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50 Avenue Halley, 59655 Villeneuve d’Ascq - France

Abstract

In this paper, we propose a novel gender recognition framework based on a Fuzzy Inference
System (FIS). Our main objective is to study the gain brought by FIS in presence of vari-
ous visual sensors (e.g., hair, mustache, inner face). We use inner and outer facial features
to extract input variables. First, we define the fuzzy statements and then we generate a
knowledge base composed of a set of rules over the linguistic variables including hair volume,
mustache and a vision-sensor. Hair volume and mustache information are obtained from Part
Labels subset of Labeled Faces in the Wild (LFW) database and vision-sensor is obtained
from a pixel-intensity based SVM+RBF classifier trained on di↵erent databases including
Feret, Groups and GENKI-4K. Cross-database test experiments on LFW database showed
that the proposed method provides better accuracy than optimized SVM+RBF only clas-
sification. We also showed that FIS increases the inter-class variability by decreasing False
Negatives (FN) and False Positives (FP) using expert knowledge. Our experimental results
yield an average accuracy of 93.35% using Groups/LFW test, while the SVM performance
baseline yields 91.25% accuracy.

Keywords: gender recognition, fuzzy inference system, fuzzy rules, cross-database tests

1. Introduction

Gender recognition is a challenging two-class classification task in computer vision to
identify female and male faces. Visual gender recognition is a key component of demographic
studies and focuses on gender, age and ethnicity analysis for targeted advertisement, elec-
tronic marketing, biometrics, and Human Computer Interaction. Gender recognition studies
rely on di↵erent disciplinary fields using text, speech, image and video. Considering the vi-
sual gender recognition, the gender can be recognized from video, 2D images (e.g., color and
intensity images), 2.5D images (e.g., RGB-D depth images) and 3D images. Besides that,
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there are studies relying on the whole body and gait sequences. However, in the literature,
the main approach to gender recognition is 2D facial analysis. Therefore, our literature
review focuses on 2D facial gender recognition (FGR) and FGR related studies.

FGR is not a trivial task and it holds known challenges (e.g., illumination, head-pose
changes, occlusions) of other face based pattern recognition problems. There are multi-
ple factors that e↵ect the FGR process. First groups of factors are created by the human
such as head-pose changes, aging, make-up, ethnicity, accessories, occlusions, facial hair and
expressions. The second group of factors is usually the external factors such as lighting,
illumination conditions, camera resolution and perspective. Large intra-class variations in
female and male subjects also brings further di�culties. In the literature, di↵erent prepro-
cessing, normalization, feature extraction and classification techniques proposed to overcome
these di↵erences where majority of them are inspired from face recognition studies. A general
processing chain for traditional 2D FGR methodologies is summarized in Fig. 1.
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Figure 1: General processing chain for 2D-FGR methods.

Initial studies in the domain considered appearance-based features like raw pixels such
as in (Golomb, Lawrence & Sejnowski, 1990; Gutta, Huang, Jonathon & Wechsler, 2000;
Moghaddam & Yang, 2002; Walawalkar, Yeasin, Narasimhamurthy & Sharma, 2002). More
recent studies have focused on feature based methods such as in (Shan, 2012; Santana,
Lorenzo-Navarro & Ramon-Balmaseda, 2013; Ramon-Balmaseda, Lorenzo-Navarro & Castrillon-
Santana, 2012; Dago-Casas, Gonzalez-Jimenez, Yu & Alba-Castro, 2011). Histogram of
Oriented Gradients (HOG) and Gabor filters for unconstrained gender recognition were
studied in (Santana, Lorenzo-Navarro & Ramon-Balmaseda, 2013). LBP operator (Ojala,
Pietikainen & Maenpaa, 2002) and its variants are also widely used in feature based methods.
A recent survey explaining board range of methodologies for vision based gender recognition
is presented in (Ng, Tay & Goi, 2012). Since gender recognition is also a pattern recogni-
tion problem, Adaboost, nearest neighbor classifiers, neural networks, and SVM classifiers
are widely used. According to the literature survey, SVM classifier with RBF kernel is the
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most common classifier used in gender recognition studies because of its high generalization
ability.

The main shortcoming of 2D FGR is that they focus on inner face area and ignore outer
face segments and contextual information that may help improving the generalization abil-
ity of the methods. Majority of the literature on gender recognition focuses on extracting
information from internal face area and several others focuses on multi-feature extraction
by using external cues. Among others, e↵ect of facial hair (e.g., hair, mustache and beard)
to FGR is less studied. Current literature discusses only pixel-intensity based and feature-
based (e.g., LBP, Gabor filters) evaluation of facial hair for FGR. Face and neck region is
studied in (Ueki & Kobayashi, 2008), hair and upper body clothing is studied in (Li, Lian
& Lu, 2012), Head-shoulder based gender recognition is studied in (Li, Bao, Dong, Wang
& Su, 2013). Authors in (Tome et al., 2014) studied soft biometrics such as gender, hair,
arm length. (Satta et al., 2014) also used contextual information to complement face fea-
tures. Although these methods obtained better performance compared to the similar FGR
methods, they use automatic techniques based on heuristics and localization. Therefore,
the actual e↵ect of the contextual information under perfect conditions is still unknown.
According to the extensive experiments by (Makinen & Raisamo, 2008), face location nor-
malization is more important than including facial hair for FGR. They also concluded that
inclusion of hair does not guarantee a better classification rate when compared to the images
without hair. However, their experiments are based on pixel intensities without considering
any segmentation. Therefore, their results depend on the complexity of the background.
For example, their experiments on Feret database showed that use of hair information has
a positive e↵ect on average FGR accuracy using di↵erent classifiers. This is because that
the controlled background contributes to the FGR process and virtually provides the hair
segmentation. On the other hand, their experiments on WWW images showed that use
of hair information has negative e↵ect on average FGR accuracy due to the complex and
uncontrolled background. Therefore, there is a need to explore actual e↵ect of contextual
information to the FGR on a large scale annotated database. So far there was no such
database available. The Part Labels (Kae, Sohn, Lee & Learned-Miller, 2013) database is
the first database providing manual annotations of face, facial hair and background based
on superpixels. Using Part Labels database, low-level information extracted from images
can be combined with rich contextual knowledge to include human reasoning in the decision
process. For example, women’s hair is longer than that of men in general as shown in Fig. 2.

This common knowledge may provide additional information for existing classification
systems. Although it is di�cult to generate a rule covering all female and male subjects,
a Fuzzy Inference System (FIS) can use generated rules based on expert knowledge. FIS
are one of the most common applications of fuzzy logic to solve problems in pattern recog-
nition such as in (Melin, Mendoza & Castillo, 2010; Polat & Yildirim, 2008; Zadeh, 2010).
However, considering the visual gender recognition problem, there exist a few fuzzy logic
studies. Authors in (Leng & Wang, 2008) used Fuzzy SVM to increase the generalization
ability for gender classification. They used Learning Vector Quantization (LVQ) to generate
fuzzy membership functions. Their experiments on di↵erent databases confirmed that Fuzzy
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Figure 2: Average female and male faces obtained from Part Labels database.Red color presents both hair
and facial hair. Green color presents inner face and visible neck region. Blue color presents background.

SVM shows strong robustness to variations than traditional SVM, LDA and NN methods.
Authors in (Moallem & Mousavi, 2013) used shape and texture information to design a fuzzy
decision making system. They use Zernike moments to apply texture properties to FIS. They
obtained 85.05% accuracy on Feret database including di↵erent pose and expressions.

The main advantage of a FIS is its ability to handle linguistic information and to per-
form nonlinear mappings between the input and output variables. Since FIS is designed
from expert knowledge or from raw data, we can generate such rules to solve the gender
recognition problem. However, expert knowledge only based FIS may show poor perfor-
mance (Guillaume, 2001) due to the capacity of the expert to generalize the variability of
the subjects. Therefore, it must be supported by additional inputs. Creation of a successful
fuzzy system depends on the system design and optimization including quality of the input
variables, fuzzy sets and appropriate rules.

In this study, we propose a novel gender recognition framework based on FIS. Our study
aims to explore the e↵ect of facial hair to the FGR using a FIS model where the hair is
considered as a segmented region rather than pixel-intensities. Therefore, in this study, we
focused on a set of human factors (e.g., FIS, facial hair) and the classification methodology.
We used hair volume and mustache ratio as linguistic variables from our expert knowledge.
The output of pixel-based SVM+RBF classifier (in the range [-1, +1]) is then used as a
vision-sensor input to the FIS model with other input variables (e.g., hair, mustache). We
defined a gender recognition knowledge base having six rules performing nonlinear mapping
between the input and output variables. Since we used manually segmented hair information,
our study explores actual e↵ect of the use of hair for the FGR. Cross-database tests on LFW
showed that FIS obtains better results than the performance baseline of single SVM+RBF
approach.

In comparison to previous studies, the main contribution of this study is two-fold. First,
we showed that hair volume and mustache has positive e↵ect on gender recognition results.
We used manually annotated hair information which shows the real e↵ect of the facial hair
for the FGR independent from the possible errors in the feature extraction methodology.
Second, FIS further improves classical SVM based recognition with proper membership
functions and rules presenting human reasoning.

The remainder of this paper is organized as follows. Section 2 presents our methodology
based on FIS. Section 3 present databases before discussing deeply experimental setup,
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evaluation metrics and results obtained on public databases and comparison with the state-
of-the-art methods. The final section summarizes and concludes the study with future
directions.

2. Methodology

The general framework of the proposed approach is shown in Fig. 3. We used hair and
mustache information from Part Labels subset (Kae, Sohn, Lee & Learned-Miller, 2013)
of the LFW database (Huang, Ramesh, Berg & Learned-Miller, 2007). Although we are
using manually segmented annotations, methods for automating this process are available
in the state of the art (Kae, Sohn, Lee & Learned-Miller, 2013). In addition, we used
pixel-intensity based SVM+RBF classifier from our previous work on gender recognition
(Danisman, Bilasco & Djeraba, 2014).
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Mamdani Fuzzy Inference System 

Figure 3: General framework of the proposed approach. a) Crisp linguistic variable computation. b)
Mamdani FIS model (Mamdani & Assilian, 1975).

In order to obtain crisp input variables in Fig. 3(a), we performed a geometric and pho-
tometric normalization on the input images as described in (Danisman, Bilasco & Djeraba,
2014). Then low-level and high-level information are extracted using both the annotations
and the SVM classifier. The crisp values are then fed into the FIS model shown in Fig. 3(b).
The fuzzification step evaluates the crisp input values by considering the corresponding in-
put membership functions to obtain the fuzzy sets. Then, an inference engine evaluates
the fuzzy sets and generates a fuzzy set output to be evaluated by the defuzzification step.
Finally, we obtain the crisp output from the defuzzification process.

Cross-database tests are performed using di↵erent public databases: Feret (Phillips,
Wechsler, Huang & Rauss, 1998), GENKI-4K (http://mplab.ucsd.edu, 2011), Groups (Gal-
lagher & Chen, 2009) and LFW. Individual SVM model training is performed on Feret,
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GENKI-4K and Groups databases. Optimized models are tested against LFW database by
FIS.

2.1. Feature extraction

We extracted three linguistic variables: hair, mustache, and vision-sensor. Hair and
mustache information is directly extracted from the Part Labels database. In order to obtain
crisp hair ratio value, we normalized hair volume size by facial area. Similarly, we obtained
the crisp mustache ratio value by coarse localization of nose and mouth area represented
by the square (x=16, y=20, w=8, h=8) in 40 ⇥ 40 images as shown in Fig. 4. All images
are normalized as described later in this section. Figure 5 shows sample images from Part
Labels and LFW databases.

Figure 4: Coarse mouth localization samples from Part Labels database.

a) 

b)

Figure 5: a) Segmented female (first row) and male (second row) images from the Part Labels database. b)
Corresponding female and male images from LFW database.

Vision-sensor variable is obtained from the response of the SVM classifier between the
range [-1, +1] where positive and negative responses show the gender information. We
linearly extend this range to [-10, +10] for a better visual display as shown in Figure 6. In
this particular Groups/LFW-P cross-database test, the vertical axis values are used as the
vision-sensor value.
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Figure 6: Cross-database Groups/LFW-P test results (vision-sensor) using SVM+RBF method
(Accuracy=91.25%).

2.1.1. Face detection and alignment

We followed the same preprocessing steps described in our earlier study (Danisman,
Bilasco & Djeraba, 2014). First, we detected the faces using well-known ”frontal alt2” haar-
like features model Viola & Jones (2004) available in OpenCV (Bradski, 2000). Then, eye
detection is performed to correct in-plane rotation of the face according to the vertical po-
sition of left and right pupil. We used the neural network-based eye detector Rowley et al.
(1998) available in the Stacked Trimmed Active Shape Model (STASM) Milborrow & Nicolls
(2008) library to locate the positions of the pupils. After that, a geometric normalization
is performed. For the face alignment, we considered normalized IPD (Inter-Pupillary Dis-
tance) which is the Euclidean distance between the eye centers. Note that initial location
of the OpenCV face detection results are updated according to the IPD distance using the
following equations where F

x

, F
y

, F
w

and F

h

represents new x, y, width and height of the
face. Eye

Left

x

and Eye

Left

y

are the x and y positions of the left eye with respect to upper
left origin of the image.

F
x

= Eye
Left

x

� IPD/4.0 (1)

F
y

= Eye
Left

y

� IPD (2)

F
w

= IPD ⇥ 1.5 (3)

F
h

= IPD ⇥ 2.5 (4)

Scalar values 4.0, 1.5 and 2.5 are selected according to experimental observations. Aligned
face is then resized to 20⇥ 24 image. Finally, a photometric normalization is applied using
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histogram specification to overcome illumination di↵erences. Figure 7 shows the initial and
cropped face region after the use of Eq. (1), (2), (3) and (4).

        a)                                        b)                            c)                             d)                        e)          f) 

Figure 7: Geometric normalization and alignment of the face. a) Original image b) Gray-level image c) Face
detection d) Eye detection and in-plane orientation correction according to eye levels e) Face cropping with
respect to the IPD f) Face scaling by 20⇥ 24

2.1.2. Histogram specification

Histogram specification and histogram equalization are fundamental image enhancement
techniques used in image processing. Histogram equalization assigns equal number of pixels
to all gray levels. However, this method does not consider common facial appearance.
Histogram specification is a generalization of histogram equalization where the image is
normalized with respect to a desired probability density function (pdf). Since we know
an average human face, we can apply the histogram extracted from the average face to all
normalized images. Figure 8 shows the e↵ect of histogram specification for a given face
image using the histogram of the average face.

As seen on Figure 8 (c), estimated new histogram is more close to the histogram of
the average face. This feature provides better correction of the image histogram in case of
di↵erent illumination conditions.

2.2. Parameter selection

After the feature extraction step, normalized faces of size 20 ⇥ 24 are used both for
training the SVM with RBF kernel and to select the optimal cost (C) and gamma (�)
parameters. We used five-fold cross-validation method on GENKI-4K database for the
parameter selection with the easy tool present in LibSVM (Chang & Lin, 2011) where a
grid search is applied. Since the combination of large � and large C leads to overfitting, we
selected C = 4 and � = 0.03125 as the optimum values which are similar to the selected
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Figure 8: a) Average image obtained from web database and its histogram. b) Example test image and
corresponding histogram. c) Result of histogram specification on b) using the histogram of a)

parameters obtained in (Makinen & Raisamo, 2008). This setting provides 90.34% accuracy
using five-fold cross-validation on GENKI-4K. Figure 9 shows the parameter space and
corresponding accuracies obtained from five-fold cross-validation.
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Figure 9: SVM+RBF parameter space and corresponding five-fold cross-validation accuracy for GENKI-4K.
Selected parameters C = 4 (log2(C) = 2) and � = 0.03125 (log2(�) = �5).

Hair and mustache boundary values are selected considering visual analysis of the ex-
tracted values as presented in Fig. 10 and Fig. 11.
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Figure 10: Logarithmic scale representation of the hair ratio in Part Labels database.
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Figure 11: Logarithmic scale representation of the mustache ratio in Part Labels database.

2.3. Fuzzy inference system

A FIS is a way of mapping input space variables to one or more output space variables
using fuzzy logic. Basic components of a FIS are present in Fig. 3(b). The most common
types of the fuzzy systems are Mamdani (Mamdani & Assilian, 1975) and Takagi-Sugeno
models (Takagi & Sugeno, 1985) and they are denoted as expert systems. The main di↵er-
ence between the two FIS models is the form of the consequents. In Mamdani model, the
output member function can be evaluated independently from the input variables, while in
Takagi-Sugeno model, the output member function is a function of its inputs. We selected to
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use Mamdani type FIS for its ability to have independent output member functions, simple
structure of min-max operations and wide acceptance for capturing expert knowledge.

A FIS is composed of the following components:

• fuzzification: modifies the crisp inputs using the input membership functions (MFs)
so that they can be used by the rule base.

• knowledge base: consists of a rule base and a database storing the MFs. The rule
base consists of a set of rules of type IF-THEN. A rule is also called fuzzy implication
having an antecedent and a consequence. The database is a collection of MFs used by
both of the fuzzification and defuzzification methods.

• inference engine: evaluates relevant rules according to the current input variables.

• defuzzification: converts outputs of the inference engine into the outputs of the
fuzzy system using a specified defuzzification technique. Center of Gravity (COG),
Center of Sums (COS) and Mean of Maximum (MOM) are well-known defuzzification
techniques in the literature.

The Fuzzy Logic Toolbox of the Matlab software is used for creating the Mamdani
FIS model in Multi Input Single Output (MISO) scheme. We used gaussian combination
membership function to define the fuzzy sets. Gaussian combination membership function
is a smooth MF that depends on four parameters �1, c1, �2, c2, to define two gaussians as
given by:

µ(x;�1, c1,�2, c2) =

8
>><

>>:

exp
h
�(x�c1)2

2�2
1

i
: x < c1

1 : c1  x  c2

exp
h
�(x�c2)2

2�2
2

i
: c2 < x

(5)

where �1 and c1 define the leftmost curve and �2 and c2 define the rightmost curve. Figure
12 shows MF plots of input and output variables.

A fuzzy set A in X is a set of ordered pairs:

A = {(x, µ
A

(x)) | x 2 X} (6)

where µ

A

is the MF, µ
A

: X ! M , M is the membership space where each element of X is
mapped to. Therefore, µ

A

(x) presents the degree of membership of x in A, which maps X to
the membership space. Considering the Eq. 5, Table 1 presents the details of each gaussian
combination MF used in the framework.

We created six rules defining the mapping logic between the input and output variables
as shown in Fig. 13. In order to handle fuzzy logic in a rule base system, the ”AND”
operator is handled as the intersection of the corresponding MF such that, for two fuzzy
sets A and B:

A \B,µ
A\B(x) = min(µ

A

(x), µ
B

(x)) (7)
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Figure 12: Input and output membership function plots for hair, mustache, vision-sensor and gender.

Table 1: Details of the MF database. LV=Linguistic variable, MF=Membership Function

LV Type MF Interval �1 c1 �2 c2

hair input hlow [0,3] 0.251 -0.824 0.103 0.836
hair input hhigh [0,3] 0.298 1.652 0.067 3.800
mustache input mlow [0,1] 0.217 -0.223 0.024 0.052
mustache input mhigh [0,1] 0.110 0.392 0.227 1.157
vision-sensor input neg. [-60,60] 13.690 -76.730 14.580 -35.610
vision-sensor input pos. [-60,60] 3.397 9.000 8.901 73.020
gender output female [0,1] 0.338 -0.101 0.170 0.0481
gender output male [0,1] 0.168 0.949 0.391 1.114

According to the defined variables and corresponding MFs, Figure 14 shows the surface
view of input and output variables in our Mamdani FIS model. The relation among the
hair, mustache and gender is present in Fig. 14(a). Since the mustache value is obtained by
measuring the body hair in the localized mouth area, it may include noisy information due
to head pose changes and hair occlusions present in this region. This may also happen in
frontal upright faces as well. It generates information where the subject has long hair and
high mustache ratio at the same time. In such cases, the decision is given by the vision-
sensor considering the inner face area. See Fig. 13 (rule 1 and rule 2) . Figure 14(b) shows
the relation among hair, vision-sensor and gender. High hair ratio and high vision-sensor
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Figure 13: Details of the rule base.

response indicates high probability of a female subject. Therefore, in Fig. 14(b) lower part
of the surface is activated.
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Figure 14: Surface view of input and output variables. a) Relation of the hair, mustache and gender. b)
Relation of the vision-sensor, hair and gender.

In defuzzification step, we selected COG method to find the point where a vertical line
slices the aggregate set into two equal masses as shown in Eq. 8. COG method finds a point
representing the center of gravity of the fuzzy set A on the interval ab. Figure 15 shows
examples of female and male inputs and corresponding COG outputs (bold vertical red line
on gender column) from the FIS.

COG =

R
b

a

µ
A

(x)xdx
R
b

a

µ
A

(x)dx
(8)
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Each row in the Fig. 15 shows the evaluation of a single rule from the rule base with
respect to the corresponding input values. According to the final evaluation by the COG
defuzzification method, final gender decision is given. A female response is given when the
COG output value is less than 0.5 and a male response is given when the COG value is
greater than 0.5.
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Figure 15: Example of crisp input and output for di↵erent genders.

3. Experiments

In order to demonstrate the e↵ectiveness of the proposed method, we performed quanti-
tative experiments on variety of databases including Feret, GENKI-4K, Groups and LFW.
Experiment databases are selected from publicly available databases and manually anno-
tated into female and male classes, except the Groups database.

3.1. Databases
We select training databases that give the lowest accuracies in cross-database tests.

Among others, we used GENKI-4K which is an unconstrained and balanced (in terms of
female to male ratio) database for parameter selection as described in Section 2.2. The same
parameter set (C and � ) is applied for all train and test experiments.

Table 2 summarizes the characteristics as well as initial and normalized population of
the databases used in the experiments. The variety of the features of the selected databases
guarantees a basic validation of our method in a wide collection of settings.

3.1.1. Genki-4K subset

GENKI-4K database mainly used in facial expression studies containing 4000 face images
labeled as either smiling or non-smiling. It involves wide range of subjects, facial appearance,
illumination, backgrounds, imaging conditions, and camera model. However, it does not
include gender labels. Therefore, we manually labeled the images as female and male classes
for our experiments. After the geometric normalization step, we obtained 1539 females and
1506 males.
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Table 2: Summary of the databases. AG=Di↵erent age groups, E= Di↵erent ethnicities, FAP=Total number
of faces after the preprocessing and normalization step, FE= Facial Expressions, I=Illumination changes,
SEGI=Segmented color image, STDI=Standard color image, U=Unconstrained.

Database Type Number of FAP Female Male Normalized
faces faces faces size (w⇥h)

Feret STDI, E 2369 2337 908 1429 20⇥ 24
GENKI-4K STDI, FE, E, I, U 4000 3045 1539 1506 20⇥ 24
Groups STDI, FE, AG, E, I, U 28231 19835 10303 9532 20⇥ 24
LFW STDI, FE, AG, E, I, U 13236 11106 8539 2567 20⇥ 24
LFW-P STDI, FE, AG, E, I, U 2927a 1533b 399 1134 20⇥ 24
Part Labels SEGI 2927a 1533b 399 1134 40⇥ 40

a Multiple faces per identity
b Single face per identity

3.1.2. Image of Groups (Groups)

Groups database (Gallagher & Chen, 2009) includes 5080 images having 28231 faces
labeled with the age and gender categories. It involves wide range of illumination, ethnicity,
ages, facial expressions, in-plane and out-of-plane poses. Manually labeled eye positions
are provided for all faces. However, we automatically detect the faces and eyes using the
methods described in Section 2.1. We obtained a total of 19835 faces (10303 female, 9532
male).

3.1.3. Labeled Faces in the Wild (LFW) and LFW-P

LFW database (Huang, Ramesh, Berg & Learned-Miller, 2007) contains 13236 labeled
images from 5749 individuals mainly actors, politicians and sport players. We automatically
select detected faces where eye detection is successful (11106) and then manually group them
into male (8539) and female (2567) categories.

LFW-P is a subset of LFW database that contains the same identities as Part Labels
database. Therefore, it contains 2927 face images. After the geometric normalization step,
we obtained 399 female and 1134 male faces. LFW-P and Part Labels databases are used
together as a test database in cross-database experiments.

3.1.4. Part Labels subset

Part Labels database (Kae, Sohn, Lee & Learned-Miller, 2013) contains labeling of 2927
face images into Hair/Skin/Background labels. The face images are a subset of the Labeled
Faces in the Wild (LFW) funneled images. Each image is segmented into superpixels and
then these superpixels are manually labeled.

Since this database is originally proposed for image segmentation and labeling problem,
to the best of our knowledge, this is the first work which uses the Part Labels database for
gender recognition.
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3.2. Experimental results

Cross-database and cross-validation based testing are the two common evaluation method-
ology for the FGR. Majority of the research in FGR uses cross-validation methodology to
evaluate the performance. On the other hand, generalization ability of an FGR method
is better represented by cross-database evaluations due to the independence of individual
identities in training and test sets. Therefore, FGR is a challenging problem under un-
constrained settings when cross-database evaluation is applied. As explained in Danisman
et al. (2014), average accuracy of the FGR on controlled databases is much higher when a
cross-validation scheme is used. The same methods give poor results under cross-database
evaluation showing the lack of inconsistency of the generalization ability of the models across
di↵erent databases.

3.2.1. Baseline performances

We defined three baseline results by using both cross-validation and cross-database
tests. Cross-validation baseline results are obtained by evaluating pixel information with the
SVM+RBF classifier. Since Part Labels and LFW-P databases are equal in terms of identity,
we performed one cross-validation experiment on each of these databases. Using five-fold
cross-validation technique, we obtained 88.91% accuracy (log2(C) = 2 and log2(�) = �9)
on Part Labels database and 90.15% accuracy (log2(C) = 2 and log2(�) = �7) on LFW-P
database using optimized SVM+RBF classifier. Figure 16 shows baseline performances using
five-fold cross-validation method.

We also considered the e↵ect of low-level fusion by concatenating raw pixel informa-
tion from normalized Part Labels and LFW-P databases. We obtained 92.74% accuracy
(log2(C) = 4 and log2(�) = �11) which is higher than that of individual cross-validation
tests.

Part Labels LFW-P Low level fusion 
5 fold CV 88.91 90.15 92.74 

88.91 
90.15 

92.74 

76.00 

78.00 

80.00 

82.00 

84.00 

86.00 

88.00 

90.00 

92.00 

94.00 

96.00 

Figure 16: Baseline performances using five-fold cross-validation method.

In order to obtain the cross-database baseline, we performed three tests: Feret/LFW-P,
GENKI-4K/LFW-P and Groups/LFW-P on the LFW-P database. From these experiments,
we obtained 80.69%, 87.80% and 91.25% accuracies respectively. According to the results,
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the lowest accuracy is obtained from the Feret database. On one hand Feret is a constrained
database recorded in controlled environment; therefore it does not perform well on uncon-
strained LFW-P database. On the other hand, GENKI-4K and Groups databases provide
better results than Feret. Compared to the GENKI-4K, the Groups database contains more
training samples and support vectors than GENKI-4K which allows more chance for SVM
to provide correct results from the soft margin. Therefore, we selected Groups/LFW-P test
with 91.25% accuracy as the cross-database baseline performance.

3.2.2. Fuzzy inference system experiments

After obtaining the baseline results, we performed cross-database experiments using the
FIS model described in Section 2.3. Figures 17 to 19 plot the outputs of the FIS on LFW-P
database using Groups, GENKI-4K and Feret databases respectively. Compared to the best
cross-database baseline plot in Fig. 6, female and male samples are more far away from each
other in FIS outputs.

Since, Groups and GENKI-4K are unconstrained databases, they provide better cross-database
results than Feret database on LFW-P. Compared to others, Feret is a restricted database
(see Table 2) collected in controlled environment which limits overall accuracy. Our experi-
ment also showed that, databases containing more samples tends to give higher accuracies
for gender recognition.
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Figure 17: COG scores obtained from cross-database Groups/LFW-P test results using FIS.

Figure 20 compares FIS based results to the SVM based results. For each experiment,
FIS provides better results than SVM only results. Using FIS, we obtain 93.35% accuracy
from cross-database Groups/LFW-P test which is higher than other cross-validation results
reported in Fig 16. Details of all cross-database tests are presented in Table 3.

Experiments showed that the main advantage of FIS over the traditional methods is its
ability to perform nonlinear mapping between the input and output. When a FIS is used
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Figure 18: COG scores obtained from cross-database GENKI-4K/LFW-P test results using FIS.
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Figure 19: COG scores obtained from cross-database Feret/LFW-P test results using FIS.

with a classifier (e.g., SVM), it further eliminates the false positive and false negative results
using the knowledge base where the classifier fails. Table 4 shows more detailed results of
SVM and FIS. Use of FIS provides reduction in FP and FN while increase number of TP
and TN.

4. Conclusion

The current study presents an FGR framework based on FIS for still images using inner
and outer facial cues. We present a reliable assessment of the robustness of the presented
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Table 3: Detailed summary of experiments for LFW and LFW-P databases. H= hair, M=mustache,
P=pixel-intensities, CDB=cross-database, CV=5-fold cross-validation

Study Train/Test Eval. Model Test size Acc.

Dago-Casas et al. (2011) Groups/LFWa CDB LBP+PCA+SVM 13088 89.77%
Ramon-Balmaseda et al. (2012) Morph/LFWb CDB LBP+SVM+Linear 1149 75.10%
Bekios-Calfa et al. (2014) Groups/LFWa CDB PCA+LDA+KNN 13233 79.11%
Bekios-Calfa et al. (2014) Groupsc/LFWa CDB PCA+LDA+KNN 13233 79.53%
Danisman et al. (2014) WebDB/LFWa CDB P+SVM 11106 91.87%
Danisman et al. (2014) Groups/LFWa CDB P+SVM 11106 91.62%

Our CDB baseline Groups/LFW-Pb CDB P+SVM 1533 91.25%
Our CDB baseline GENKI-4K/LFW-Pb CDB P+SVM 1533 87.80%
Our CDB baseline Feret/LFW-Pb CDB P+SVM 1533 80.69%
Our CV baseline Low-level fusionb CV H+M+P+SVM 1533 92.74%
Our CV baseline Part Labelsb CV P+SVM 1533 88.91%
Our CV baseline LFW-Pb CV P+SVM 1533 90.15%

Our method Groups/LFW-Pb CDB H+M+P+FIS 1533 93.35%
Our method GENKI-4K/LFW-Pb CDB H+M+P+FIS 1533 90.61%
Our method Feret/LFW-Pb CDB H+M+P+FIS 1533 87.74%

a multiple faces per identity
b single face per identity
c training step without children faces

Feret/LFW-P Genki/LFW-P Groups/LFW-P 

SVM 80.69 87.80 91.25 

FIS 87.74 90.61 93.35 
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Figure 20: Cross-database test results on LFW-P.

framework by performing cross-database experiments. We showed that external cues im-
proves the classification performance in both cross-database and cross-validation tests. To
deal with the influence of facial hair on FGR we performed tests on LFW and Part Labels
database with and without the facial hair feature. LFW database become a standard test
database for unconstrained facial gender recognition. Our study is the first to use facial
hair information from the Part Labels database for gender recognition purpose. We have
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Table 4: Detailed summary of cross-database experiments. TP=True positives, FP=false positives,
TN=True negatives, FN=false negatives, PPV=Positive predictive value, NPV=Negative predictive value.

Train/Test Model TP FP TN FN PPV NPV Accuracy

Feret/LFW-P FIS 361 149 984 39 70.78% 96.19% 87.74%
Feret/LFW-P SVM 361 257 876 39 58.41% 95.74% 80.69%
GENKI-4K/LFW-P FIS 346 90 1043 54 79.36% 95.08% 90.61%
GENKI-4K/LFW-P SVM 340 127 1006 60 72.80% 94.37% 87.80%
Groups/LFW-P FIS 343 45 1088 57 88.40% 95.02% 93.35%
Groups/LFW-P SVM 336 70 1063 64 82.75% 94.32% 91.25%

confirmed previous results reporting the positive e↵ect of hair to the FGR. However, hair is
not a good choice in case of a raw pixel based feature extraction. In addition, unconstrained
databases having more training samples provides better results than that of constrained
databases since more visual variation covers more area in the solution domain.

Compared to the SVM based approaches that use LBP features (e.g., Dago-Casas et al.
(2011); Ramon-Balmaseda et al. (2012)) the proposed method provides better results. Al-
though LBP is a powerful texture descriptor, this is an expected result since LBP does not
perform well in low resolution images and its performance depends on the quality of the
image. Researchers usually require at least 100 ⇥ 100 faces to apply the LBP due to the
required region histograms from grid content. Since the images in LFW database are low
resolution images, performance of the LBP is limited for the LFW database. On the other
hand we used raw pixel based input which performs better than LBP at low resolutions.
Our fuzzy model further improves the baseline with the linguistic variables.

The main advantage of the proposed framework is improved generalization ability which
is known to be one of the most important features of an FGR system. The use of the
high-level knowledge with the FIS improves existing results obtained from traditional meth-
ods thus improving the generalization ability. However, the advantage of the proposed
framework depends on the distribution of the subjects a↵ected by the fuzzy rules. Another
say, amount of the subject with long hair or mustache determines overall success of the
proposed framework. When it is tested with subjects without these features (e.g., short hair
and no mustache), then output of the proposed framework will be theoretically equivalent to
the output of SVM based method. Considering the overall system performance, it is obvious
that bringing the human reasoning in the decision process by means of nonlinear mapping
of input and output variables is advantageous. In addition, the numerical interpretation of
the linguistic information requires less computational e↵ort than traditional methods.

Main limitation of the proposed framework is the manual segmentation of the facial hair.
Considering the fact that the automatic segmentation systems tends to provide less accurate
results than manual systems, future direction is to investigate the overall gain brought by
these automatic segmentation methods.
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Further research should be conducted in multiple directions. First, the proposed frame-
work can be extended to perform automatic hair segmentation which will provide complete
automation of the proposed framework. Part of the experiments in this paper is based
on the manually labeled Part Labels database. There is still much research to be done in
the area of hair segmentation. Thus, the main challenge will be to identify a robust facial
hair segmentation method. With the recent advancements in the well-known super-pixel
methods (e.g., Simple Linear Automatic Clustering (SLIC) (Achanta et al., 2012)) in com-
bination with inference algorithms (e.g., Grabcut (Rother et al., 2004), SVM) will make it
possible to implement an automatic facial hair segmentation system. The overall robustness
of proposed framework may be further tested on other large databases when the automatic
segmentation is provided.

Second, other complementary information including clothing and accessories can also be
considered. Existing studies (e.g., (Chen et al., 2012)) showed that use of clothing attributes
in combination with the facial data further improves the classification performance. In this
context, the proposed framework can contribute in a significant manner to further improve
existing FGR studies.

Third, di↵erent weights of the fuzzy rules and di↵erent membership functions may be
further analyzed to improve the overall performance of the proposed framework. More gen-
erally, the current framework can be extended to explore the e↵ect of multiple vision-sensors
obtained from di↵erent type of classifiers (e.g., Neural networks, Adaboost).
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