
HAL Id: hal-01111730
https://hal.science/hal-01111730v3

Preprint submitted on 31 Jan 2018 (v3), last revised 14 Feb 2022 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accurate steam-water equation of state for two-phase
flow LMNC model with phase transition

Stéphane Dellacherie, Gloria Faccanoni, Bérénice Grec, Yohan Penel

To cite this version:
Stéphane Dellacherie, Gloria Faccanoni, Bérénice Grec, Yohan Penel. Accurate steam-water equation
of state for two-phase flow LMNC model with phase transition. 2018. �hal-01111730v3�

https://hal.science/hal-01111730v3
https://hal.archives-ouvertes.fr


Accurate steam-water equation of state for two-phase �ow

LMNC model with phase transition∗

Stéphane Dellacherie† Gloria Faccanoni‡ Bérénice Grec§ Yohan Penel¶

Abstract

This paper is dedicated to the design of incomplete equations of state for a two-phase �ow with phase transition

that are speci�c to the low Mach number regime thanks to the fact that the thermodynamic pressure can be

considered constant. These equations of state supplement the 2D Lmnc model introduced in previous works.

This innovative strategy relies on tabulated values and is proven to satisfy crucial thermodynamic requirements

such as positivity, monotonicity, continuity. In particular, saturation values are exact. This procedure is assessed

by means of analytical steady solutions and comparisons with standard analytical equations of state which shows

a great improvement in accuracy.

Keywords. Thermohydraulics; Low Mach number regime; Phase transition; Tabulated equations of state; Ther-
modynamic consistency; Numerical simulations.

1 Introduction

The present paper belongs to a series of articles and conference proceedings [4,5,13,14] devoted to the modelling and
the numerical simulation of the coolant �uid in a nuclear reactor of Pressurised Water Reactor (PWR) type. Such a
complex �ow is characterised by a small Mach number which transcribes the fact that the material velocity is much
smaller than the speed of sound. This property strongly in�uences both theoretical and numerical approaches in the
modelling process. Indeed, it has been proven in numerous works that issues may occur in a compressible framework
when the Mach number M is quite small (see for instance [12, 25] and references therein). The pressure variable is
mainly held responsible for such instabilities due to the singularity of corresponding terms with respect to M and
due to the propagation of initial perturbations. Let us recall some results:

� First, solutions of a compressible model formally converge to incompressible solutions whenM goes to 0 only
under suitable conditions upon the initial conditions (with correct orders of magnitude, i.e. well-prepared), the
domain where the �uid �ows and the equation of state modelling water properties (see for instance [16, 19, 32,
33,47] and references therein).

� Second, even with well-prepared initial conditions, classical numerical schemes may lead to inaccurate solutions
due to the discrepancy between equilibrium states at the continuous (PDE) and discrete levels [12,24,25].

� Third, in addition to accuracy issues, e�ciency is also pointed out. Indeed, time scales induced by the speed of
sound and the �ow velocity are quite di�erent in that context. An explicit stability condition would take the
speed of sound into account and over-constrain the computations. In contrast, an implicit scheme would fail to
reproduce fast physical phenomena.

For all these reasons, three main strategies have been considered in the literature:

¬ From the numerical point of view, splitting strategies are introduced relying on a decomposition of the com-
pressible equations between non-sti� terms (handled explicitly) and sti� terms (handled implicitly) and mostly
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inspired from the incompressible framework. Several decompositions have been proposed making implicit the
pressure [7, 31, 43] or more generally acoustic terms [26, 30, 48]. Others are based on a Lagrange-projection [8]
or on a Hodge decomposition [10]. In [41,50], preconditioning techniques are used to deal with di�usion terms.

 Given the analysis of the inaccuracy of classical schemes by means of asymptotic expansions with respect to the
Mach number, some modi�cations are proposed to adapt those schemes to make them able to deal with the low
Mach regime [15,34]. It comprises corrected Godunov-type schemes based on the matching between kernels of
the continuous operator and its discrete counterpart.

® Another strategy consists in deriving models of reduced complexity which are speci�c the low Mach regime
[1,2,13,38,39]. These models are derived from asymptotic expansions with respect to the Mach number which
lead to a hierarchy of intermediate (simpler) models between compressible and incompressible systems. However,
applications are restricted to cases where acoustics can be neglected. Indeed, the truncation of the asymptotic
expansion amounts to �ltering out acoustic waves.

The present paper is based on Approach ® as acoustics phenomena are not predominant in the context we are
investigating. Newly derived models have several advantages from both theoretical and numerical points of view.
In particular their mathematical structure is much simpler than compressible systems. For the Euler equations,
the hyperbolic operator becomes a mixed hyperbolic-elliptic operator that transcribes the weak compressibility. It
comprises a divergence constraint whose source term is not 0 as it would be in the incompressible limit. Moreover,
unlike incompressible models, low Mach number systems account for large heat transfer (through variations of the
density).

The asymptotic expansion leads to a decoupling of the pressure �eld into a dynamic pressure appearing in the
momentum equation and a thermodynamic pressure � involved in the equation of state � which turns out to be
independent from the space variable. This property is crucial and has major consequences:

� First, it enables to compute explicit analytical solutions in the 1D case [4, 23] which provides reliable tools to
assess compressible solvers in the low Mach regime.

� Second, it leads to simple robust and e�cient numerical schemes as it turns the acoustic stability condition (for
explicit schemes) into a purely convective stability condition. Time steps are thus larger and the computational
cost due to the PDEs dramatically decreases.

� Third, it lowers the number of evaluations of the equation of state (only once per time iteration) which also
reduces the computational cost due to the modelling. The latter consequence is the key-point of the paper.

The model investigated in the present paper is named Lmnc for Low Mach Nuclear Core model and was designed
in [13]. It is derived from the Navier-Stokes equations keeping terms of order 0 in the asymptotic expansion. It
originally concerned monophasic �ows.

In addition to the PDE system, we want to describe water properties thanks to thermodynamics. Classically, PDEs
are supplemented with an equation of state (EOS) which is a relation between pressure, density and entropy variables.
This relation is expected to transcribe the behaviour of water over a speci�c range of physical conditions (temperature
and pressure). Analytical EOS have been proposed in the literature such as the ideal gas law or the sti�ened gas (SG)
law [35,40]. They have the advantage of a simple formulation leading to explicit computations. In particular, the SG
law corresponds to a rational function involving �ve parameters to tune depending on the range of temperature to be
investigated. However, it turns out that any tuning provides inaccurate results for the values at stake in our context,
namely a pressure of 15.5 MPa and high temperatures close to the saturation. A similar 6-parameter law (NASG)
has been recently designed [36] to cover an extended range of temperature but the inaccuracy close to saturation still
remains. The SG law was mainly used in previous works [4,5,14] to take advantage of its simple formulation leading
to explicit solutions in dimension 1. It also enabled to assess numerical strategies. Analytical laws such as SG and
NASG are academic tools which are quite useful to assess models and numerical strategies but they are known to
be restricted to simple cases. Consequently, they do not lead to physically relevant results as we shall show in this
paper. Hence, to provide more reliable results in particular for safety evaluations, another strategy is necessary for
de�ning equations of state in the range of temperature of interest.

Physical values of main thermodynamic variables are stored over a wide range of pressure/temperature values for
water and available for researchers in [37]. A strategy thus consists in constructing �tting polynomials for each
physical variable involved in the model which match tabulated data. It would be an expensive computation in a
compressible framework since an equation of state depends on two variables [11,51,52]. But in the low Mach number
regime, low Mach number models exhibit a constant thermodynamic pressure which makes the equation of state a
function of a single variable (which is not the temperature as in classic works but the enthalpy for reasons explained
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Figure 1: Temperature at saturation as a function of the pressure. Notice that at p = 155 bar, T sSG > Tc > T sNASG >
T sNIST.

below). Even if the resulting equation of state has a more complex expression than the SG/NASG laws, it is expected
to provide more accurate results in the physical context we are interested in. To this end, �tting polynomials should be
very carefully designed [18] to satisfy basic thermodynamic requirements (positivity, monotonicity, . . . ). We present
in the sequel an innovative procedure to construct such relevant EOS for pure phases (liquid and vapour) at low
Mach numbers.

The challenge is then more tricky when phase transition occurs. In addition to the design of accurate speci�c equations
of state for water and steam, one has to model equilibria across phase transition and saturation phenomena. In the
present work, we consider mechanical and thermodynamic equilibria which amounts to assuming that phases move
at the same velocity and that vaporisation, condensation and heat transfer processes are instantaneous. This is why
the Lmnc model is a system with 3 equations and a single velocity �eld. Lmnc can be seen as the zero Mach limit
of the HEM model [9] with source terms. Other equilibria can also be considered and would lead to 4- to 7-equation
systems.

Under these equilibrium assumptions, water appears under liquid and vapour phases but also as a mixture of the two.
Mixture must thus be modelled through the evolution of thermodynamic and mechanical variables. In particular,
temperature is constant within the mixture phase. As the di�erential model must account for the three phases,
temperature cannot be chosen as a main variable. That is why the Lmnc model is expressed depending on the
enthalpy, the velocity and the dynamic pressure1. Consequently, equations of state in low Mach diphasic models
can be only function of the enthalpy whereas complete equations of state such as SG or NASG are functions of two
variables. In the latter case, the saturation is determined by the equality of Gibbs potentials which may result in
inaccurate values at saturation. Figure 1 shows the physical unrelevance of these equations of state because the
temperature at saturation deduced from any of them is larger than the critical temperature at p = 15.5 MPa.

The strength of the procedure described in the sequel is that analytic equations of state are derived from tabulated
values and satisfy exactly the saturation. It takes advantage of the fact that the thermodynamic pressure is constant
which enables to guarantee crucial properties for the well-posedness of the model as well as for the physical relevance
of its solutions. Classically, the density and temperature should be �tted as functions of the enthalpy and then the
compressibility coe�cient (2) and the heat capacity would be deduced by di�erentiation. That would raise some
consistency and stability issues. By means of thermodynamic relations (see Proposition 3.1), it is possible to apply
the reverse way: �tting2 the compressibility coe�cient and then integrating to deduce the density turns out to be a
decisive procedure as it ensures positivity, monotonicity and continuity of the density. Moreover, saturation values
exactly match with tabulated ones (Proposition 3.2). The same procedure can be applied independently to the
temperature which is deduced from the isobaric heat capacity with the same mathematical properties. Coe�cients
of the tabulated equation of state are only computed once (as for SG/NASG laws) at the beginning of the algorithm
and holds for all iterations. Such an incomplete equation of state is obviously restricted to constant pressure regimes
but in the present context, it is a very e�cient and stable method to incorporate water physics in the Lmnc model.

1The reader is reminded that the second variable � the thermodynamic pressure � is constant.
2The choice of the �tting procedure is left to the reader. The least square method applied in the present work is not exclusive at all.
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The paper is organised as follows. We �rst present in Section 2 the Lmncmodel which consists of 3 equations involving
velocity, enthalpy and dynamic pressure. We mention that viscosity and thermal conductivity are taken into account.
Boundary conditions are also speci�ed. The core of this paper is detailed in Section 3: we brie�y recall the modelling
of mixture (see also [4]) and the expression of the sti�ened gas and Noble-Abel � sti�ened gas laws. We then explain
the construction of the dedicated equations of state in pure phases based on the �tting of tabulated values [37]. This
amounts to specifying the dependency of all thermodynamic and physical variables with respect to the enthalpy.
Two strategies are investigated to �t the compressibility coe�cient β and the isobaric heat capacity cp:

3 NIST-p
which corresponds to high order �tting polynomials and NIST-0 which is a phasewise constant approximation. We
state the crucial properties satis�ed by the corresponding equations of state. In Section 4, we provide mathematical
assumptions on data and on the smoothness of solutions (jump conditions across phase transition) and we compare
the accuracy of the aforementioned equations of state upon an analytical steady solution. Section 5 is dedicated to
numerical simulations to compare the equations of state on a sti� test case and highlight the in�uence of the thermal
conductivity and of the gravity �eld.

2 Low Mach two-phase �ow model with phase transition and thermal
di�usion

2.1 Equations

Fluid �ows are often described by the Navier-Stokes equations. When the �ow regime is such that the Mach number
is small, they can be replaced by simpli�ed models such as the Lmnc model derived in [13]. The latter system is
mainly investigated under its non-conservative formulation [4, 14]

∇·u =
β(h, p∗)
p∗

[
∇·
(
Λ(h, p∗)∇h

)
+ Φ

]
, (1a)

%(h, p∗)×
[
∂th+ u · ∇h

]
= ∇·

(
Λ(h, p∗)∇h

)
+ Φ, (t,x) ∈ R+ × Ωd, (1b)

%(h, p∗)×
[
∂tu+ (u · ∇)u

]
−∇·σ(u) +∇P = %(h, p∗)g, (1c)

for some bounded domain4 Ωd ⊂ Rd, d ∈ {1, 2}. The unknowns involved in this model are the velocity u, the en-
thalpy h and the dynamic pressure P while the data are the constant5 thermodynamic pressure p∗, the power density
Φ(t,x) which models the heating of the coolant �uid due to the �ssion reactions in the nuclear core and the constant
gravity �eld g. To close the model, we have to give the expression of the density % = %(h, p∗) and the compressibility
coe�cient β(h, p∗) � i.e. specify the equation of state, see � 3.1 �, the coe�cient Λ = Λ(h, p∗) which is related to
thermal conduction e�ects � see � 3.3 � and the viscous stress tensor σ(u). The present article is dedicated to the
modelling of these terms which characterise properties of water through equations of state and physical laws when
taking into account phase transition.

More precisely, the compressibility coe�cient is the key variable in this work, and is originally de�ned by

β(h, p∗)
def=− p∗

%(h, p∗)2
· ∂%
∂h

∣∣∣∣
p

(h, p∗). (2)

Another expression will be designed in Proposition 3.1 which turns out to be crucial for the study.

As for viscous e�ects, they include the classical internal friction in the �uid as well as the friction on the �uid due to
technological devices in the nuclear core (e.g. the friction on the �uid due to the fuel rods):

σ(u) = µ(h, p∗)×
(
∇u+ (∇u)T

)
+ η(h, p∗)× (∇·u) I.

The very expression of the viscous term is not important in the 1D framework as (1c) decouples from the other
equations [4]. The computation of P is then only a postprocessing. This is no more the case in higher dimensions
where the latter equation is a real part of the coupled system.

3Unlike the SG/NASG laws where β and cp are fully determined by the parameters of the laws, in the NIST strategy, they are computed
independently from each other.

4In 1D, Ω1 = [0, Ly ], x = y and u = v, whereas in 2D Ω2 = [0, Lx]× [0, Ly ], x = (x, y) and u = (u, v). We do not study the 3D case
in this paper but the extension is straightforward.

5In the low Mach approximation, the thermodynamic pressure p∗ does not depend on space but can be considered in general as a
function of time [5, 39]. We focus here on applications where it can be assumed to be constant.
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Figure 2: Domain Ωd, d ∈ {1, 2} and boundary conditions

When a monophasic �ow is considered, System (1) is then coupled to an equation of state and to physical laws
dedicated to a pure phase. To go further by taking into account phase transition, it is necessary to specify the
equilibria at stake between phases. In the present case, we assume that phases are in thermodynamic and mechanic
equilibria which induces the equality of temperatures, pressures, Gibbs potentials and velocities. As a consequence,
this model has a single velocity for all phases under which water appears. As we shall see below, System (1) has a
simpler structure than the Navier-Stokes equations which makes it easier to deal with phase transition.

We must also emphasize that System (1) is characterised by two pressure �elds, which is classical in low Mach number
approaches: the thermodynamic pressure p∗ is involved in the equation of state while the dynamic pressure P appears
in Equation (1c). This pressure decomposition results from an asymptotic expansion with respect to the Mach number
which induces the �ltering out of the acoustic waves. They are indeed not involved anymore in System (1).

2.2 Boundary conditions

Boundary conditions (BC) are speci�ed in 2D but adapt directly to 1D (see Figure 2). We also make a few remarks
about 1D BC prescribed in earlier works.

� The �uid is injected at the bottom y = 0 of the core at a given density %e and at a given vertical �ow rate De:

%
(
h(t, x, 0), p∗

)
= %e(t, x), (3a)

(%u)(t, x, 0) =
(
0, De(t, x)

)
. (3b)

The entrance enthalpy he(t, x) is implicitly de�ned by the equation %(he, p∗) = %e. The vertical entrance velocity
ve(t, x) applied at y = 0 is deduced from the relation ve(t, x) = De(t, x)/%e(t, x).

Observe that imposing %e or he is not completely equivalent, since it depends on the choice of the equation of
state %(·, p∗). In particular, it implies that steady states for distinct EOS are di�erent (see Proposition 4.1 and
Figure 7(a)).

� As for the temperature, we impose adiabatic conditions on all boundaries, except at the entry:

Λ(h, p∗)∇h · n(t, 0, y) = Λ(h, p∗)∇h · n(t, Lx, y) = 0, [lateral walls]

Λ(h, p∗)∇h · n(t, x, Ly) = 0. [top]

� On the lateral walls we consider Robin conditions on the velocity:

(u · n)(t, 0, y) = (u · n)(t, Lx, y) = 0,

σ(u)n · τ (t, 0, y) = σ(u)n · τ (t, Lx, y) = 0.
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� Finally, at the top of the core, we consider a free out�ow[
σ(u)n− Pn

]
(t, x, Ly) = 0. (3c)

Let us mention that it corresponds to the following boundary condition for the �parent model� (Navier-Stokes
for a compressible �uid)6 [

σ(u)n− pn
]
(t, x, Ly) = −p∗n. (3c')

Remark 2.1. When viscosity is involved (µ 6= 0, η 6= 0), boundary condition (3c) does not match the boundary
condition we considered in previous works [4] which was

P(t, x, Ly) = 0.

Indeed, the asymptotic expansion with the Mach number not only �lters out the acoustic waves but it also changes
the nature of the equations through the generation of two pressure �elds. In 1D, equation (1c) decouples from the
others and becomes an ODE upon P while, in higher dimensions, the decoupling does not occur, and equation (1c) is
a second-order PDE upon (u,P).

Nevertheless, we can wonder about the signi�cation of pressure p∗ in (3c'). In the primary circuit of a PWR, there
is a pressuriser at the exit of the core which maintains the water at high pressure. p∗ can thus be interpreted as the
imposed pressure except that it is not imposed at the exit of the core but further in the circuit at a position Ly + ε.
The domain [Ly, Ly + ε] is modelled as an inviscid �uid � see the right hand side in (3c') � without heating process
(Φ = 0). We may think that ε goes to 0 as the Mach number does.

3 Accurate steam-water closures for the two-phase �ow LMNC model
with phase transition

In this section, we present di�erent strategies to close the model by means of equations of state (EOS) and physical
laws. These relations between thermodynamic and physical variables are expected to accurately transcribe properties
of water over a range of enthalpy values (hmin, hmax) � to be speci�ed � so that we can reproduce the behaviour
of the �ow in a realistic way. On the one hand, we mention that the narrower the interval, the more accurate the
modelling. On the other hand, we have to take an interval large enough to handle incidental values close to phase
transition (hence close to the enthalpy at saturation in liquid water and vapor phase).

An EOS is related to thermodynamic properties of a �uid and consists of an algebraic/di�erential relation between
thermodynamic variables. An EOS must satisfy thermodynamic constraints such as the positivity of the squared
speed of sound or the decrease of the density with respect to the enthalpy. The other issue is to derive an EOS
that models not only pure liquid and vapour phases of water but also the transition from one phase to another in a
relevant and accurate way. Indeed, a bad calibrated EOS may dramatically modify the temperature at saturation in
the �uid and cause unphysical phase transition from liquid to vapour.

Since the �uid is considered a continuum (see e.g. [44, 49] for a review of multiphase �ow modelling), we consider
here that water can appear under liquid phase (referred to by the index κ = �l), vapour phase (κ = �g), or a mixture

of liquid and vapour (κ = �m�). The overall problem could be treated by means of distinct models for each phase
supplemented with transmission conditions when phase transition occurs as it is the case for immiscible �uids. Our
model relies on the assumption of local kinematic and thermodynamic equilibria between phases. This means that
phases are assumed to evolve at the same velocity, and that vaporisation, condensation and heat transfer processes
are assumed to be instantaneous. As a result, we model the two-phase �ow by means of a single system of PDEs (with
a single velocity �eld) governing physical variables no matter which phase they are related to. This process only holds
provided the EOS has a wide domain of validity including phase transition. For more details on the construction of
these EOS and their applications to CFD for compressible �uid �ows, see for instance [9, 21,28,29,46].

Variables to be de�ned as functions of (h, p∗) are %, β, Λ, µ and η involved in (1) as well as cp and T for postprocessing.
In classical thermodynamics, two variables are su�cient to represent a thermodynamic state for a pure single-phase
�uid through the EOS. In the literature, there exist numerous EOS speci�c to each �uid under investigation. The case
of liquid-vapour phase transitions is schematically depicted on Figure 3 and represented by means of experimental
data extracted from [37] on Figure 4. When phase transition is taken into account, a mixture zone appears where
the two phases co-exist: it is called the saturation zone (Figs. 3a and 4a). This region is bounded by two saturation
curves connected at the critical point (1/%c, pc) which also belongs to the critical isotherm T = Tc. Since phase
transition appears at constant pressure and temperature, the physical isotherm is horizontal.

6The physical pressure �eld p is recovered from pressure in the low Mach number model by p = p∗ + P. Thus P = O(M2) is a
perturbation around the mean value p∗.
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Once an EOS is provided for both liquid and vapour phases, the equality of Gibbs potentials leads to the de�nition
of the temperature at saturation and then to enthalpies at saturation hs�l (p∗) and hs�g (p∗) [6, 40]. To model phase

transition, we introduce a phasewise decomposition for any variable ζ ∈ {%, β, T,Λ, cp, µ, η}:

ζ(h, p∗) =


ζ�l(h, p∗), if h ≤ hs�l (p∗),

ζ �m�(h, p∗), if hs�l (p∗) < h < hs�g (p∗),

ζ�g(h, p∗), if h ≥ hs�g (p∗).

(4)

From now on, we shall ignore the dependency with respect to p∗ for thermodynamic variables as the thermodynamic
pressure is constant throughout this study.

To construct the global EOS, we aim at constructing explicit functions h 7→ ζ̃κ(h), κ ∈ {�l, �g}, approximating h 7→
ζκ(h, p∗) so that each pure phase has its own thermodynamics described in an accurate way. Then, the modelling of

the mixture ζ̃ �m� is carried out by means of an analytical formula based on thermodynamic principles [4, � 3.2].

Notations. In the sequel, we shall adopt the following notations:

� ζκ refers to the thermodynamic variable in phase κ;

� ζ̃κ is an approximation function of ζκ: the core of this paper is to present di�erent approaches to design such
approximation functions;

� (ζ̂κ)i are the tabulated values extracted from the NIST tables [37];

� In case when ζκ can be considered constant, the corresponding constant value is denoted by ζκ.

A natural approach is to try to design a complete EOS from which T (h, p∗) and %(h, p∗) are constructed in the �rst
place, and then β(h, p∗) and cp(h, p∗) are deduced from (2) and (23). However, as we shall see in the sequel, for
stability and consistency reasons we prefer constructing an incomplete EOS based on β(h, p∗).

In the sequel we detail several strategies we investigated to derive an EOS for pure phases. We shall consider analytical
EOS such as ¶ the Sti�ened Gas (SG) law (see for instance [35, 40]) or · the Noble-Abel � Sti�ened Gas (NASG)
law [36]. We can also think of another strategy based on experimental measurements gathered in tables [37,52]. We
shall investigate some �tting strategies which will be referred to as ¸ NIST-p for high-degree �tting polynomials
h 7→ ζ̃(h) and ¹ NIST-0 for constant approximations. We underline that this is a strength of the low Mach number

approach: in a compressible framework, one would have to derive a function (h, p) 7→ ζ̃(h, p) that �ts a surface of
tabulated values whereas in the low Mach framework, the procedure reduces to �tting a curve as the polynomial only
depends on h (p ≡ p∗ here).
Since these �tting functions cannot model the behaviour of water for all values of h, we focus on a restricted interval
of values, prescribed in the following Hypothesis.

Hypothesis 3.1. Functions %, β, T , Λ, cp, µ and η are de�ned over the interval (hmin, hmax). Moreover:

1. %e involved in the boundary condition (3a) is such that there exists a unique he ∈ (hmin, hmax) satisfying
%(he, p∗) = %e;

2. hmin > hs�l −
p∗

%s�l max
h∈[hmin,hs�l ]

β(h, p∗)
.

Hypothesis 3.1-2. is needed in order to ensure the positivity of % in [hmin, h
s
�l ] for our chosen de�nition (11) of 1/%.

3.1 Compressibility coe�cient and density

Let us now detail how we construct the global approximated function β̃ de�ned phasewise as in (4) via the EOS β̃κ
in each phase κ ∈ {�l, �m�, �g}.

3.1.1 Compressibility coe�cient and density in the mixture phase

As detailed in [4, � 3.2], the compressibility coe�cient in the mixture is phasewise constant and given by

β �m�
def= p∗

1/%s�g − 1/%s�l

hs�g − hs�l
. (5a)

7



T = Tc

saturated
liquid
curve

saturated
vapour
curve

critical
point
C

1
ρc

pc

1
ρ

p

T < Tc

L V
ps(T )

triple line

liquid

Supercritical
(T > Tc and p > pc)

gaslike
(T > Tc and p < pc)

li
q
u
id
li
ke

(T
<

T
c
a
n
d
p
>

p
c
)

liquid-vapour
mixture

vapour

1
ρs`(T )

1
ρsg(T )

(a) Scheme of isotherms in the (1/%, p) plane

T

p

triple
point

critical
point

liquid

vapour

gas like

liquid like supercritical

Tc

pc

(b) Scheme of coexistence curve in the (T, p) plane

Figure 3: Schematic saturation and coexistence curves.

�8 �6 �4 �2 0 2 4 6

�5

0

5

ln 1
⇢ (m3 · kg�1)

ln
p

(M
P
a
)

400K
500K
600K
647K

1

(a) Isotherms in the (1/%, p) plane

300 400 500 600

0

5

10

15

20

T (K)

p
(M

P
a
)

1

(b) Coexistence curve in the (T, p) plane

Figure 4: Saturation and coexistence curves using experimental data from [37]

8



ĥκ %̂κ T̂κ ĉ∗κ ĉpκ ĉvκ λ̂κ µ̂κ
κ [kJ · kg−1] [kg ·m−3] [K] [m · s−1] [J · kg−1 ·K−1] [J · kg−1 ·K−1] [W ·m−1 ·K−1] [Pa · s]
�l 978.702 842.783 500.000 1293.67 4561.5 3218.0 0.657 1.209×10−4

�l 980.223 842.359 500.336 1292.50 4563.5 3217.0 0.657 1.207×10−4

...
...

...
...

...
...

...
...

...
�l 1627.450 595.733 617.667 624.66 8871.0 3098.1 0.459 6.850×10−5

�l ĥs�l %̂s�l T̂ s 621.43 8950.0 3101.0 0.458 6.833×10−5

�g ĥs�g %̂s�g T̂ s 433.40 14 000.6 3633.1 0.121 2.311×10−5

�g 2596.965 101.816 618.00 433.69 13 931.7 3627.6 0.121 2.310×10−5

...
...

...
...

...
...

...
...

...
�g 3066.962 60.540 699.667 573.70 3670.7 2173.2 0.0803 2.615×10−5

�g 3068.184 60.473 700.000 574.02 3664.7 2171.5 0.0803 2.616×10−5

Table 1: Sample of water values [37] at p∗ = 15.5 MPa with data at saturation ĥs�l = 1629.880 kJ · kg−1; ĥs�g =

2596.119 kJ · kg−1; %̂s�l = 594.379 kg ·m−3; %̂s�g = 101.930 kg ·m−3; T̂ s = 617.939 K

The derivation is much simpler than in the fully compressible case [20].

Let us mention that the expression of β �m� does not depend on the EOS in pure phases but only on values at saturation
which may di�er from one strategy to another (see Table 4). As for the density, it reads

%�m�(h) def=
%s�g %

s
�l (hs�g − hs�l )

%s�gh
s
�g − %s�l hs�l − (%s�g − %s�l )h

. (5b)

Let us also notice that given these two de�nitions, we can write

1

% �m�(h)
=
β �m�

p∗
(h− q �m�)

where

q �m�
def=
%s�gh

s
�g − %s�l hs�l
%s�g − %s�l

. (5c)

Hence this process which results from thermodynamic arguments makes the mixture EOS look like the Sti�ened Gas
law (7).

3.1.2 Compressibility coe�cient and density in a pure phase

Let us then introduce the construction of β̃�l and β̃�g, as well as %̃�l and %̃�g, for the di�erent approaches we consider.

¶-· SG-NASG: The Sti�ened Gas (SG) law and the Noble-Abel Sti�ened Gas (NASG) law result from the same
process of construction, namely a complete equation of state (after Meniko� and Plohr [40]) which is a smooth
relation between the speci�c entropy S, the speci�c volume τ def= 1/% and the speci�c energy ε

(τ, ε) 7→ S(τ, ε) = cv
[
ln
(
ε−Q− π(τ − b)

)
+ (γ − 1) ln(τ − b)

]
+ S0, (6)

where six constant parameters have to be tuned: cv, Q, π, γ, S0 and b (b = 0 for the SG law) depending on
the range of enthalpy values and on the phase. More details on these complete EOS are given in Appendix A.

Consequently, SG and NASG laws have the same expression for the density

1

%̃(h)
=
β̃(h)

p∗

(
h− q̃(h)

)
(7a)

taking into account (5b). The phasewise constant compressibility coe�cient is de�ned by

β̃(h) =


β �l, if h ≤ hs�l ,

β �m�, if hs�l < h < hs�g ,

β �g, if h ≥ hs�g ,
(7b)
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where β �m� is given by (5a) with data at saturation in the corresponding column of Table 4 and

q̃(h) =


q �l, if h ≤ hs�l ,

q �m�, if hs�l < h < hs�g ,

q �g, if h ≥ hs�g ,
(7c)

with qm de�ned in (5c). SG [35] and NASG [36] EOS only di�er through the values of constant parameters
βκ and qκ which are given in Table 5. Let us mention that Hypothesis 3.1-2 reduces in that case to hmin > q �l
which transcribes the fact that those analytical EOS are de�ned over (0,+∞).

¸ NIST-p: A sample of tabulated values for the range of interest is given in Table 1 over the range (hmin, hmax)
with hmin = 978.702 kJ · kg−1 and hmax = 3068.184 kJ · kg−1.

We remark that β does not belong to the set of variables referenced in NIST tables. Consequently, we have to
�nd out a strategy to express the compressibility coe�cient. One may have made use of Formula (2) that de�nes
β from the a �tting function h 7→ ρ̃(h). Deriving the �tting function would raise some stability issues as well
as positivity problems. One may also think of a �nite-di�erence approximation of (2) but that would violate
the consistency of thermodynamics (see [18] for more details). That is why we propose here an innovative idea
which consists in deriving another expression for β involving tabulated variables but no derivative. From such
an expression of β, we shall then deduce a consistent expression for %. We shall see how this idea solves all the
aforementioned issues.

Proposition 3.1. In a pure phase, the compressibility coe�cient β satis�es the relation

β =
p

%c∗
√
T

√
1

cv
− 1

cp
> 0, (8)

where p is the pressure, % the density, T the temperature, c∗ the speed of sound, cv the isochoric heat capacity
and cp the isobaric heat capacity.

The proof of the proposition can be found in Appendix B. Let us observe that, by construction, β is positive.
Moreover, this relation is satis�ed by the Sti�ened Gas/Noble-Abel � Sti�ened Gas laws.

Proposition 3.1 is crucial insofar as it enables to provide tabulated values (indexed by i) (β̂κ)i given pointwise

values (%̂κ)i, (T̂κ)i, (ĉ∗κ)i, (ĉvκ)i and (ĉpκ)i for each phase κ ∈ {�l, �g}. Consequently, we can determine the func-

tions h 7→ β̃κ(h), κ ∈ {�l, �g} as adequate �tting polynomials over the intervals H�l
def=(hmin, ĥ

s
�l ) and H�g

def=(ĥs�g , hmax)

matching the resulting values (β̂κ)i in each phase

h 7→ β̃κ(h) =

dβ,κ∑
j=0

bκ,j

(
h

106

)j
. (9)

Any numerical method can be used to determine the �tting polynomials (degrees dβ,κ and coe�cients bκ,j)

providing that it ensures the positivity of both functions β̃�l and β̃�g, since the values (β̂κ)i are positive according

to (8).

In the present work, we apply a least-square regression technique which leads to the coe�cients given in
Table 2(a) and the curves in Figure 5(a) for (9) at p∗ = 15.5 MPa. Degrees of the polynomial were increased
until an expected accuracy was reached, i.e. when the relative errors de�ned by

maxi

∣∣∣β̃κ(hi)− (β̂κ)i

∣∣∣
maxi (β̂κ)i

are small enough. The values of these relative errors are also given in Table 2(a). It can be noticed on

Figure 5(a) that for the least-square method we used here, β̃�l and β̃�g are positive. There is a large variety of
�tting procedures in the literature which are a lot more accurate than the least-square method. However, we
do not need here this level of accuracy, since the relative errors we obtain are satisfactory for our applications.

Hence the global expression of β̃ is given by

β̃(h) =


β̃�l(h), if h ≤ ĥs�l ,

β̃ �m�(h) = β �m�, if ĥs�l < h < ĥs�g ,

β̃�g(h), if h ≥ ĥs�g ,

(10)
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where β �m� is given by (5a) with (hsκ, %
s
κ) replaced by (ĥsκ, %̂

s
κ) (see corresponding data in Table 4). Orders of

magnitude of β̃κ are given in the third column of Table 5.

Observe that the second item in Hypothesis 3.1 is satis�ed by the chosen range of enthalpies, since

hmin = 9.787× 105 J · kg−1 > ĥs�l −
p∗

%̂s�l β̃(ĥs�l )
= 5.646× 105 J · kg−1.

Let us now focus on a consistent construction of the density variable by integrating β̃κ using (2):

1

%̃(h)
=



1

%̃�l(h)
def=

1

%̂s�l
+

∫ h

ĥs�l

β̃�l(h)

p∗
dh, if h ≤ ĥs�l ,

1

%�m�(h)
, if ĥs�l < h < ĥs�g ,

1

%̃�g(h)
def=

1

%̂s�g
+

∫ h

ĥs�g

β̃�g(h)

p∗
dh, if h ≥ ĥs�g .

(11)

with %�m� de�ned by (5b).7 We write in a global way

1

%̃κ(h)
=

d%,κ∑
j=0

rκ,j

(
h

106

)j
(12)

where the coe�cients are stored in Table 2(b) and the curves are plotted on Figure 5(b). The values of the
relative errors are also given in Table 2(b). Obviously d%,κ = dβ,κ + 1.

By construction, the following properties are satis�ed:

Proposition 3.2. Provided that β̃�l and β̃�g are positive, the density %̃ de�ned by (11) is such that

(a) Under Hypothesis 3.1-2., h 7→ %̃(h) is positive over (hmin, hmax);

(b) h 7→ %̃(h) is continuous over (hmin, hmax) and satis�es exactly the tabulated values at saturation; in

particular, %̃κ(ĥsκ) = % �m�(ĥ
s
κ) = %̂sκ, κ ∈ {�l, �g};

(c) h 7→ %̃(h) is decreasing over (hmin, hmax);

(d) Relation (2) exactly holds.

These properties are of great importance in thermodynamics and they would not have been ful�lled necessarily
by a �tting of the density using only the values (%̂κ)i.

A straightforward consequence of this proposition is that h 7→ %̃(h) is invertible, which in particular enables to
determine a unique he such that %̃(he) = %e (cf. Hypothesis 3.1-1.).

¹ NIST-0: In the previous strategy, degrees dβ,κ of the �tting polynomials were chosen large enough to make
the approximation error as small as possible. However it is also possible to choose dβ,κ = 0 to construct a

phasewise approximation like (10) but with constant phase functions β̃κ(h) ≡ βκ. We choose here the average
between the minimal and the maximal value in each phase

βκ
def=

mini (β̂κ)i + maxi (β̂κ)i
2

> 0, κ ∈ {�l, �g}, (13a)

and β �m� as in (5a) with (hsκ, %
s
κ) replaced by (ĥsκ, %̂

s
κ). Resulting values are given in the fourth column of Table 5.

We then apply the same construction (11) for the density as in the NIST-p strategy. In this phasewise constant
case, we notice that this construction procedure leads to an expression of the density which is similar to the
(NA)SG law (7), namely

1

%̃(h)
=
β̃(h)

p∗

(
h− q̃(h)

)
, (13b)

7In particular, the de�nition of %�m� ensures that
1

% �m�(h)
=

1

%̂s�l
+

∫ h

ĥs
�l

β �m�
p∗

dh =
1

%̂s�g
+

∫ h

ĥs�g

β �m�
p∗

dh.
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κ = �l κ = �g

dβ,κ 6 3

bκ,0 6.129 697 412× 10−2 −5.395 575 381× 10−1

bκ,1 −1.378 946 053× 10−1 3.591 468 350× 10−1

bκ,2 8.329 391 618× 10−2 9.759 257 397× 10−3

bκ,3 6.045 509 171× 10−3 1.465 520 061× 10−2

bκ,4 2.341 456 057× 10−2

bκ,5 −4.623 916 770× 10−2

bκ,6 1.637 507 485× 10−2

Error 6.718 624 276× 10−3 3.328 803 232× 10−3

(a) Coe�cients for β̃κ.

κ = �l κ = �g

d%,κ 7 4

rκ,0 −0.155 983 180× 10−3 2.916 351 682× 10−2

rκ,1 3.954 643 492× 10−3 −3.481 016 375× 10−2

rκ,2 −4.448 213 074× 10−3 1.158 538 178× 10−2

rκ,3 1.791 267 015× 10−3 2.098 765 032× 10−4

rκ,4 9.750 821 242× 10−5 −2.363 742 034× 10−4

rκ,5 3.021 233 622× 10−4

rκ,6 −4.971 953 517× 10−4

rκ,7 1.509 223 489× 10−4

Error 8.627 504 234× 10−5 9.467 155 751× 10−5

(b) Coe�cients for 1/%̃κ.

Table 2: Coe�cients of �tting polynomials in the NIST-p strategy at p∗ = 15.5 MPa.
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Figure 5: Fitting polynomials for compressibility coe�cient (Tab. 2a) and speci�c volume (Tab. 2b).
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κ = �l κ = �g

d%,κ 1 1

rκ,0 7.416× 10−5 −2.643× 10−2

rκ,1 9.867× 10−10 1.396× 10−8

Table 3: Coe�cients for 1/%̃κ in the NIST-0 strategy

¶ SG · NASG ¸-¹ NIST [37]

hs�l 1.627× 106 J · kg−1 1.596× 106 J · kg−1 ĥs�l
hs�g 3.004× 106 J · kg−1 2.861× 106 J · kg−1 ĥs�g

%s�l 632.663 kg ·m−3 737.539 kg ·m−3 %̂s�l
%s�g 52.937 kg ·m−3 55.486 kg ·m−3 %̂s�g

T s 654.65 K 636.47 K T̂ s

Table 4: Values at saturation for p∗ = 15.5 MPa found in the NIST tables [37], or deduced from the parameters of [35]
for SG and of [36] for NASG.

where

q̃(h) =


q �l

def= ĥs�l −
1

%̂s�l

p∗
β �l
, if h ≤ ĥs�l ,

q �m�, if ĥs�l < h < ĥs�g ,

q �g
def= ĥs�g −

1

%̂s�g

p∗
β �g
, if h ≥ ĥs�g

(13c)

and q �m� is de�ned by (5c). The values of qκ are set in Table 5, those of %̂sκ and ĥsκ in Table 4, and coe�cients of
the polynomials 1/%̃κ in Table 3. It is straightforward that Proposition 3.2 still holds for the NIST-0 strategy.

With our construction, the saturation is exactly satis�ed unlike EOS obtained with parameters of [35] for SG or with
parameters of [36] for NASG. Nevertheless, observe that the NIST-0 EOS is not a complete equation of state, so that
we cannot use this law in a compressible model, but it is the simplest and most accurate analytical law to obtain an
exact analytical solution not only for the steady 1D LMNC model but also for transient versions. The four strategies
will be compared below (see � 4.3). The comparison shows that the constant property of β is not a restriction but
the most crucial point is to satisfy accurately the saturation.

In conclusion, we summarise the de�nitions β̃ and %̃ depending on the EOS in the Table 6.

3.2 Viscosity coe�cients

We also have to specify how to compute the viscosity coe�cients in the stress tensor involved in (1c). Let µ and η be
respectively the dynamic and bulk viscosities. As previously, we split the modelling into three pieces corresponding

¶ SG · NASG ¸ NIST-p ¹ NIST-0

β̃�l 8.769× 10−3 4.803× 10−3 6.143× 10−3 to 2.437× 10−2 1.529× 10−2

β �m� 1.949× 10−1 2.042× 10−1 1.303× 10−1 1.303× 10−1

β̃�g 3.007× 10−1 4.872× 10−1 2.022× 10−1 to 2.310× 10−1 2.163× 10−1

q �l −1.167× 106 J · kg−1 −2.779× 106 J · kg−1 N/A −7.654× 104 J · kg−1

q �m� 1.501× 106 J · kg−1 1.493× 106 J · kg−1 1.429× 106 J · kg−1 1.429× 106 J · kg−1

q �g 2.030× 106 J · kg−1 2.287× 106 J · kg−1 N/A 1.893× 106 J · kg−1

Table 5: Orders of magnitude of the compressibility coe�cient β and the equivalent binding energy q at p∗ = 15.5 MPa.
For pure phases: values obtained thanks to (8) using NIST tables [37], or using formulae introduced in [4] for SG and
NASG. For values in the mixture: values given by (5a) and (5c).
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Law ¶ SG and · NASG ¸ NIST-p ¹ NIST-0

β̃ (7b)-(5a) (10)-(9)-(5a) (10)-(13a)-(5a)
ρ̃ (7)-(5) (11)-(12)-(5) (13)-(5)

Table 6: De�nitions β̃ and %̃ depending on the EOS

to each phase. More precisely, we set:

µ̃(h) =


µ̃�l(h), if h ≤ hs�l ,
µ̃�m�(h) def= α̃(h)µ̃�g

(
hs�g
)

+
(
1− α̃(h)

)
µ̃�l
(
hs�l
)
, if hs�l < h < hs�g ,

µ̃�g(h), if h ≥ hs�g .

As for the bulk viscosity, we take η̃(h) = − 2
3 µ̃(h) under the Stokes hypothesis. The expression in the mixture is

de�ned by means of a linear approximation involving the volume fraction α, given by

α̃(h) =


0, if h ≤ hs�l ,(

h− hs�l
)
%s�l

%s�gh
s
�g − %s�l hs�l − (%s�g − %s�l )h

, if hs�l < h < hs�g ,

1, if h ≥ hs�g .

As for other NIST data, the viscosity could be approximated by a polynomial expression µ̃κ(h) by means of a least-
square regression technique �tting values. However, due to the weak variability of the viscosity, we approximate µ
by a phasewise constant function, also computed from the NIST data, as the average between the minimal and the
maximal value in each phase

µ̃�l(h) ≡ µ�l = 9.462× 10−5 Pa · s, µ̃�g(h) ≡ µ�g = 2.464× 10−5 Pa · s.

3.3 Thermal e�ects

Low Mach number models allow to deal with large heat transfers unlike incompressible models. It is thus interesting
to investigate the in�uence of the thermal conductivity.

Since the temperature is constant within the mixture phase, T is not an appropriate unknown for the modelling of
phase transition at this scale. This is why we rather expressed the model in terms of enthalpy which is not constant.
Let us denote by λ the thermal conductivity of water. We mention that this physical variable is referenced in the
NIST tables (see Table 1). Then the classical term ∇ · (λ∇T ) which models heat conduction (Fourier's law) becomes
in a pure phase ∇ · (Λ∇h) where Λ is de�ned by

Λ def=
λ

cp
.

As previously, cp is the isochoric heat capacity (de�ned by (20) or (23)) which is involved in the classical thermody-
namic equality dh = cpdT . Consequently, we de�ne Λ over the whole range of enthalpy values by

Λ̃(h) =



λ̃�l(h)×
(

1̃
cp

)
�l
(h), if h ≤ ĥs�l ,

0, if ĥs�l < h < ĥs�g ,

λ̃�g(h)×
(

1̃
cp

)
�g
(h), if h ≥ ĥs�g .

(14)

The coe�cient is set to 0 for h ∈ (hs�l , h
s
�g ) because of the fact that the temperature is constant within the mixture

phase and so there is no thermal conduction therein.

Isobaric heat coe�cient To construct functions
(

1̃/cp

)
κ
(κ ∈ {�l, �g}), we may use the same strategies as in

� 3.1.2 for the computation of β, namely ¶-· for the SG/NASG EOS, ¸ for high-order �tting polynomials and ¹ for
constant approximations. In the cases ¶-·, the heat coe�cients are constant and given by cpκ = γκcvκ, κ ∈ {�l, �m�},
with values of parameters γκ and cvκ recalled in Table 8.
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κ = �l κ = �g

dcp,κ 7 6

cκ,0 1.689 602 951× 10−4 5.382 374 281× 10−4

cκ,1 1.232 572 675× 10−4 −2.539 666 705× 10−4

cκ,2 2.380 465 421× 10−5 −2.690 479 385× 10−4

cκ,3 −1.311 465 424× 10−4 1.079 811 811× 10−4

cκ,4 −1.531 310 649× 10−5 1.163 418 815× 10−5

cκ,5 6.360 562 483× 10−5 −3.873 402 400× 10−7

cκ,6 −7.958 443 754× 10−6 −1.196 179 285× 10−6

cκ,7 −7.446 866 275× 10−6

Error 2.840 610 126× 10−3 1.731 914 106× 10−3

(a) Coe�cients for
(

1̃
cp

)
κ
.

κ = �l κ = �g

dT,κ 8 7

tκ,0 293.445 144 7 300.584 284 2
tκ,1 168.960 295 1 538.237 428 1
tκ,2 61.628 633 75 −126.983 335 2
tκ,3 7.934 884 737 −89.682 646 17
tκ,4 −32.786 635 60 26.995 295 28
tκ,5 −3.062 621 298 2.326 837 630
tκ,6 10.600 937 47 −6.455 670 667× 10−2

tκ,7 −1.136 920 536 −1.708 827 550× 10−1

tκ,8 −0.930 858 284 4

Error 7.340 188 470× 10−6 4.820 515 518× 10−6

(b) Coe�cients for T̃κ.

Table 7: Coe�cients of �tting polynomials in the NIST-p strategy at p∗ = 15.5 MPa.

For strategies ¸-¹, a least-square regression technique is used to �t values from the NIST tables [37]:

h 7→
(

1̃

cp

)
κ

(h) =

dcp,κ∑
j=0

cκ,j

(
h

106

)j
.

Note that we decided to �t 1/cp instead of cp since it appears as such in the de�nitions of Λ and of T (see below).

Let us notice that strategies for the computation of β and cp are decoupled as we are considering incomplete equations
of state. It corresponds to numerical techniques to approximate thermodynamic variables using the most suitable way.
In particular, a NIST-0 (for β) � NIST-0 (for 1/cp) strategy would mimic the SG-NASG EOS in terms of algebraic
formulation (constant) except that constant values are not related to each other. No matter which numerical method
is applied to �t the NIST data, it must be ensured that the resulting function is positive over (hmin, hmax). In the
present case, we decided to apply a NIST-p strategy whose coe�cients are given in Table 7(a), and the curves can
be seen on Figure 6(a).

Temperature Although the temperature is not involved in the LMNC system (1), it is useful to compute it in the
purpose of analysis of numerical results and for safety evaluations. For the ¶-· strategies, the temperature reads

T̃ (h) =



h− q �l

cp �l
, if h ≤ hs�l ,

T s, if hs�l < h < hs�g ,

h− q �g

cp �g
, if h ≥ hs�g ,

where cpκ was introduced above and qκ is stored in Table 5. Values at saturation T s and hsκ are recalled in Table 4.

For ¸-¹ strategies, similarly to the way we de�ned the density ρ from the compressibility coe�cient β, we deduce
the expression of the temperature T by integrating 1/cp de�ned by (23). Hence

T̃ (h) =



T̃�l(h) def= T̂ s +

∫ h

ĥs�l

(
1̃

cp

)
�l

(h)dh, if h ≤ ĥs�l ,

T̃�m�(h) def= T̂ s, if ĥs�l < h < ĥs�g ,

T̃�g(h) def= T̂ s +

∫ h

ĥs�g

(
1̃

cp

)
�g

(h)dh, if h ≥ ĥs�g .

(15)

We write in a global way

T̃κ(h) =

dT,κ∑
j=0

tκ,j

(
h

106

)j
(16)
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Figure 6: Fitting polynomials for isobaric heat capacity (Table 7a) and temperature (Table 7b).

where the coe�cients are stored in Table 7(b) and the curves are plotted on Figure 6(b). The values of the relative
errors are also given in Table 7(b). Obviously dT,κ = dcp,κ + 1.

This construction automatically ensures the following properties (see Figure 6(b)):

Proposition 3.3. Provided that β̃�l and β̃�g are positive, the temperature T̃ de�ned by (15) satis�es:

� h 7→ T̃ (h) is continuous and positive over (hmin, hmax);

� h 7→ T̃ (h) is increasing over (hmin, hmax);8

� The di�erential relation h 7→
(

1̃
cp

)
(h) = T̃ ′(h) exactly holds.

Thermal conductivity Similarly to other NIST data, the thermal conductivity could have been approximated by
a polynomial expression λ̃κ(h) by means of a least-square regression technique. However, due to the weak variability
of the thermal conductivity, we approximate λ by a phasewise constant function, also computed from the NIST data
as the average between the minimal and the maximal value in each phase:

λ̃�l(h) ≡ λ�l = 5.578× 10−1 W ·m−1 ·K−1, λ̃�g(h) ≡ λ�g = 1.008× 10−1 W ·m−1 ·K−1.

4 Analytical results on the model and comparison of the EOS

The model we actually address in the sequel is thus
∇·u =

β̃(h)

p∗

[
∇·
(
Λ̃(h)∇h

)
+ Φ

]
, (17a)

%̃(h)×
[
∂th+ u · ∇h

]
= ∇·

(
Λ̃(h)∇h

)
+ Φ, (t,x) ∈ R+ × Ωd, (17b)

%̃(h)×
[
∂tu+ (u · ∇)u

]
−∇·

[
µ̃(h)

(
∇u+ (∇u)T

)]
−∇ [η̃(h)∇ · u] +∇P = %̃(h)g, (17c)

where the expressions of β̃ and %̃ are detailed in � 3.1, those of µ̃ and η̃ in � 3.2 and that of Λ̃ in � 3.3.

4.1 Jump conditions

Taking into account thermal di�usion modi�es the nature of the di�erential problem in depth. Indeed, as detailed
in � 3.3, Λ̃ is de�ned by (14) and is thus discontinuous over the domain. Then Equation (17b) � which governs the
evolution of the enthalpy � is a degenerate parabolic equation: it reduces to a nonlinear transport equation in the
mixture phase. This requires to increase the regularity of h in the variational approach (see � 5.1).

8h 7→ T̃ (h) is constant over (hs�l , h
s
�g ).
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Moreover, the di�usion coe�cient is discontinuous across phase transition curves. Consequently, we have to de�ne
rigorously the conservative second-order di�erential term in (17b).

Let us introduce some notations. We set

Ωd�l (t) def={x ∈ Ωd : h(t,x) < hs�l }, Ωd�m�(t)
def={x ∈ Ωd : hs�l < h(t,x) < hs�g } and Ωd�g (t) def={x ∈ Ωd : h(t,x) > hs�g }

the domains occupied by each phase. Each of them may become an empty set depending on the evolution of h.

Phase domains are separated by level sets of the enthalpy

Γ�l(t) = {x ∈ Ωd : h(t,x) = hs�l } and Γ�g(t) = {x ∈ Ωd : h(t,x) = hs�g }.

From now on, a solution (h,u,P) to System (17) must be understood as follows:

� In each phase domain Ωdκ(t), (h,u,P)(t, ·) is a strong solution.

� Where phase transition occurs, we impose the following jump conditions over Γ�l(t) and Γ�g(t)[[
Λ̃(h)∇h

]]
· n = 0, (18a)[[

µ̃(h)
(
∇u+ (∇u)T

)
+ η̃(h)(∇ · u)Id − PId

]]
n = 0. (18b)

� Moreover, h satis�es the continuity condition
[[h]] = 0 (18c)

only where the �ow goes into the mixture phase, i.e. over
⋃

κ∈{�l,�g}
{x ∈ Γκ(t) : u(t,x) · n�m�(t,x) > 0}, where n�m�

is the normal vector pointing towards the mixture phase.

This problem can be considered a coupling issue between two models: one of hyperbolic nature, one of parabolic
nature. Such a coupling has been investigated in the literature (e.g. [17,22]) but in the case of �xed boundaries. An
additional obstacle in the present case is that the discontinuity location moves with time (level set of the enthalpy).
The theoretical analysis of the model (17-3-18) is left to future works.

4.2 Assumptions

For the problem to be well-posed, we impose some assumptions upon the data. We �rst suppose that physical data
satisfy:

Hypothesis 4.1.

1. For all (t,x) ∈ R+ × Ωd, Φ(t,x) is non-negative.

2. For all (t, x) ∈ R+ × [0, Lx], De(t, x) is non-negative.

3. p∗ is a positive constant.

The �rst assumption characterizes the fact that we study a nuclear core where the coolant �uid is heated. In a nuclear
power plant of PWR or BWR type, the �ow is upward, which is the meaning of the second assumption.

We make the following modelling hypothesis which somehow restricts the range of experiments as we cannot predict
the orientation of the output velocity �eld.

Hypothesis 4.2. The velocity �eld is outgoing, i.e. u · n(t,x)|y=Ly > 0 for all (t,x) ∈ R+ × Ωd.

This hypothesis is necessary as no Dirichlet boundary conditions is imposed at the exit of the core upon the enthalpy.
It thus induces that no downward �ow (recirculation) occurs at the exit. In dimension 1 when Λ̃ ≡ 0, Hypothesis 4.2
is a direct consequence of Hypothesis 4.1 and of the positivity of β; in dimensions 2 and 3, Hypothesis 4.2 must stand.

4.3 In�uence of the equation of state on steady states

In dimension 1 and without thermal di�usion, we can explicitly compute steady solutions of the LMNC model no
matter what the equation of state.
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Proposition 4.1 (Steady states). We consider the 1D steady case without thermal di�usion, i.e. %e, De and Φ do

not depend on time and Λ̃ ≡ 0. Then, System (17) admits a unique steady solution given by

h(y) = %̃−1(%e) +
1

De

∫ y

0

Φ(z) dz, v(y) =
De

%̃(h(y))
.

Proof. System (17) reduces to 
∂yv = − 1

%̃(h)2
%̃ ′(h)Φ(y), v(t, 0) = De/%e > 0, (19a)

v∂yh =
1

%̃(h)
Φ(y), h(t, 0) = he, (19b)

with he such that %̃(he) = %e > 0. Then

∂y
(
%̃(h)v

)
= %̃ ′(h)v∂yh+ %̃∂yv

(19a)
= %̃ ′(h)v∂yh−

%̃ ′(h)

%̃(h)
Φ

(19b)
= 0.

Hence %̃(h(y))v(y) = De and �nally ∂yh(y) = 1
%̃(h(y))v(y)Φ(y) = Φ(y)

De
.

Remark 4.1.

1. A distinctive feature of the Lmnc model is that the steady enthalpy does not depend on the equation of state
except through the computation of he. Moreover as Φ is non-negative (Hypothesis 4.1), the enthalpy is monotone
increasing.

2. There is no proof of existence for an asymptotic state of System (1) (in the sense t→ +∞) in the general case.9

But if such an asymptotic solution exists, it is necessary the one described in Proposition 4.1.

3. Given the expression of h in Proposition 4.1, it can be stated whether the steady �uid appears only as a (pure)
liquid phase (if h(Ly) < hs�l ) or as a mixture (hs�l ≤ h(Ly) ≤ hs�g ) or also as a (pure) vapour phase (h(Ly) > hs�g ).

To compare the in�uence of the equation of state on the steady solution, we consider values of a pressurised water
reactor with water injected at liquid state:

� thermodynamic pressure: p∗ = 15.5 MPa,

� height of the core: L = 4.2 m,

� power density: Φ? = 170× 106 W ·m−3,

� injection: ve = 0.5 m · s−1 and %e = 750 kg ·m−3 so that De = 375 kg · s−1 ·m−2.

Since the injection is water at liquid phase, we compute he depending on the equation of state. For NIST-0, SG and
NASG, the computation is exact: he = q �l + p∗

β �l

1
%e
. For NIST-p, we have to solve numerically %(he, p∗) = %e. We

obtain

¶ SG · NASG ¸ NIST-p ¹ NIST-0

he 1.190× 106 J · kg−1 1.523× 106 J · kg−1 1.274× 106 J · kg−1 1.276× 106 J · kg−1

The NIST tables provide an approximate value %e = 1.273 78× 106 J · kg−1.

The discrepancy between the four values at y = 0 remains the same over the whole domain as the steady solutions
y 7→ h(y) are linear with the same slope (see Figure 7a).

It can also be stated where the �uid is present only as a (pure) liquid phase (if h(y) < hs�l ) or as a mixture (hs�l ≤
h(y) ≤ hs�g ) or also as a (pure) vapour phase (h(y) > hs�g ) by solving level sets h(y) = hsκ ⇐⇒ y = ysκ:

¶ SG · NASG ¸ NIST-p ¹ NIST-0

ys�l 0.964 m 0.160 m 0.786 m 0.780 m
ys�g 4.002 m 2.950 m 2.917 m 2.912 m

The errors upon the enthalpies at saturation and at the entry result in dramatic consequences: the computations
provide a late vaporisation as we can see in the schematic comparison of Figure 7b of the distribution of pure liquid,
steam-water mixture and vapour phases in the reactor core.

9It has been proven for the Sti�ened Gas law and for simple expressions of Φ in [4].
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5 Numerical strategy and simulations

5.1 Numerical scheme

Let us �rst recall what was investigated from the numerical point of view in our previous works, which all used the
SG law for the EOS. In [4], the 1D Lmnc model with phase transition is simulated by means of two distinct numerical
schemes based on the method of characteristics. Unconditionally stable, they ensure the positivity of the density.
In [14], we derive a 2D weak formulation for the monophasic version of the model. It is extended to multiphasic �ows
in [5] with a weak formulation requiring an interface tracking algorithm.

In this section, we present a new version of the �nite element approximation which overcomes the previous issues and
deals with tabulated values in the context of phase transition. Moreover, thermal conduction is taken into account.

For the transport terms, we use the method of characteristics. This feature is embedded in the Finite-Element
software FreeFem++ through the function convect. For reasons highlighted below in Remark 5.1, we do not consider
Equation (17a) as such but under the equivalent form

∇·u =
β̃(h)%̃(h)

p∗
[∂th+ u · ∇h] . (17a')

Applying the method of characteristics to discretise the convection operators, the weak formulation reads

�At time tn+1, �nd (un+1, hn+1,Pn+1) ∈ (ue + U)× (he +H)× L2(Ω2) such that∫∫
Ω2

ptest∇·un+1 dx =

∫∫
Ω2

β̃(hn)%̃(hn)

p∗

hn+1 − hn(ξn)

∆t
ptest dx, ∀ ptest ∈ L2,∫∫

Ω2

%̃(hn)
hn+1 − hn(ξn)

∆t
htest dx =

∫∫
Ω2

Φ(tn+1, ·)htest dx−
∫∫

Ω2

Λ̃(hn)∇hn+1 · ∇htest dx, ∀ htest ∈ H,∫∫
Ω2

%̃(hn)
un+1 − un(ξn)

∆t
· utest dx+

∫∫
Ω2

µ̃(hn)

2

(
∇un+1 + (∇un+1)T

)
: :
(
∇utest +∇uTtest

)
dx

+

∫∫
Ω2

η̃(hn) (∇·un+1)(∇·utest) dx−
∫∫

Ω2

Pn+1∇·utest dx =

∫∫
Ω2

%̃(hn)g · utest dx, ∀ utest ∈ U .�

where

H =
{
θ ∈ H1(Ω2) : θ(x, 0) = 0

}
,

U =
{
v ∈

(
H1(Ω2)

)2
: v(x, 0) = 0, v · n(0, y) = v · n(Lx, y) = 0

}
,

and ξn is a numerical approximation of ξ(tn; tn+1,x) where ξ is the solution of the characteristic equation:
dχ

dτ
= u

(
τ,χ(τ ; t,x)

)
,

χ(t; t,x) = x.
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Notice that due to discontinuities of most coe�cients accross (potential) level sets Γ�l and Γ�g, there should be some

interface terms in the weak formulation but the latter terms vanish due to jump conditions (18). In particular, there
is no more need to track the interfaces, which reduces the computational costs.

We do not give more details either about the mathematical content or the numerical treatment since the problem is
simulated by means of FreeFem++ [27], which solves directly the weak formulation given above.

We recall that the parameters β̃ and %̃ are given in Table 6.

Remark 5.1. The replacement of Equation (17a) by (17a') makes the weak formulation easier to solve. Indeed, it
would rather read∫∫

Ω2

ptest∇·un+1 dx =

∫∫
Ω2

β(hn)ptest
p∗

Φ dx−
∫∫

Ω2

Λ(hn, p∗)∇hn+1 ·
[
∂β

∂h
(hn, p∗)

ptest
p∗
∇hn +

β(hn)

p∗
∇ptest

]
dx.

Consequently, this would require to increase the regularity of ptest and to approximate the function ∂β
∂h which may

induce instabilities. Replacing the right hand side in (1a) by the left hand side in (1b) enables to overcome all these
issues. See [5] for another numerical strategy.

5.2 Data

Choice of the equation of state First, let us observe that a �rst comparison between the Sti�ened Gas law, the
Noble-Abel Sti�ened Gas one, and the two di�erent tabulated approaches (NIST-p and NIST-0) has been done in
Section 4.3, since the di�erences can already be observed on the steady states in 1D. Further comparisons in 2D are
performed in � 5.4.2.

Physical and numerical parameters Based on the numerical schemes detailed above, we perform some simula-
tions with our tabulated EOS aimed at:

1. verifying our code by means of comparisons with explicit steady solutions (given in dimension 1);

2. highlighting the accuracy of the tabulated approach to describe the physics (dimension 2);

3. showing the low in�uence of the thermal conduction for physically relevant data (computations in dimension 2);

4. showing the ability of the model and of the 2D-scheme to capture the �ow complexity by emphasizing the
in�uence of the gravity orientation (computations in dimension 2).

Parameters are set as follows to simulate a PWR:

� Geometry: Lx = 1 m, Ly = 2 m.

� Discretisation parameters: 40 nodes on the horizontal boundaries, 80 nodes on the vertical boundaries, which
results in an unstructured mesh generated by FreeFem++ with 3740 vertices and a characteristic length of
the mesh around 2 cm. The mesh can be seen on Figure 9. The use of the method of characteristics makes
the numerical schemes unconditionally stable. Consequently, there is no constrain upon the time step. But to
ensure a good accuracy, we cannot take a too large value for the time step. We set ∆t = 0.01 s.

� Reference values: p∗ = 15.5 MPa, Φ? = 170× 106 W ·m−3, %e = 750 kg ·m−3, De = 375 kg ·m−2 · s−1.

� Initial data: h0(x, y) = %−1(%e), u
0(x, y) = (u0(x, y), v0(x, y)) = (0, De/%e).

� The power density Φ (constant or not) is speci�ed in each of the following sections.

In every test case, we check that the Mach number remains small in all phases during the whole computation, in
order to ensure the validity of our low Mach number model. The Mach number is computed from the speed of sound,
with NIST-p tabulated values for pure phases, and Formula (24) given in Appendix C for the mixture.

5.3 Validation of the 2D numerical scheme

In this test case, we aim at validating our two-dimensional numerical scheme. To this end, we chose the power density
Φ(x, y) to be uniformly constant equal to 2Φ?, which produces a quasi 1D case. Starting from a domain initially �lled
with liquid, this yields appearance of both mixture and vapour. The computation is performed with the NIST-p data
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Figure 8: Isolines of enthalpy at time t = 1.6 s (asymptotic state) (test case of � 5.3)

given in Tables 2 and 7. In order to compare with the predicted asymptotic solution given in Proposition 4.1, we
neglect thermal conductivity for this test case. Thus, the steady solution for the enthalpy in 1D is given by

h(y) = %̃−1(%e) +
2Φ?
De

y ' 1.273× 106 + 1.36× 106y.

In our computation, we observe a numerical convergence towards an asymptotic solution. The relative di�erence
between this asymptotic solution and the 1D steady solution is of order 10−2, and reaches a maximum value of 1%
at the top of the domain. This shows the good matching between the two solutions.

Moreover, we observe that this 2D computation on unstructured mesh allosw to capture a 2D solution independent
of the variable x, as shown on Figure 8.

5.4 Phase transition with a compactly supported heating

In all the test cases of this section, the power density is chosen to be compactly supported within a disc in the lower
part of the core, which yields a genuine 2D case:

Φ(x, y) = 20Φ?1{(x−0.5)2+(y−0.5)260.1252}(x, y).

We can see on Figure 9(a) the localisation of the power density (where the �uid is heated).

5.4.1 Reference test case

The values given in � 5.2 with λ ≡ 0 lead to a scenario in which the temperature increases as the �ow passes through
the heat source and some mixture appears as seen on Figure 10(a). The NIST-p approach described in � 3.1.2 is
used for the equation of state. The mixture phase has a lower density than the liquid phase. Hence, as the �ows
goes upwards and the gravity �eld is pointing downwards, a Rayleigh-Taylor instability occurs (see Figure 9(b)): the
gravity makes the lighter phase speed up through the heavier phase above (Archimedes' principle). The instability is
well recovered by the numerical scheme over this mesh.

In addition, we plot the Mach number of the �ow at time t = 0.55 s on Figure 10(d), which is the time for which the
�ow is the most mixed up. We notice that it remains small (of order 10−2 at the maximum), which guarantees the
validity of our low Mach number model for such �ows. It is in particular the case in the mixture phase where the
speed of sound is yet decreasing. The temperature and the norm of the velocity are also plotted at the same time on
Figure 10. The localisation of mixture in the �ow is in particular observed on Figure 10(c), where the temperature

is constant and equal to T̂ s = 617.939 K.

5.4.2 In�uence of the EOS

In this section, we observe the discrepancy induced by the use of di�erent EOS in a 2D unsteady test case. In practical
terms, we compare the strategies we introduced in Section 3, namely ¶-· for the SG/NASG EOS, ¸ for high-order
�tting polynomials and ¹ for constant approximations.
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(a) t = 0.10 s (b) t = 0.40 s (c) t = 0.55 s (d) t = 0.80 s

Figure 9: Enthalpy for a 2D �ow with phase transition at di�erent times (test case of � 5.4.1, EOS : NIST-p)

(a) Volume fraction (b) Magnitude of the velocity (c) Temperature (d) Mach number

Figure 10: Density, velocity, temperature and Mach number at time t = 0.55 s (test case of � 5.4.1, EOS : NIST-p)

We observe on Figure 11 that NIST-p and NIST-0 approaches lead to very similar results, whereas the SG EOS
induces a largely over-estimated temperature. The NASG EOS is not presented here, since we already observed on
Figure 7(a) that it overestimates the entrance enthalpy he computed from %e, and it thus leads here to very di�erent
results, with a much higher temperature. We recover the fact that for such accidental situations, academic EOS like
SG/NASG are not appropriate.

5.4.3 In�uence of the thermal conductivity

In this test case, the in�uence of thermal conductivity is investigated. The computations are performed with the
NIST-p data given in Tables 2 and 7.

The order of magnitude of the thermal conductivity is given in Table 1 (around 10−1). We observe on Figure 12 the
di�erence between numerical solutions with and without thermal di�usion at time 0.55 s. The error is of order 10−4,
which shows that for the physical situations we are interested in, the thermal conductivity does not play a major
role.
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(a) ¸ for NIST-p (b) ¹ for NIST-0 (c) ¶ for the SG EOS

Figure 11: Temperature at time t = 0.55 s with di�erent strategies for approximating the EOS (test case of � 5.4.2)

Figure 12: Relative di�erence between the enthalpy with λ = 0 and λ 6= 0 at time t = 0.55 s (test case of � 5.4.3,
EOS : NIST-p)

5.4.4 In�uence of the gravity �eld

Since our choice of 2D power density generates hydrodynamic instabilities apparently driven by gravity e�ects, we
focus on the impact of the gravity �eld direction. Again, the computations are performed with the NIST-p data given
in Tables 2 and 7.

Figure 13 depicts the same test case as in � 5.4.3 except for the gravity �eld whose orientation varies (down-
wards/null/upwards/to the right).

In the classical situation where the gravity is oriented downwards (Figure 13(a)), the �ow driven by the material
velocity is sped up by the gravity e�ects which makes the mixture phase (which is lighter than the liquid phase)
go upwards (see � 5.4.3 for more details about the appearance of the Rayleigh-Taylor instability). Without gravity
(Figure 13(b)), there is a unique physical phenomenon (forced convection) that governs the motion of �uid which
explains that at the same time of evolution, the mixture cloud is lower than in the previous case (but hotter as
the �uid remained longer within the core) and no Rayleigh-Taylor instability occurs. If the gravity �eld is upward
(Figure 13(c)), there is a balance between the two aforementioned phenomena. The �ow velocity makes the mixture
go to the top while the gravity makes it go to the bottom as it is lighter compared to the pure liquid phase. The
motion is even slower than without gravity. As for the horizontal case (Figure 13(d)), we observe that the mixture
tends to the left which is the opposite direction to the gravity �eld as expected. Hence, we see that our numerical
scheme enables to catch various types of behaviour depending on the data.
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(a) g = (0,−g) (b) g = (0, 0) (c) g = (0, g) (d) g = (g, 0)

Figure 13: Enthalpy at time 0.55 s for several orientations of the gravity �eld (test case of � 5.4.4)

Conclusion & Perspectives

The ultimate strategy to simulate a �uid �ow in a nuclear core would rely on À a compressible model coupled to a
tabulated equation of state satisfying thermodynamic laws and account for phase transition and on Á an accurate
and robust numerical scheme able to deal with any Mach regime with a �reasonable� computational cost. In our
opinion, this seems currently out of reach. That is why we propose in this paper a compromise between accuracy and
e�ciency by focusing on a speci�c regime � namely the low Mach number regime � by means of a reduced complexity
model which turns out to be physically relevant after all [45]. This low Mach model (Lmnc) is supplemented with
the original construction of an incomplete equation of state dedicated to constant thermodynamic pressure states. It
consists of a �tting polynomial procedure whose degree is left to the user. This leads to a natural numerical scheme
which is easy to implement, which satis�es basic thermodynamic requirements and which leads to a much smaller
computational cost than it would be with a compressible model coupled to a tabulated law like IAPWS [11, 51, 52].
The overall method is assessed by means of analytical and sti� test cases involving phase transition where classic
analytical EOS fail to provide relevant values.

In particular, we investigated two cases for the degree of �tting polynomials: NIST-p (high-order) and NIST-0 (low-
order). Theoretical (� 4.3) and numerical (� 5.4.2) results tend to show that the choice of the degree does not have
a signi�cant impact on the accuracy. On the contrary, comparisons between NIST-0 and the Sti�ened Gas law
(for which the density has a similar expression) prove that the crucial point is to exactly satisfy saturation points.

The discrepancy between hsκ deduced from the SG law and ĥsκ used in our strategy induces quite di�erent results
as presented in � 5.4.2. We mention that the procedure we described in this paper can be adapted by end-users
(numerical method to �t polynomials, range of temperatures, pressure value, . . . ) depending on the applications.

Our previous papers on the Lmnc model were based on the SG law to develop and assess the numerical strategy.
The present results henceforth enable to deal with more realistic applications and to provide reliable forecasts in
incidental situations. Future works will deal with more general equilibria implying a hierarchy of n-equation models.

A Sti�ened Gas (SG) and Noble-Abel � Sti�ened Gas (NASG) equations
of state

Let us give some details about the complete equation of state (6). Parameters cv, γ, π, b, Q and S0 are constants

describing thermodynamic properties of the �uid: cv > 0 is the isochoric heat capacity, γ =
cp
cv

> 1 the ratio of

isobaric and isochoric heat capacities10, π ≥ 0, b > 0 is the co-volume, Q the binding energy and S0 a reference

10Adopting the same convention as in [3, 40], the polytropic coe�cient or adiabatic exponent γ is de�ned by γ(τ,S) def= − τ
P

∂P
∂τ

∣∣∣
S
.

Except in the case of polytropic gases, this coe�cient di�ers from the widely used ratio of heat capacities. For the NASG EOS, γ is
related to the ratio of heat capacities by the relation γ = (1 + π

p
)γ.
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Phase cv [J ·K−1] γ π [Pa] Q [J · kg−1] b [m3 · kg−1] Q
′

[J · kg−1]

Liquid NASG 3202 1.39 8899× 105 −1244.191× 103 4.78× 10−4 0

Steam NASG 462 1.95 0 2287.484× 103 0 6417

Liquid SG 1816.2 2.35 109 −1167.056× 103 0 0

Steam SG 1040.14 1.43 0 2030.255× 103 0 −23 310

Table 8: Water and steam. Values for NASG laws from [36]. Values for SG laws from [35].

entropy. The latter parameter may often be replaced by the following one

Q
′ def= S0 + cv [γ ln(cv) + (γ − 1) ln(γ − 1)] .

The domain of de�nition of S is the set τ > b and ε−Q− π(τ − b) > 0. The parameters used in this law describing
a pure phase are determined by using a reference curve, usually in the (τ, p)-plane. For example, values for water
and steam computed in [35] for SG and in [36] for NASG are given in Table 8. These values yield reasonable
approximations over a range of temperature from 300 K to 500 K.

Using the fundamental thermodynamic relation TdS = dε+ pdτ and introducing classical potentials, we have

(τ, ε) 7→ T (τ, ε) =
1

∂S
∂ε

∣∣
τ

=
ε−Q− π(τ − b)

cv
, [temperature]

(τ, ε) 7→ p(τ, ε) = T
∂S
∂τ

∣∣∣∣
ε

= (γ − 1)
ε−Q
τ − b

− γπ, [pressure]

(τ, ε) 7→ h(τ, ε) = ε+ pτ = ε+ τ

[
(γ − 1)

ε−Q
τ − b

− γπ
]
, [enthalpy]

(τ, ε) 7→ c2(τ, ε) def=
∂p

∂%

∣∣∣∣
s

= −τ
2

T

(
∂2S
∂τ2

∣∣∣∣
ε

− 2p
∂2S
∂τ∂ε

+ p2 ∂
2S
∂ε2

∣∣∣∣
τ

)
= γ(γ − 1)

(
ε−Q− π(τ − b)

) τ2

(τ − b)2
. [speed of sound]

Thus, by inverting the function (τ, ε) 7→ (h, p)

(h, p) 7→ τ(h, p) =
γ − 1

γ

h−Q
p+ π

+ b, [volume]

(h, p) 7→ β(�Ah, p) = p
∂τ

∂h

∣∣∣∣
p

=
γ − 1

γ

p

p+ π
, [compressibility coe�cient]

(h, p) 7→ q(�Ah, p)
def=Q− p

β(�Ah, p)
b,

(h, p) 7→ %(h, p) =
1

τ(h, p)
=

p/β(�Ah, p)

h− q(�Ah, p)
, [density]

(h, p) 7→ T (h, p) =
h−Q− bp

γcv
=
h− Q̂(p)

γcv
. [temperature]

where Q̂(p) def=Q+ bp. The case of a sti�ened gas law is recovered by setting b = 0 (so that q = Q̂ = Q). The case of
a perfect gas law is recovered by setting b = Q = π = 0.

B Proof of Proposition 3.1

We note τ def= 1/%, so that β = p
∂τ

∂h

∣∣∣∣
p

. We recall the following classical de�nitions:

(c∗)2(τ,S) def=−τ2 ∂p

∂τ

∣∣∣∣
S
, cv

def= T
∂S
∂T

∣∣∣∣
τ

, cp
def= T

∂S
∂T

∣∣∣∣
p

, (20)
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where S is the speci�c entropy. We �rst remark that11

cp
cv

=
T ∂S

∂T

∣∣
p

T ∂S
∂T

∣∣
τ

=
− ∂T

∂τ

∣∣
S
∂τ
∂S
∣∣
T

− ∂p
∂S

∣∣∣
T

∂T
∂p

∣∣∣
S

=
∂p

∂τ

∣∣∣∣
S

∂τ

∂p

∣∣∣∣
T

= − (c∗)2

τ2

∂τ

∂p

∣∣∣∣
T

. (21)

Then

cp − cv = T

(
∂S
∂T

∣∣∣∣
p

− ∂S
∂T

∣∣∣∣
τ

)
= T

(
∂S
∂T

∣∣∣∣
τ

+
∂S
∂τ

∣∣∣∣
T

∂τ

∂T

∣∣∣∣
p

− ∂S
∂T

∣∣∣∣
τ

)
= T

∂S
∂τ

∣∣∣∣
T

∂τ

∂T

∣∣∣∣
p

= T
∂p

∂T

∣∣∣∣
τ

∂τ

∂T

∣∣∣∣
p

due to the Maxwell relation associated to the free energy F that satis�es dF = −pdτ − SdT . Hence

cp − cv = −T
∂τ
∂T

∣∣
p

∂T
∂τ

∣∣
p
∂τ
∂p

∣∣∣
T

(21)
= T

cv
cp

(c∗)2

τ2

(
∂τ

∂T

∣∣∣∣
p

)2

. (22)

Since the enthalpy satis�es the principle dh = TdS + τdp, then T ∂S
∂T

∣∣
p

= ∂h
∂T

∣∣
p
so that

1

cp
=
∂T

∂h

∣∣∣∣
p

. (23)

Finally

β = p
∂τ

∂h

∣∣∣∣
p

= p
∂τ

∂T

∣∣∣∣
p

∂T

∂h

∣∣∣∣
p

(23)
=

p

cp

∂τ

∂T

∣∣∣∣
p

(22)
=

pτ

c∗
√
T

√
1

cv
− 1

cp
.

C Mach number and speed of sound of the two-phase �ow

To evaluate the Mach number in the di�erential system and verify that it is low we need to compute the speed of
sound. It is given by

c∗(h, p) def=

√
∂p

∂%

∣∣∣∣
S

=
1√

1
%(h,p)

∂%
∂h (h, p) + ∂%

∂p (h, p)
=


c∗�l (h, p), if h ≤ hs�l ,
c∗�m�(h, p), if hs�l < h < hs�g ,

c∗�g (h, p), if h ≥ hs�g .

In pure phases, we can �t the speend of sound with a polynomial based on the NIST table [37] as previously but
for the sake of consistency, we choose to match the new expression (8) of β which provides a �tting function (which
is no more a polynomial). For instance, with a NIST-p strategy for both β and cp, the relative error between this
construction and the values extracted from the tables are 6.85× 10−3 in the liquid phase and 5.64× 10−3 in the
vapour phase.

In the mixture, the speed of sound at mechanic and thermodynamic equilibrium is given by (see [4] for details)(
1

c∗�m�

)2

(h, p) =
[−α(h, p)(%s�g )′(p)− (1− α(h, p))(%s�l )′(p)]q�m�(p) + α(h, p)(%s�gh

s
�g )′(p) + (1− α(h, p))(%s�l h

s
�l )′(p))− 1

h− q �m�(p)
.

(24)
where (%sκ)′ and (%sκh

s
κ)′ are the derivatives of p 7→ %sκ(p) and p 7→ %sκ(p)hsκ(p). When one uses analytical EOS in pure

phases, we can di�erentiate these relations to obtain those derivatives (as in [4] with the SG law). In the present
case, as we use tabulated values in pure phases, (%sκ)′ and (hsκ)′ are approximated by centered �nite di�erences:

(%sκ)′(p∗) =
%sκ(p−1)− %sκ(p1)

p−1 − p1
, (%sκh

s
κ)′(p∗) =

%sκ(p−1)hsκ(p−1)− %sκ(p1)hsκ(p1)

p−1 − p1
,

where pi, %
s
κ(pi) and h

s
κ(pi), i = −1, 0, 1, are obtained from experimental data (see Table 9 for the pressure of interest

p∗ = 15.5 MPa).

Note that c∗�m�
(
hsκ(p), p

)
< c∗κ

(
hsκ(p), p

)
, see for example [20,40].

11We make use of the following formula: for an EOS f(X1, X2, X3) = 0, we have ∂X1
∂X2

∣∣∣
X3

∂X2
∂X3

∣∣∣
X1

∂X3
∂X1

∣∣∣
X2

= −1.
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p [MPa] %s�l [kg ·m−3] hs�l [kJ · kg−1] %s�g [kg ·m−3] hs�g [kJ · kg−1]

p−1 = 15.499 594.397161363 1629.84051905 101.919399943 2596.14861770
p0 = 15.500 594.378648626 1629.87998125 101.930084802 2596.11873446
p1 = 15.501 594.360134886 1629.91944396 101.940770824 2596.08884821

Table 9: Data on saturation curve to compute (%s�l )′, (%s�g )′, (hs�l )′ and (hs�g )′ depending on p. Values for water [37]

Remark C.1. In [42,46], another equivalent expression is used:(
1

c∗�m�

)2

(h, p) =

% �m�(h, p)

(
α(h, p)

%s�g (p)(cs�g )2(p)
+

1− α(h, p)

%s�l (p)(cs�l )2(p)
+ T s(p)

(
α(h, p)%s�g (p)γ�gcv�gχ

2
�g (p) + (1− α(h, p))%s�l (p)γ�lcv�l

χ2
�l (p)

))

where χκ(h, p) = βκ(h,p)−β�m�(p)
p and (c∗κ)s(p) = c∗κ

(
hsκ(p), p

)
is the speed of sound of the pure phase κ at saturation.
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