ − T ∂τ

∂T

∣∣∣∣
P

cp
= − τ

cp
+
T

P
β, (27)

where
∂T

∂P

∣∣∣∣
h

is the Joule-Thomson coefficient. Expression (9) immediately follows.

13We make use of the following formula: for an EOS f(X1, X2, X3) = 0, we have ∂X1
∂X2

∣∣∣
X3

∂X2
∂X3

∣∣∣
X1

∂X3
∂X1

∣∣∣
X2

= −1.

27



p [MPa] %s˜l [kg ·m−3] hs˜l [kJ · kg−1] %s`g [kg ·m−3] hs`g [kJ · kg−1]

p−1 = 15.499 594.397161363 1629.84051905 101.919399943 2596.14861770
p0 = 15.500 594.378648626 1629.87998125 101.930084802 2596.11873446
p1 = 15.501 594.360134886 1629.91944396 101.940770824 2596.08884821

Table 9: Data on saturation curve to compute (%s˜l )
′, (%s`g )

′, (hs˜l )
′ and (hs`g )

′ depending on p. Values for water [39]

C Mach number and speed of sound of the two-phase flow

To evaluate the Mach number in the differential system and verify that it remains low, we need to compute the speed
of sound. It is given by

c∗(h, p) def=

√
∂p

∂%

∣∣∣∣
S

=
1√

1
%(h,p)

∂%
∂h (h, p) + ∂%

∂p (h, p)
=


c∗˜l (h, p), if h ≤ hs˜l ,
c∗”mffl(h, p), if hs˜l < h < hs`g ,

c∗`g (h, p), if h ≥ hs`g .
(28)

In pure phases, we can fit the speed of sound with a polynomial based on the NIST table [39] as previously, but
for the sake of consistency, we choose to match the new expression (8) of β which provides a fitting function (which
is no more a polynomial). For instance, with a NIST-p strategy for both β and cp, the relative error between this
construction and the values extracted from the tables are 6.85× 10−3 in the liquid phase and 5.64× 10−3 in the
vapour phase.
In the mixture, the speed of sound at mechanic and thermodynamic equilibrium is given by (see [2] for details)(

1

c∗”mffl

)2

(h, p) =
[−α(h, p)(%s`g )

′(p)− (1− α(h, p))(%s˜l )
′(p)]q”mffl(p) + α(h, p)(%s`gh

s
`g )
′(p) + (1− α(h, p))(%s˜l h

s
˜l )
′(p))− 1

h− q ”mffl(p)
.

(29)
where (%sκ)′ and (%sκh

s
κ)′ are the derivatives of p 7→ %sκ(p) and p 7→ %sκ(p)hsκ(p). When one uses analytical EOS in pure

phases, we can differentiate these relations to obtain those derivatives (as in [2] with the SG law). In the present
case, as we use tabulated values in pure phases, (%sκ)′ and (hsκ)′ are approximated by centered finite differences:

(%sκ)′(p∗) =
%sκ(p−1)− %sκ(p1)

p−1 − p1
, (%sκh

s
κ)′(p∗) =

%sκ(p−1)hsκ(p−1)− %sκ(p1)hsκ(p1)

p−1 − p1
,

where pi, %sκ(pi) and hsκ(pi), i = −1, 0, 1, are obtained from experimental data (see Table 9 for the pressure of interest
p∗ = 15.5 MPa).
Note that c∗”mffl

(
hsκ(p), p

)
< c∗κ

(
hsκ(p), p

)
, see for example [36,54].

Remark C.1. In [52,62], another equivalent expression is used:(
1

c∗”mffl

)2

(h, p) =

% ”mffl(h, p)

(
α(h, p)

%s`g (p)(c
s
`g )

2(p)
+

1− α(h, p)

%s˜l (p)(c
s
˜l )

2(p)
+ T s(p)

(
α(h, p)%s`g (p)γ`gcv`gχ

2
`g (p) + (1− α(h, p))%s˜l (p)γ˜lcv˜lχ

2
˜l (p)

))

where χκ(h, p) = βκ(h,p)−β”mffl(p)
p and (c∗κ)s(p) = c∗κ

(
hsκ(p), p

)
is the speed of sound of the pure phase κ at saturation.
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