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A Prelude to SPySort: Neuronal Spike
Sorting with Python

Christophe Pouzat and Georgios Is. Detorakis

January 29, 2015

Extracellular recordings with multi-electrode arrays is one of the basic tools of con-
temporary neuroscience. These recordings are mostly used to monitor the activities,
understood as sequences of emitted action potentials, of many individual neurons.
But the raw data produced by extracellular recordings are most commonly a mixture
of activities from several neurons. In order to get the activities of the individual con-
tributing neurons, a pre-processing step called spike sorting is required. We present
here a pure Python implementation of a well tested spike sorting procedure. The latter
was designed in a modular way in order to favour a smooth transition from an interac-
tive sorting, for instance with IPython, to an automatic one. Surprisingly enough—or
sadly enough, depending on one’s view point—, recoding our now 15 years old pro-
cedure into Python was the occasion of major methodological improvements.

1. Introduction
The role of neuronal synchronisation in the information processing performed by (actual) neuronal
networks is an actively debated question in neuroscience. Direct experimental measurement of
synchronisation requires the recording of the activities of ”as many neurons as possible” with a fine
time resolution. In this context, multi-electrode arrays (MEA) recordings constitute nowadays the
technique of choice. The electrodes making an MEA are located in the extracellular space and
can thereby record the action potentials or spikes emitted by many neurons in their vicinity—an
analogy is provided by a microphone for an electrode and many static people talking all at once
in a language unknown to us for the neurons. Electrophysiologists can therefore monitor many
neurons with a ”limited” tissue damage—the more electrodes are pushed into a tissue, the more
damage ensues—: a very attractive feature of the methodology. But this attractive feature comes
at a price: since many neurons are recorded from a single electrode, the raw data are a mixture
(of single neuron activities) and a comprehensive use of the data requires the separation of this
mixture into its individual components. This ”separation” step is what is referred to as spike sorting
in neurophysiology.
Extracellular recordings have been used for a long time (60 years at least) and it is not surprising

that many spike sorting procedures have appeared in the literature (see [6] for a recent review).
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Extracellular recordings are also used daily in an applied context when neurologists perform elec-
tromyography—extracellular recording from skeletal muscles where the recorded action potentials
are generated by the muscular cells, not by neurons—giving data and data analysis problems very
similar to the ones we have presented so far. Very similar spike sorting methods have been devel-
oped in the former context (e.g., [8]) but scientists working in the different contexts (”neurons” and
”muscles”) do not seem to be aware that they have colleagues doing the same thing on slightly dif-
ferent data! We present here a rather ”simple” approach (in the realm of the existing ones) which is
the one we have used most often in the last 15 years. This approach was published in 2002 [11] and
was successively ”incarnated” using IGOR Pro (Wavemetrics), Scilab, MATLAB (MathWorks), R
and now Python. This work which was initially planed as a recoding of our present R code into
Python was also the occasion to re-think some of the key steps of our procedure. This lead to a
major improvement (also back ported to our R code) in the way a specific step, the sampling jitter
estimation and correction, is performed. This new development is given due space in the sequel.
This contribution is written with two generic readers in mind: scientific python users and neu-

rophysiologists doing spike sorting. For the first ”reader” we present another example of an actual
scientific data analysis problem that is easily handled within the scientific Python ecosystem. The
second reader is likely to perform spike sorting with a commercial software provided by one of the
MEA amplifiers manufacturers. We do not want to claim that these software are necessarily bad,
but it is our experience that when we deal with data sets from different preparations, it is extremely
useful to be able to adapt our method to the specific features of the data. For instance, when switch-
ing from the first olfactory relay of a locust (Schistocerca americana) to the first olfactory relay of
a cockroach (Periplaneta americana)—they have many different features [2]—, we will start in a
interactive mode, say with IPython, using the method previously developed for the locust, try out
some alternative approaches at the key steps (spike detection, dimension reduction, clustering) be-
fore settling on a new procedure involving only few experiment specific parameters. The nature of
the Python environment providing interactive development and leading to ”black box” procedures
is a clear advantage here. Doing this kind of method adaptation is hard, not to say impossible,
with commercial solutions implementing a ”one size fits all” approach. It moreover turns out that
it is, nowadays, not that hard to implement the full sequence of steps required for spike sorting
thanks to environments like Python that are both user friendly and computationally efficient. So
we hope to motivate our second reader to give a try to open solutions giving access to ”what’s going
on under the hood”. In addition we are advocates of the reproducible research paradigm [5] and an
implementation of the latter requires accessibility of the code used for a published analysis.

1.1. Organization of this manuscript
The first part of the manuscript is a short overview of our sorting procedure. The first appendix
contains a very detailed tutorial showing how the analysis presented in the first part was performed.
The second appendix contains the definition of each function specifically coded for this analysis.
SpySort is work in progress. We are currently migrating the function based approach of the
second appendix into a class / method one. It will then be integrated to OpenElectrophy.
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2. Data properties
The data used for illustration here were recorded from the first olfactory relay, the antennal lobe, of
a locust (Schistocerca americana). Recording setting and acquisition details are described in [11].
The first second of data from the four recording sites is shown on Fig. 1.

Figure1: First second of data recorded from the four recording sites of a tetrode.

Here, the action potentials or spikes are the sharp (upward and downward) deviations standing
out of the ”noise”. When doing spike sorting we try to find how many different neurons contribute
to the data and, for each spike, what is the (most likely) neuron that generated it.

2.1. Why are we using tetrodes?
The main parameter controlling the amplitude of a recorded spike is the distance between the
neuron and the electrode. It follows that if two similar neurons are equidistant to a given electrode,
they will give rise to nearly identical spikes—for an elaboration on that and on how the signals
recorded on different electrodes could be use to perform source localisation, see [3, 9] . These
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(nearly) identical recorded spikes are a big problem since the spike waveform (combination of
shape and amplitude) is going to be our classification criterion. In some preparation, like the locust
antennal lobe (but not the cockroach antennal lobe) using tetrodes, groups of four closely spaced
electrodes, is going to help us as illustrated in figure 2.

Figure2: 100 ms of data from the four recording sites of a tetrode.

Imagine here that only the lowest electrode is available. Given the noise level, it would be hard to
decide if the four spikes are originating from the same neuron or not. If we now look at the same
events from the additional viewpoints provided by the other electrodes (the three upper traces) it
is clear that the four events cannot arise from the same neuron: the first and fourth events (seen on
the lowest trace) are large on the four electrodes, while the second and third are large on the top
and bottom traces but very tiny on the two middle traces.
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3. Main modelling assumptions
Wewill simplify the neurons discharge statistics bymodelling them as independent Poisson processes—
the successive inter spike intervals (ISI) of a given neuron are independently and identically dis-
tributed following an exponential distribution, they are also independent of the ISI of the other
neurons. This is obviously a gross simplification: we know that the ISI of a given neuron are not
Poisson distributed and that the discharges of different neurons are correlated—that is precisely
what we want to study with these experiments—but the deviations of the actual data generation
mechanism from our simple model (independent Poisson processes) has, in general, a negligible
impact on the sorting results. If we want to work with more realistic models, we can (although not
yet in Python), but the computational price is rather heavy [4, 13]. We do go even further on the
simplification path for these data since we are going to ”forget” about the different discharge rates
(at the classification stage, Sec. peeling) and use only the amplitude information.
When a neuron fires a spike the same underlying waveform with some additive auto-correlated

Gaussian noise is recorded on each site (more precisely there is one waveform per electrode and
per neuron). Four comments:

• For some data sets (e.g., [4]) the underlying waveform of a given neuron is changing during
the discharge; we can model that if necessary [4, 13], but the computational cost is high and
the neurons of the data set considered here do not exhibit this feature.

• Following [3] we could simplify the model assuming that we have a single ”mother” wave-
form per neuron and that the underlying waveform seen on each electrode are just scaled
versions of the mother waveform. We haven’t implemented this feature yet but it will come
next.

• Some authors [14] argue that the additive noise would be better described by a multivariate t-
distribution; they are lead to this assumption because they do not resolve superposed events—
when two ormore neurons fire at nearly the same time the observed event is a ”superposition”:
the sum of the underlying waveforms of the different neurons plus noise. If superpositions
are resolved, the Gaussian noise assumption is perfectly reasonable [11] .

• The noise is necessarily auto-correlated since the data are low-pass filtered prior to digitiza-
tion.

4. The sorting procedure
A very detailed, ”step-by-step”, account of the analysis presented here can be found on our dedi-
cated web page¹ as well as in the Appendix of this manuscript. For most of the steps only a brief
description is given in order to save space for the original part. We moreover focus on the first part
of the analysis of what is typically a large data set. Experimentalists usually record for hours if not
days [2] from the same preparation. In our experience such recordings are stable on a time scale
of 10 minutes or more. It therefore makes perfect sense to split the analysis in two parts:
¹http://xtof.perso.math.cnrs.fr/locust_sorting_python.html.
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1. Model estimation: in the ”easy” settings as here, a model boils down to a catalogue of wave-
forms, one waveform per neuron and per recording sites. More sophisticated models can be
used but the case illustrated here—and that is not a rare case—they are not necessary.

2. Once the model / waveform catalogue has been obtained the data are processed; that is events
are detected and classification is performed by template matching—the catalog’s waveforms
being the templates.

The key point is that part 1 can be done on a short data stretch—in the example bellow we are
going to use 10 seconds of data. This part is also the one that can require the largest amount of
user input, in particular when a choice on the number of neurons to include in the model has to
be made. The second part is straightforward to automate: a short Python script loading, say, 2
minutes of data and the catalogue will do the template matching as illustrated in [Sec. peeling]. A
”poor’s man” illustration of this 2 parts approach is provided here since the model is estimated on
the first half of the data set and the classification is performed on the whole set. When applying
this approach, one should monitor the number of unclassified events over a given time period and
update the model if this number increases suddenly.

4.1. Data normalization
If the data have not been high-passed filtered prior to digitization, they are so filtered (with a cutoff
frequency between 200 and 500 Hz) using function firwin of module scipy.signal. The trace
of each electrode is then median subtracted and divided by its median absolute deviation (MAD).
The MAD provides a robust estimate of the standard deviation of the recording noise. After this
normalisation, detection thresholds are comparable on the different electrode.

4.2. Spike detection
Spikes are detected as local extrema above a threshold. More precisely, the data are first filtered
with a box filter (a moving average) in order to reduce the high frequency noise; the filtered data
are normalized like the raw data before being ”rectified”: amplitude below a threshold are set to
zero; the filtered and rectified data from each electrodes are added together and local maxima are
identified. This is a very simple method that works well for these data. This is clearly an import
step that must typically be adapted to the data one works with. For instance when the signal to
noise ratio is lower, we often construct a ”typical waveform”—by detecting the largest events first,
averaging and normalizing them (peak at 1 andmean at 0)—that we convolve with the raw data. The
detection is subsequently done on these filtered data. Working with an environment like Python
we can do that with a few lines of code, try different ideas and different parameters, etc.

4.3. Events set (sample) construction
After a satisfying detection has been obtained, events are ”cut” from the raw data. An optimal
cut length is obtained by first using overly large cuts (say 80 sampling points on both sides of the
detected peak). The point-wise MAD is computed and the locations at which the MAD reaches 1
(the noise level on the normalised traces) give the domain within which ”useful sorting information”
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is to be found. New shorter cuts are then made (in the illustrated case, Fig. 3, using 14 points before
the peak and 30 points after) and an event is then described by a set of N amplitudes on 4 electrodes
(in our case 180 amplitudes). The first 200 events are shown in Figure 3.

Figure3: First 200 events. The cuts are 3 ms (45 sampling points) long. Identical scales on each
sub-plot.

4.4. Dimension reduction
The cuts shown in Fig. 3 are 3 ms or 45 sampling points long. That means that our sample space
has 45x4 = 180 dimensions. Our model assumptions imply that, in the absence of recording noise,
each neuron would generate a single point in this space—strictly speaking, because of the sampling
jitter (see Sec. jitter-estimation), each neuron would generate a small cloud—and the recording
noise will transform these ”centers” into clouds, each cloud having the same variance-covariance
matrix—this is of course expected only for the events that are not superpositions. At that stage
sorting reduces to a clustering problem and doing clustering in a 180 dimensional space is rarely
a good idea. We therefore reduce the dimension of our events’ space using principal component
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analysis (PCA) keeping only a few of the first principal components. But before that, the ”most
obvious” superpositions are removed from the sample. We do that because a few superpositions
can dominate (and strongly corrupt) the result of a PCA analysis. The goal of this initial part of our
procedure is moreover to build a catalogue of underlying waveform associated with each neuron.
The actual sorting will be subsequently accounting for superpositions when they occur. The ”most
obvious superpositions” are removed by looking for side peaks on each individual event. Figure
4 (made with scatter matrix of pandas) shows the events projected on the plans defined by
every pair of the first four principal components.

Figure4: Scatter plot matrices of the events that are not superpositions on the plans defined by every
pair of the first four principal components.

We get an upper bound on the number of components to keep by building figures like Fig. 4
with higher order components until the projected data look featureless (like a two dimensional
Gaussian). We get an idea of the number of neurons by counting the number of clouds on the
”good” projections (looking at the plot on row 1 and column 2 in Fig. 4 we see 10 clouds).
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4.5. Dynamic visualization
At that stage, dynamic visualisation can help a lot. We therefore typically export in csv format
the data projected on the sub-space defined by principal components up to the upper bound found
as just described. We then visualise the data with the free software GGobi. The latter is extremely
useful to: reduce further the dimension of the sub-space used; refine the initial guess on the number
of clouds; evaluate the clouds shape (which conditions the clustering algorithm used).

4.6. Clustering
Although most of the spike sorting literature focuses on clustering methods, in our experience
standard, well known and thoroughly tested methods work fine. After observing the data as in
Fig. 4 and with GGobi, we can decide what method should be used: a ”simple” K-Means; a Gaus-
sian mixture model (GMM) fitted with an E-M algorithm—both implemented in scikit-learn—;
bagged-clustering [7] that we implemented in Python. For the data analysed here, we see 10 well
separated clusters (clouds) that have uniform (spherical) shapes, suggesting that the K-Means are
going to work well.
Figure 5 shows the events attributed to the first 2 clusters. In order to facilitate model comparison

(when models with different numbers of neurons are used or when a K-Means fit is compared with
a GMMfit), clusters are ordered according to their centers’ sizes. That is, for each cluster the point-
wise median is computed and its size, the sum of its absolute values (an L1 norm), is obtained.
The point-wise MAD has been added to the events as a red trace in Fig. 5. If the reader remem-

bers our modelling assumptions he or she will see a problem with the MAD of the second cluster
(right column) on the top electrode: the MAD is clearly increasing on the rising phase of the event
while our hypothesis imply that the MAD should be flat. But this MAD increase is obviously due to
bad events’ alignment. Seeing this kind of data, before rejecting our model hypothesis, we should
try to better align the events to see if that could solve the problem. This is what we are going to do
in the next section.

4.7. Jitter estimation and cancellation
The ”misaligned” events of Fig. 5 (top right) have two origins. First, even in the absence of
recording noise, we would have a jitter since the clock of our A/D card cannot be synchronised with
the ”clocks” of the neurons we are recording. This implies that when we are repetitively sampling
spikes from a given neuron, the delay between the actual spike’s peak and its closest sampling time
will fluctuate (in principle uniformly between -1/2 and +1/2 a sampling period). Since we are
working with the sampled versions of the spikes and are aligning them on their apparent peaks, we
are introducing a distortion or a sampling jitter [11]. In addition, and that’s the second origin of the
misaligned events, we definitely have some recording noise present in the data and because of this
noise we are going to make mistakes when we detect our local maxima at the very beginning of our
procedure. In other word we would like to find local maxima of the signal but we can’t do better
(at that stage) than finding the local maxima of the signal + noise. Having a clear idea of
the origin of the misalignment, we could decide that the MAD increase is not a real problem (we
could in principle re-align the events and get rid of it) and live with it. Unfortunately, if we want
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Figure5: Left: the 52 events attributed to cluster 0. Right: the 65 events attributed to cluster 1. In
red, the point-wise MAD (robust estimate of the standard deviation).

to handle properly the superposed events, we have to estimate and compensate the sampling jitter
as will soon become clear.
When we first published our method [11] we dealt with this jitter problem by using Nyquist the-

orem that tells us that if our data were properly sampled—with a sampling frequency larger than
twice the low-pass cutoff frequency of our acquisition filter—we can reconstruct exactly the data
in-between our sampled points by convolving the sampled data with a sinc function. We therefore
went on, over sampling the data numerically, before shifting our individual events in order to align
them on their cluster centre. This approach has several shortcomings: i) the support of the sinc is
infinite but we are dealing with finite (in time) data and are therefore doing an approximate recon-
struction; ii) computing the (approximate) interpolated values takes time. Luckily, recoding our
procedure into Python led us to finally ”see the light”—others [10] followed a similar path before
us. We can indeed solve our problem much more efficiently, without using the sinc function.
Formally if we write 𝑔(𝑡), the observed waveform of an event within one of our cuts (the time t

runs from -1 ms to +2ms in our examples), and 𝑓(𝑡), the underlying waveform—we are considering
an event that is not a superposition and we write things for a single recording site to keep notations
lighter, the generalisation to several recording sites is straightforward—we have:

𝑔(𝑡) = 𝑓(𝑡 + 𝛿) + 𝑍(𝑡) , (1)

where 𝛿 is the jitter we want to estimate and𝑍(𝑡) is a centred Gaussian process. A Taylor expansion
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to the second order in 𝛿 gives—the key difference with [10] is the use of the second order expansion,
it seems to simplify considerably the subsequent estimation problem—:

𝑔(𝑡) ≈ 𝑓(𝑡) + 𝛿𝑓′(𝑡) + 𝛿􏷡/2𝑓″(𝑡) + 𝑍(𝑡) . (2)

If we assume that 𝛿 is the realisation of a random variable Δ with a null expectation, E(Δ) = 0—
that’s a reasonable assumption given the origins of the jitter—and finite variance, 𝜎􏷡􏸷, then:

E 􏿴𝑔(𝑡)􏿷 ≈ 𝑓(𝑡) + 𝜎􏷡􏸷/2𝑓″(𝑡) . (3)

In other words, to the first order in 𝛿 (i.e., setting 𝜎􏷡􏸷 to 0), the expected value of the event equals
the underlying waveform. Sticking to the first order we get for the variance:

Var 􏿴𝑔(𝑡)􏿷 = E 􏿯􏿴𝑔(𝑡) − 𝑓(𝑡)􏿷
􏷡
􏿲 ≈ 𝜎􏷡􏸷 𝑓′(𝑡)􏷡 + 𝜎􏷡𝑍. (4)

Implying that the square root of the events variance minus the noise variance should be propor-
tional to their absolute derivative; this explains why the MAD (a robust estimate of the standard
deviation) peaks on the rising phase of the cluster centre (Fig. 5, top right) since that’s where the
time derivative is the largest.
Equation 3 tells us that our cluster centres estimated as point-wise median are likely to be ”good”

(in other words their error should be dominated by sampling variance, not by bias). Using the same
argument, we can get first an estimate of the time derivative of the raw data by using the central
difference (divided by two), then we canmake cuts at the same locations and in exactly the sameway
as our original cuts and compute cluster specific point-wise medians giving us reasonable estimates
of the time derivatives of the cluster centres (the 𝑓′(𝑡) above). We can iterate this procedure one
step further to get estimates of the second derivatives of the cluster centres (the 𝑓″(𝑡) above).
We now have the required elements to go back to our jitter (𝛿) estimation problem using Eq.

2. We don’t have 𝑔(𝑡), 𝑓(𝑡), 𝑓′(𝑡) or 𝑓″(𝑡) directly but only sampled versions of those, that is:
􏿴𝑔􏷠 = 𝑔(𝑡􏷠), … , 𝑔𝑤 = 𝑔(𝑡𝑤)􏿷, where𝑤 is the width of one of our cuts (45 sampling points). Starting
with the first order in 𝛿, we can get an estimate 𝛿̃ of 𝛿 by minimising the residual sum of squares
(RSS) criterion:

𝛿̃ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛿
􏾜
𝑖
􏿴𝑔𝑖 − 𝑓𝑖 − 𝛿𝑓′𝑖 􏿷

􏷡
. (5)

Since the (𝑓𝑖) and (𝑓′𝑖 ) are known, we are just solving a classical linear regression problem whose
solution is:

𝛿̃ =
∑
𝑖(𝑔𝑖 − 𝑓𝑖)𝑓

′
𝑖

∑
𝑖 𝑓

′􏷡
𝑖

. (6)

We could take the noise auto-correlation (that we can estimate) into account, but it turns out to be
not worth it (the precision gain is not really offsetting the computational cost). We now solve the
second order optimisation problem:

𝛿̂ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛿
􏾜
𝑖
􏿴𝑔𝑖 − 𝑓𝑖 − 𝛿𝑓′𝑖 − 𝛿􏷡/2𝑓″𝑖 􏿷

􏷡
. (7)
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Since the latter does not admit (in general) a closed form solution, we perform a single Newton-
Raphson step, starting from 𝛿̃ to get 𝛿̂. Only a single Newton-Raphson step is used because there
is not much to be gained by refining the solution of an optimisation problem (Eq. 7) that only pro-
vides an approximate solution to the problem we are really interested in—which would be written
here: 𝛿̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝛿∫􏿴𝑔(𝑡) − 𝑓(𝑡 + 𝛿)􏿷

􏷡
𝑑𝑡—the main error is likely to arise from the second or-

der approximation of the latter—this point is clearly made in an other context, predictor-corrector
method for ordinary differential equation, by [1, pp. 133-134].
Figure 6 illustrates jitter estimation and cancellation at work. The left column shows one of the

events attributed to cluster 1 (black, 𝑔(𝑡) in our previous discussion) together with the cluster centre
estimate (blue, 𝑓(𝑡) in our previous discussion) and the difference of the two (red, 𝑔(𝑡) − 𝑓(𝑡) in
our previous discussion). The right column shows again the event (black) with the aligned centre
(blue, 𝑓(𝑡) + 𝛿̂ 𝑓′(𝑡) + 𝛿̂􏷡/2 𝑓′􏷡(𝑡) in the previous discussion) and the difference of the two (red).

Figure6: Left: event 50 of cluster 1 (black), centre of cluster 1 (blue), difference of the 2 (red).
Right: event 50 of cluster 1 (black), aligned centre of cluster 1 (blue), difference of the 2
(red).

4.8. Spikes ”peeling”
We have almost reached the end of our journey. The clustering step gave us a catalogue of wave-
forms: the cluster centre, its first and second derivative for each of the 𝐾 neurons / clusters on each
site. We now go back to the raw data and for each detected event we do:
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1. Compute the sum of squares of the amplitudes defining the event (over the 4 cuts corre-
sponding to the 4 electrodes) to get 𝑅􏷡.

2. For each of the 𝐾 neurons, align the centre’s waveform on the event (as described in the
previous section) and subtract it from the event. Compute the sum of the squares of the
(residual) amplitudes to get 𝑅􏷡𝑗 where 𝑗 = 1,… , 𝐾 .

3. Find 𝑗̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗 𝑅􏷡𝑗 and if 𝑅􏷡𝑗̂ < 𝑅
􏷡 then:

• Keep the jitter corrected time for 𝑗̂ in the list of spikes and keep 𝑗̂ as the neuron of
origin.

• Subtract the 𝑗̂-th aligned centre from the raw data otherwise tag the event as unclassified
and don’t perform any subtraction.

Once every detected event has been examined, we are left with a ”new” version of the raw data
from which the aligned ”best” centre waveforms have been subtracted (only when doing so was
reducing the sum of squares of the amplitudes over the cuts). For the event illustrated in Fig.
JitterCancellationIllustrated we go from the black trace on the left column to the red trace on the
right column. It is clear that for this ”peeling procedure” to work we have to cancel the jitter
otherwise we would be going from the black trace on the left column to the red trace on the same
column (where what remains as a peak amplitude similar to what we started with!).
We then iterate the procedure, taking the ”new” raw data as if they were original data, detecting

events as on the raw data, etc. We do that until we do not find anymore events for which the
proposed subtraction is accepted; that is until we are only left with unclassified events. The first
two iterations of this procedure are illustrated on figure PeelingIllustrated. See how the superposed
event in the middle of the trace (left column) is nicely resolved into its two components.

5. Conclusions
Recoding our procedure from R to Python turned out to be easy (and an excellent way to learn
Python for the first author). The efficient memory management provided by numpy for large
arrays turns out to be very attractive. The ”idiosyncrasies” of matplotlib turn out to be the
longest to digest—for an R user—, but once they are mastered, IPython provides an excellent
environment for interactive sorting. We are clearly going to carry out the subsequent developments
of our methods—starting by porting our C code dealing with more sophisticated data generation
models [4, 13]— within the Python ecosystem.
More fundamentally, the new jitter estimation and cancellation procedure we introduced is de-

ceptively simple—similar to the method of [10] but much simpler; to be fair, these authors also
considered a possible amplitude and duration variability of the spikes generated by a given neu-
ron. It is in fact, we think, an important step forward since it allows electrophysiologists to process
superposed events systematically—some were already doing it—and efficiently. And, in our view,
without superposed events processing there is no trustworthy spike sorting.

13



Figure7: Illustration the ”peeling” procedure. Left: raw data (black) and first prediction (red);
middle: previous raw data minus previous prediction (black) and new prediction (red);
right: what’s left (no more waveforms corresponding to the catalogue’s content). The
small spike left on the right (clearly visible in the middle on the four sites) does not belong
to any neuron of the catalogue because the events used to built the latter where detected
as local maxima (and we would need to detect local minima to catch events like the one
we see here).
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A. An analysis step by step
This appendix contains a step by step and fully explicit description of the analysis presented in the
paper. Python 3 has been used. We use moreover the classical Python interface, as opposed
to IPython, to make the reproducibility of this analysis fully explicit (that is, our source file can
be run in batch mode and regenerate the analysis together with the manuscript).

A.1. Downloading the data
The data are available on zenodo [12] and can be downloaded with (watch out, you must use slightly
different commands if you’re using Python 2):
try:

from urllib.request import urlretrieve # Python 3
except ImportError:

from urllib import urlretrieve # Python 2

urlretrieve(’https://zenodo.org/record/14607/files/LocustDemoData.hdf5’,
’LocustDemoData.hdf5’)

The data were stored as single precision floating point number in HDF5 format with one ’data set’
per recording channel. The four data sets are labeled: 1, 2, 3 and 4. 20 seconds of data sampled
at 15 kHz are contained in these files (see [11] for details). We will get access to the file’s content
with module h5py.

A.2. Importing the required modules and loading the data
The individual functions developed for this kind of analysis are defined at the end of this document
(Sec. B). They can also be downloaded as a single file sortingwithpython.py which must then be
imported with for instance:
import sorting_with_python as swp

where it is assumed that the working directory of your python session is the directory where the
file sorting with python.py can be found. We are going to use numpy and pylab. We
are also going to use the interactive mode of the latter:
import numpy as np
import matplotlib.pylab as plt
import h5py
plt.ion()

If instead of the ”basic” Python console, IPython with the --pylab command line argu-
ment is used, the above statements are not required and prefixes np. and plt. are not necessary
in the sequel. We load the data with:
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# Open the HDF5 file containing the data in read only mode
f = h5py.File(”LocustDemoData.hdf5”, ”r”)
# Get the arrays’ shape
dset = f[”1”]
data_shape = dset.shape
data_len = data_shape[0]
# Read the data stored on 32 bit in 64 bit arrays
data = [np.empty(data_shape,dtype=np.float64) for i in range(4)]
for i in range(4):

dset = f[str(i+1)]
dset.read_direct(data[i])

f.close()

A.3. Preliminary analysis
We are going to start our analysis by some ”sanity checks” to make sure that nothing ”weird”
happened during the recording.

A.3.1. Five number summary

We should start by getting an overall picture of the data like the one provided by the mquantiles
method of module scipy.stats.mstats using it to output a five-number summary. The five
numbers are the minimum, the first quartile, the median, the third quartile and
the maximum:
from scipy.stats.mstats import mquantiles
np.set_printoptions(precision=3)
[mquantiles(x,prob=[0,0.25,0.5,0.75,1]) for x in data]

[array([ -9.074, -0.371, -0.029, 0.326, 10.626]),
array([ -8.229, -0.45 , -0.036, 0.396, 11.742]),
array([-6.89 , -0.53 , -0.042, 0.469, 9.849]),
array([ -7.347, -0.492, -0.04 , 0.431, 10.564])]

In the above result, each row corresponds to a recording channel, the first column contains the
minimal value; the second, the first quartile; the third, the median; the fourth, the third quartile;
the fifth, the maximal value. We see that the data range (maximum - minimum) is similar
(close to 20) on the four recording sites. The inter-quartiles ranges are also similar.

A.3.2. Were the data normalized?

We can check next if some processing like a division by the standard deviation (SD) has been
applied:
[np.std(x) for x in data]

[0.99999833366776292,
0.99999833345578371,
0.99999833309865449,
0.99999833355136358]

We see that SD normalization was indeed applied to these data…
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A.3.3. Discretization step amplitude

We can easily obtain the size of the digitization set:
[np.min(np.diff(np.sort(np.unique(x)))) for x in data]

[0.0067090988159179688,
0.0091938972473144531,
0.011888027191162109,
0.0096139907836914062]

A.4. Plot the data
Plotting the data for interactive exploration is trivial. The only trick is to add (or subtract) a proper
offest (that we get here using the maximal value of each channel from our five-number summary),
this is automatically implemented in our plot data list function:
tt = np.arange(0,data_len)/1.5e4
swp.plot_data_list(data,tt,0.1)

The first channel is drawn as is, the second is offset downward by the sum of its maximal value and
of the absolute value of the minimal value of the first, etc. We then get something like Fig. 8.
It is also good to ”zoom in” and look at the data with a finer time scale (Fig. 9) with:

plt.xlim([0,0.2])

A.5. Data renormalization
We are going to use a median absolute deviation (MAD) based renormalization. The goal of the
procedure is to scale the raw data such that the noise SD is approximately 1. Since it is not straight-
forward to obtain a noise SD on data where both signal (i.e., spikes) and noise are present, we use
this robust type of statistic for the SD:
data_mad = list(map(swp.mad,data))
data_mad

[0.51729686037227507,
0.62706122877895831,
0.74028318893238898,
0.68418136553317299]

And we normalize accordingly (we also subtract the median which is not exactly 0):
data = list(map(lambda x: (x-np.median(x))/swp.mad(x), data))

We can check on a plot (Fig. 10) how MAD and SD compare:
plt.plot(tt,data[0],color=”black”)
plt.xlim([0,0.2])
plt.ylim([-17,13])
plt.axhline(y=1,color=”red”)
plt.axhline(y=-1,color=”red”)
plt.axhline(y=np.std(data[0]),color=”blue”,linestyle=”dashed”)
plt.axhline(y=-np.std(data[0]),color=”blue”,linestyle=”dashed”)
plt.xlabel(’Time (s)’)
plt.ylim([-5,10])
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Figure8: The whole (20 s) Locust antennal lobe data set.

A.5.1. A quick check that the MAD ”does its job”

We can check that the MAD does its job as a robust estimate of the noise standard deviation by look-
ing at Q-Q plots of the whole traces normalized with the MAD and normalized with the ”classical”
SD (Fig. 11):
dataQ = map(lambda x:

mquantiles(x, prob=np.arange(0.01,0.99,0.001)),data)
dataQsd = map(lambda x:

mquantiles(x/np.std(x), prob=np.arange(0.01,0.99,0.001)),
data)

from scipy.stats import norm
qq = norm.ppf(np.arange(0.01,0.99,0.001))
plt.plot(np.linspace(-3,3,num=100),np.linspace(-3,3,num=100),

color=’grey’)
colors = [’black’, ’orange’, ’blue’, ’red’]
for i,y in enumerate(dataQ):

plt.plt.plot(qq,y,color=colors[i])

for i,y in enumerate(dataQsd):
plt.plot(qq,y,color=colors[i],linestyle=”dashed”)

plt.xlabel(’Normal quantiles’)
plt.ylabel(’Empirical quantiles’)
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Figure9: First 200 ms of the Locust data set.

We see that the behavior of the ”away from normal” fraction is much more homogeneous for
small, as well as for large in fact, quantile values with the MAD normalized traces than with the SD
normalized ones. If we consider automatic rules like the three sigmas we are going to reject fewer
events (i.e., get fewer putative spikes) with the SD based normalization than with the MAD based
one.

A.6. Detect peaks
We are going to filter the data slightly using a ”box” filter of length 3. That is, the data points
of the original trace are going to be replaced by the average of themselves with their four nearest
neighbors. We will then scale the filtered traces such that the MAD is one on each recording sites
and keep only the parts of the signal which above 4:
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Figure10: First 200 ms on site 1 of the Locust data set. In red: +/- the MAD; in dashed blue +/- the
SD.

from scipy.signal import fftconvolve
from numpy import apply_along_axis as apply
data_filtered = apply(lambda x:

fftconvolve(x,np.array([1,1,1,1,1])/5.,’same’),
1,np.array(data))

data_filtered = (data_filtered.transpose() / \
apply(swp.mad,1,data_filtered)).transpose()

data_filtered[data_filtered < 4] = 0

We can see the difference between the raw trace and the filtered and rectified one (Fig. 12) on
which spikes are going to be detected with:
plt.plot(tt, data[0],color=’black’)
plt.axhline(y=4,color=”blue”,linestyle=”dashed”)
plt.plot(tt, data_filtered[0,],color=’red’)
plt.xlim([0,0.2])
plt.ylim([-5,10])
plt.xlabel(’Time (s)’)

We now use function peak on the sum of the rows of our filtered and rectified version of the
data:
sp0 = swp.peak(data_filtered.sum(0))

Giving 1795 pikes, a mean inter-event interval of 167.0 sampling points, a standard deviation
of 144.0 sampling points, a smallest inter-event interval of 16 sampling points and a largest of
1157 sampling points.
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Figure11: Performances of MAD based vs SD based normalizations. After normalizing the data of
each recording site by its MAD (plain colored curves) or its SD (dashed colored curves),
Q-Q plot against a standard normal distribution were constructed. Colors: site 1, black;
site 2, orange; site 3, blue; site 4, red.

A.6.1. Interactive spike detection check

We can then check the detection quality with:
swp.plot_data_list_and_detection(data,tt,sp0)
plt.xlim([0,0.2])

A.6.2. Split the data set in two parts

As explained in the text, we want to ”emulate” a long data set analysis where the model is estimated
on the early part before doing template matching on what follows. We therefore get an ”early” and
a ”late” part by splitting the data set in two:
sp0E = sp0[sp0 <= data_len/2.]
sp0L = sp0[sp0 > data_len/2.]

In sp0E, the number of detected events is: 908 ; the mean inter-event interval is: 165.0; the
standard deviation of the inter-event intervals is: 139.0; the smallest inter-event interval is: 16
sampling points long; the largest inter-event interval is: 931 sampling points long.
In sp0L, the number of detected events is: 887; the mean inter-event interval is: 169.0; the

standard deviation of the inter-event intervals is: 149.0; the smallest inter-event interval is: 16
sampling points long; the largest inter-event interval is: 1157 sampling points long.
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Figure12: First 200 ms on site 1 of data set data. The raw data are shown in black, the detec-
tion threshold appears in dashed blue and the filtered and rectified trace on which spike
detection is going to be preformed appears in red.

A.7. Cuts
After detecting our spikes, we must make our cuts in order to create our events’ sample. The
obvious question we must first address is: How long should our cuts be? The pragmatic way to get
an answer is:

• Make cuts much longer than what we think is necessary, like 50 sampling points on both
sides of the detected event’s time.

• Compute robust estimates of the ”central” event (with the median) and of the dispersion
of the sample around this central event (with the MAD).

• Plot the two together and check when does the MAD trace reach the background noise level
(at 1 since we have normalized the data).

• Having the central event allows us to see if it outlasts significantly the region where the MAD
is above the background noise level.

Clearly cutting beyond the time at which the MAD hits back the noise level should not bring any
useful information as far a classifying the spikes is concerned. So here we perform this task as
follows:
evtsE = swp.mk_events(sp0E,np.array(data),49,50)
evtsE_median=apply(np.median,0,evtsE)
evtsE_mad=apply(swp.mad,0,evtsE)
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plt.plot(evtsE_median, color=’red’, lw=2)
plt.axhline(y=0, color=’black’)
for i in np.arange(0,400,100):

plt.axvline(x=i, color=’black’, lw=2)

for i in np.arange(0,400,10):
plt.axvline(x=i, color=’grey’)

plt.plot(evtsE_median, color=’red’, lw=2)
plt.plot(evtsE_mad, color=’blue’, lw=2)

Figure13: Robust estimates of the central event (black) and of the sample’s dispersion around the
central event (red) obtained with ”long” (100 sampling points) cuts. We see clearly that
the dispersion is back to noise level 15 points before the peak and 30 points after the
peak.

Fig. 13 clearly shows that starting the cuts 15 points before the peak and ending them 30 points
after should fulfill our goals. We also see that the central event slightly outlasts the window where
the MAD is larger than 1.

A.7.1. Events

Once we are satisfied with our spike detection, at least in a provisory way, and that we have decided
on the length of our cuts, we proceed by making cuts around the detected events. :
evtsE = swp.mk_events(sp0E,np.array(data),14,30)

We can visualize the first 200 events with:
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swp.plot_events(evtsE,200)

Figure14: First 200 events of evtsE. Cuts from the four recording sites appear one after the
other. The background (white / grey) changes with the site. In red, robust estimate of
the ”central” event obtained by computing the pointwise median. In blue, robust estimate
of the scale (SD) obtained by computing the pointwise MAD.

A.7.2. Noise

Getting an estimate of the noise statistical properties is an essential ingredient to build respectable
goodness of fit tests. In our approach ”noise events” are essentially anything that is not an ”event”
is the sense of the previous section. I wrote essentially and not exactly since there is a little twist
here which is the minimal distance we are willing to accept between the reference time of a noise
event and the reference time of the last preceding and of the first following ”event”. We could
think that keeping a cut length on each side would be enough. That would indeed be the case if all
events were starting from and returning to zero within a cut. But this is not the case with the cuts
parameters we chose previously (that will become clear soon). You might wonder why we chose
so short a cut length then. Simply to avoid having to deal with too many superposed events which
are the really bothering events for anyone wanting to do proper sorting. To obtain our noise events
we are going to use function mk noise which takes the same arguments as function mk events
plus two numbers:

• safety factor a number by which the cut length is multiplied and which sets the mini-
mal distance between the reference times discussed in the previous paragraph.
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• size the maximal number of noise events one wants to cut (the actual number obtained
might be smaller depending on the data length, the cut length, the safety factor and the
number of events).

We cut noise events with a rather large safety factor:
noiseE = swp.mk_noise(sp0E,np.array(data),14,30,safety_factor=2.5,size=2000)

A.7.3. Getting ”clean” events

Our spike sorting has twomain stages, the first one consist in estimating amodel and the second one
consists in using this model to classify the data. Our model is going to be built out of reasonably
”clean” events. Here by clean we mean events which are not due to a nearly simultaneous firing
of two or more neurons; and simultaneity is defined on the time scale of one of our cuts. When
the model will be subsequently used to classify data, events are going to decomposed into their
(putative) constituent when they are not ”clean”, that is, superposition are going to be looked
and accounted for.
In order to eliminate the most obvious superpositions we are going to use a rather brute force

approach, looking at the sides of the central peak of our median event and checking if individual
events are not too large there, that is do not exhibit extra peaks. We first define a function doing
this job:
def good_evts_fct(samp, thr=3):

samp_med = apply(np.median,0,samp)
samp_mad = apply(swp.mad,0,samp)
above = samp_med > 0
samp_r = samp.copy()
for i in range(samp.shape[0]): samp_r[i,above] = 0
samp_med[above] = 0
res = apply(lambda x:

np.all(abs((x-samp_med)/samp_mad) < thr),
1,samp_r)

return res

We then apply our new function to our sample using a threshold of 8 (set by trial and error):
goodEvts = good_evts_fct(evtsE,8)

Out of 898 events we get 843 ”good” ones. As usual, the first 200 good ones can be visualized
with:
swp.plot_events(evtsE[goodEvts,:][:200,:])

while the bad guys can be visualized with:
swp.plot_events(evtsE[goodEvts.__neg__(),:],

show_median=False,
show_mad=False)

A.8. Dimension reduction
A.8.1. Principal Component Analysis (PCA)

Our events are living right now in an 180 dimensional space (our cuts are 45 sampling points
long and we are working with 4 recording sites simultaneously). It turns out that it hard for most
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humans to perceive structures in such spaces. It also hard, not to say impossible with a realistic
sample size, to estimate probability densities (which is what model based clustering algorithms are
actually doing) in such spaces, unless one is ready to make strong assumptions about these densities.
It is therefore usually a good practice to try to reduce the dimension of the sample space used to
represent the data. We are going to that with principal component analysis (PCA), using it on our
”good” events.
from numpy.linalg import svd
varcovmat = np.cov(evtsE[goodEvts,:].T)
u, s, v = svd(varcovmat)

With this ”back to the roots” approach, u should be an orthonormal matrix whose column are
made of the principal components (and v should be the transpose of u since our matrix
varcovmat is symmetric and real by construction). s is a vector containing the amount of sample
variance explained by each principal component.

A.8.2. Exploring PCA results

PCA is a rather abstract procedure to most of its users, at least when they start using it. But one
way to grasp what it does is to plot the mean event plus or minus, say five times, each principal
components like:
evt_idx = range(180)
evtsE_good_mean = np.mean(evtsE[goodEvts,:],0)
for i in range(4):

plt.subplot(2,2,i+1)
plt.plot(evt_idx,evtsE_good_mean, ’black’,evt_idx,

evtsE_good_mean + 5 * u[:,i],
’red’,evt_idx,evtsE_good_mean - 5 * u[:,i], ’blue’)

plt.title(’PC’ + str(i) + ’: ’ + str(round(s[i]/sum(s)*100)) +’%’)

We can see on Fig. 15 that the first 3 PCs correspond to pure amplitude variations. An event
with a large projection (score) on the first PC is smaller than the average event on recording sites
1, 2 and 3, but not on 4. An event with a large projection on PC 1 is larger than average on site 1,
smaller than average on site 2 and 3 and identical to the average on site 4. An event with a large
projection on PC 2 is larger than the average on site 4 only. PC 3 is the first principal component
corresponding to a change in shape as opposed to amplitude. A large projection on PC 3 means
that the event as a shallower first valley and a deeper second valley than the average event on all
recording sites.
We now look at the next 4 principal components:

for i in range(4,8):
plt.subplot(2,2,i-3)
plt.plot(evt_idx,evtsE_good_mean, ’black’,

evt_idx,evtsE_good_mean + 5 * u[:,i], ’red’,
evt_idx,evtsE_good_mean - 5 * u[:,i], ’blue’)

plt.title(’PC’ + str(i) + ’: ’ + str(round(s[i]/sum(s)*100)) +’%’)

An event with a large projection on PC 4 (Fig. 16) tends to be ”slower” than the average event.
An event with a large projection on PC 5 exhibits a slower kinetics of its second valley than the
average event. PC 4 and 5 correspond to effects shared among recording sites. PC 6 correspond
also to a ”change of shape” effect on all sites except the first. Events with a large projection on PC
7 rise slightly faster and decay slightly slower than the average event on all recording site. Notice
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Figure15: PCA of evtsE (for ”good” events) exploration (PC 1 to 4). Each of the 4 graphs shows
the mean waveform (black), the mean waveform + 5 x PC (red), the mean - 5 x PC
(blue) for each of the first 4 PCs. The fraction of the total variance ”explained” by the
component appears in the title of each graph.

also that PC 7 has a ”noisier” aspect than the other suggesting that we are reaching the limit of the
”events extra variability” compared to the variability present in the background noise.
This guess can be confirmed by comparing the variance of the ”good” events sample with the

one of the noise sample to which the variance contributed by the first K PCs is added:
noiseVar = sum(np.diag(np.cov(noiseE.T)))
evtsVar = sum(s)
[(i,sum(s[:i])+noiseVar-evtsVar) for i in range(15)]

[(0, -577.5515066116734),
(1, -277.46515935275136),
(2, -187.56341656714392),
(3, -128.03907988426477),
(4, -91.318670546159069),
(5, -58.839889062817178),
(6, -36.363068625815572),
(7, -21.543723178114874),
(8, -8.2644956569712349),
(9, 0.28488890649634868),
(10, 6.9067332866402467),
(11, 13.341548795824792),
(12, 19.472089205774182),
(13, 25.255335860239143),
(14, 29.102105026191794)]

This suggests that keeping the first 10 PCs should be more than enough.

28



Figure16: PCA of evtsE (for ”good” events) exploration (PC 4 to 7). Each of the 4 graphs
shows the mean waveform (black), the mean waveform + 5 x PC (red), the mean - 5 x
PC (blue). The fraction of the total variance ”explained” by the component appears in
between parenthesis in the title of each graph.

A.8.3. Static representation of the projected data: construction of Fig. 4

We can build a scatter plot matrix showing the projections of our ”good” events sample
onto the plane defined by pairs of the few first PCs:
evtsE_good_P0_to_P3 = np.dot(evtsE[goodEvts,:],u[:,0:4])
from pandas.tools.plotting import scatter_matrix
import pandas as pd
df = pd.DataFrame(evtsE_good_P0_to_P3)
scatter_matrix(df,alpha=0.2,s=4,c=’k’,figsize=(6,6),

diagonal=’kde’,marker=”.”)

A.8.4. Dynamic visualization of the data with GGobi

The best way to discern structures in ”high dimensional” data is to dynamically visualize them. To
this end, the tool of choice is GGobi, an open source software available on Linux, Windows and
MacOS. We start by exporting our data in csv format to our disk:
import csv
f = open(’evtsE.csv’,’w’)
w = csv.writer(f)
w.writerows(np.dot(evtsE[goodEvts,:],u[:,:8]))
f.close()

The following terse procedure should allow the reader to get going with GGobi:
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• Launch GGobi

• In menu: File -> Open, select evtsE.csv.

• Since the glyphs are rather large, start by changing them for smaller ones:
– Go to menu: Interaction -> Brush.
– On the Brush panel which appeared check the Persistent box.
– Click on Choose color & glyph....
– On the chooser which pops out, click on the small dot on the upper left of the left panel.
– Go back to the window with the data points.
– Right click on the lower right corner of the rectangle which appeared on the figure after
you selected Brush.

– Dragg the rectangle corner in order to cover the whole set of points.
– Go back to the Interaction menu and select the first row to go back where you
were at the start.

• Select menu: View -> Rotation.

• Adjust the speed of the rotation in order to see things properly.

We easily discern 10 rather well separated clusters. Meaning that an automatic clustering with 10
clusters on the first 3 principal components should do the job.

A.9. Clustering with K-Means
Since our dynamic visualization shows 10 well separated clusters in 3 dimension, a simple k-means
should do the job. We are using here the KMeans class of scikit-learn:
from sklearn.cluster import KMeans
km10 = KMeans(n_clusters=10, init=’k-means++’, n_init=100, max_iter=100)
km10.fit(np.dot(evtsE[goodEvts,:],u[:,0:3]))
c10 = km10.fit_predict(np.dot(evtsE[goodEvts,:],u[:,0:3]))

In order to facilitate comparison when models with different numbers of clusters or when different
models are used, clusters are sorted by ”size”. The size is defined here as the sum of the absolute
value of the median of the cluster (an L1 norm):
cluster_median = list([(i,

np.apply_along_axis(np.median,0,
evtsE[goodEvts,:][c10 == i,:]))
for i in range(10)
if sum(c10 == i) > 0])

cluster_size = list([np.sum(np.abs(x[1])) for x in cluster_median])
new_order = list(reversed(np.argsort(cluster_size)))
new_order_reverse = sorted(range(len(new_order)), key=new_order.__getitem__)
c10b = [new_order_reverse[i] for i in c10]
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A.9.1. Cluster specific plots

Looking at the first 5 clusters we get Fig. 17 with:
plt.subplot(511)
swp.plot_events(evtsE[goodEvts,:][np.array(c10b) == 0,:])
ylim([-15,20])
plt.subplot(512)
swp.plot_events(evtsE[goodEvts,:][np.array(c10b) == 1,:])
ylim([-15,20])
plt.subplot(513)
swp.plot_events(evtsE[goodEvts,:][np.array(c10b) == 2,:])
ylim([-15,20])
plt.subplot(514)
swp.plot_events(evtsE[goodEvts,:][np.array(c10b) == 3,:])
ylim([-15,20])
plt.subplot(515)
swp.plot_events(evtsE[goodEvts,:][np.array(c10b) == 4,:])
ylim([-15,20])

Figure17: First 5 clusters. Cluster 0 at the top, cluster 4 at the bottom. Red, cluster specific central
/ median event. Blue, cluster specific MAD.

Looking at the last 5 clusters we get Fig. 18 with:
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plt.subplot(511)
swp.plot_events(evtsE[goodEvts,:][np.array(c10b) == 5,:])
ylim([-10,10])
plt.subplot(512)
swp.plot_events(evtsE[goodEvts,:][np.array(c10b) == 6,:])
ylim([-10,10])
plt.subplot(513)
swp.plot_events(evtsE[goodEvts,:][np.array(c10b) == 7,:])
ylim([-10,10])
plt.subplot(514)
swp.plot_events(evtsE[goodEvts,:][np.array(c10b) == 8,:])
ylim([-10,10])
plt.subplot(515)
swp.plot_events(evtsE[goodEvts,:][np.array(c10b) == 9,:])
ylim([-10,10])

Figure18: Last 5 clusters. Cluster 5 at the top, cluster 9 at the bottom. Red, cluster specific central /
median event. Blue, cluster specific MAD. Notice the change in ordinate scale compared
to the previous figure.

A.9.2. Results inspection with GGobi

We start by checking our clustering quality with GGobi. To this end we export the data and the
labels of each event:
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f = open(’evtsEsorted.csv’,’w’)
w = csv.writer(f)
w.writerows(np.concatenate((np.dot(evtsE[goodEvts,:],u[:,:8]),

np.array([c10b]).T),
axis=1))

f.close()

An again succinct description of how to do the dynamical visual check is:
• Load the new data into GGobi like before.

• In menu: Display -> New Scatterplot Display, select evtsEsorted.csv.

• Change the glyphs like before.

• In menu: Tools -> Color Schemes, select a scheme with 10 colors, like Spectral,
Spectral 10.

• In menu: Tools -> Automatic Brushing, select evtsEsorted.csv tab and,
within this tab, select variable c10b. Then click on Apply.

• Select View -> Rotation like before and see your result.

A.10. Spike ”peeling”: a ”Brute force” superposition resolution
We are going to resolve (the most ”obvious”) superpositions by a ”recursive peeling method”:

1. Events are detected and cut from the raw data or from an already peeled version of the data.

2. The closest center (in term of Euclidean distance) to the event is found.

3. If the residual sum of squares (RSS), that is: (actual data - best center)􏷡, is smaller than the
squared norm of a cut, the best center is subtracted from the data on which detection was
performed—jitter is again compensated for at this stage.

4. Go back to step 1 or stop.
To apply this procedure, we need, for each cluster, estimates of its center and of its first two

derivatives. Function mk center dictionary does the job for us. We must moreover build
our clusters’ centers such that they can be used for subtraction, this implies that we should make them
long enough, on both side of the peak, to see them go back to baseline. Formal parameters before
and after bellow should therefore be set to larger values than the ones used for clustering:
centers = { ”Cluster ” + str(i) :

swp.mk_center_dictionary(sp0E[goodEvts][np.array(c10b)==i],
np.array(data))

for i in range(10)}

A.10.1. First peeling

Function classify and align evt is used next. For each detected event, it matches the
closest template, correcting for the jitter, if the closest template is close enough:
swp.classify_and_align_evt(sp0[0],np.array(data),centers)
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[’Cluster 7’, 281, -0.14107835097978202]

We can use the function on every detected event. A trick here is to store the matrix version of
the data in order to avoid the conversion of the list of vectors (making the data of the different
channels) into a matrix for each detected event:
data0 = np.array(data)
round0 = [swp.classify_and_align_evt(sp0[i],data0,centers)

for i in range(len(sp0))]

We can check how many events got unclassified on a total of 1766 :
len([x[1] for x in round0 if x[0] == ’?’])

22

Using function predict data, we create an ideal data trace given events’ positions, events’
origins and a clusters’ catalog:
pred0 = swp.predict_data(round0,centers)

We then subtract the prediction (pred0) from the data (data0) to get the ”peeled” data (data1):
data1 = data0 - pred0

We can compare the original data with the result of the ”first peeling” to get Fig. 19:
plt.plot(tt, data0[0,], color=’black’)
plt.plot(tt, data1[0,], color=’red’,lw=0.3)
plt.plot(tt, data0[1,]-15, color=’black’)
plt.plot(tt, data1[1,]-15, color=’red’,lw=0.3)
plt.plot(tt, data0[2,]-25, color=’black’)
plt.plot(tt, data1[2,]-25, color=’red’,lw=0.3)
plt.plot(tt, data0[3,]-40, color=’black’)
plt.plot(tt, data1[3,]-40, color=’red’,lw=0.3)
plt.xlabel(’Time (s)’)
plt.xlim([0.9,1])

A.10.2. Second peeling

We then take data1 as our former data0 and we repeat the procedure. We do it with slight
modifications: detection is done on a single recording site and a shorter filter length is used be-
fore detecting the events. Doing detection on a single site (here site 0) allows us to correct some
drawbacks of our crude spike detection method. When we used it the first time we summed the
filtered and rectified versions of the data before looking at peaks. This summation can lead to badly
defined spike times when two neurons that are large on different recording sites, say site 0 and site
1 fire at nearly the same time. The summed event can then have a peak in between the two true
peaks and our jitter correction cannot resolve that. We are therefore going to perform detection
on the different sites. The jitter estimation and the subtraction are always going to be done on the
4 recording sites:
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Figure19: 100 ms of the locust data set. Black, original data; red, after first peeling.

data_filtered = np.apply_along_axis(lambda x:
fftconvolve(x,np.array([1,1,1])/3.,

’same’),
1,data1)

data_filtered = (data_filtered.transpose() /
np.apply_along_axis(swp.mad,1,

data_filtered)).transpose()
data_filtered[data_filtered < 4] = 0
sp1 = swp.peak(data_filtered[0,:])

We classify the events and obtain the new prediction and the new ”data”:
round1 = [swp.classify_and_align_evt(sp1[i],data1,centers)

for i in range(len(sp1))]
pred1 = swp.predict_data(round1,centers)
data2 = data1 - pred1

We can check how many events got unclassified on a total of 244:
len([x[1] for x in round1 if x[0] == ’?’])

58

We can compare the first peeling with the second one (Fig. 20):
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plt.plot(tt, data1[0,], color=’black’)
plt.plot(tt, data2[0,], color=’red’,lw=0.3)
plt.plot(tt, data1[1,]-15, color=’black’)
plt.plot(tt, data2[1,]-15, color=’red’,lw=0.3)
plt.plot(tt, data1[2,]-25, color=’black’)
plt.plot(tt, data2[2,]-25, color=’red’,lw=0.3)
plt.plot(tt, data1[3,]-40, color=’black’)
plt.plot(tt, data2[3,]-40, color=’red’,lw=0.3)
plt.xlabel(’Time (s)’)
plt.xlim([0.9,1])

Figure20: 100 ms of the locust data set. Black, first peeling; red, second peeling.

A.10.3. Third peeling

We take data2 as our former data1 and we repeat the procedure detecting on channel 1:
data_filtered = apply(lambda x:

fftconvolve(x,np.array([1,1,1])/3.,’same’),
1,data2)

data_filtered = (data_filtered.transpose() / \
apply(swp.mad,1,data_filtered)).transpose()

data_filtered[data_filtered < 4] = 0
sp2 = swp.peak(data_filtered[1,:])
len(sp2)

129

The classification follows with the prediction and the number of unclassified events:

36



round2 = [swp.classify_and_align_evt(sp2[i],data2,centers) for i in range(len(sp2))]
pred2 = swp.predict_data(round2,centers)
data3 = data2 - pred2
len([x[1] for x in round2 if x[0] == ’?’])

22

We can compare the second peeling with the third one (Fig. 21):
plt.plot(tt, data2[0,], color=’black’)
plt.plot(tt, data3[0,], color=’red’,lw=0.3)
plt.plot(tt, data2[1,]-15, color=’black’)
plt.plot(tt, data3[1,]-15, color=’red’,lw=0.3)
plt.plot(tt, data2[2,]-25, color=’black’)
plt.plot(tt, data3[2,]-25, color=’red’,lw=0.3)
plt.plot(tt, data2[3,]-40, color=’black’)
plt.plot(tt, data3[3,]-40, color=’red’,lw=0.3)
plt.xlabel(’Time (s)’)
plt.xlim([0.9,1])

Figure21: 100 ms of the locust data set. Black, second peeling; red, third peeling. In this portion
of data we see events but none belonging to our centers catalog.

A.10.4. Fourth peeling

We take data3 as our former data2 and we repeat the procedure detecting on channel 2:
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data_filtered = apply(lambda x:
fftconvolve(x,np.array([1,1,1])/3.,’same’),
1,data3)

data_filtered = (data_filtered.transpose() / \
apply(swp.mad,1,data_filtered)).transpose()

data_filtered[data_filtered < 4] = 0
sp3 = swp.peak(data_filtered[2,:])
len(sp3)

99

The classification follows with the prediction and the number of unclassified events:
round3 = [swp.classify_and_align_evt(sp3[i],data3,centers) for i in range(len(sp3))]
pred3 = swp.predict_data(round3,centers)
data4 = data3 - pred3
len([x[1] for x in round3 if x[0] == ’?’])

16

We can compare the third peeling with the fourth one (Fig. 22) looking at a different part of the
data than on the previous figures:
plt.plot(tt, data3[0,], color=’black’)
plt.plot(tt, data4[0,], color=’red’,lw=0.3)
plt.plot(tt, data3[1,]-15, color=’black’)
plt.plot(tt, data4[1,]-15, color=’red’,lw=0.3)
plt.plot(tt, data3[2,]-25, color=’black’)
plt.plot(tt, data4[2,]-25, color=’red’,lw=0.3)
plt.plot(tt, data3[3,]-40, color=’black’)
plt.plot(tt, data4[3,]-40, color=’red’,lw=0.3)
plt.xlabel(’Time (s)’)
plt.xlim([3.9,4])

A.10.5. Fifth peeling

We take data4 as our former data3 and we repeat the procedure detecting on channel 3:
data_filtered = apply(lambda x:

fftconvolve(x,np.array([1,1,1])/3.,’same’),
1,data4)

data_filtered = (data_filtered.transpose() / \
apply(swp.mad,1,data_filtered)).transpose()

data_filtered[data_filtered < 4] = 0
sp4 = swp.peak(data_filtered[3,:])
len(sp4)

170

The classification follows with the prediction and the number of unclassified events:
round4 = [swp.classify_and_align_evt(sp4[i],data4,centers) for i in range(len(sp4))]
pred4 = swp.predict_data(round4,centers)
data5 = data4 - pred4
len([x[1] for x in round4 if x[0] == ’?’])

53
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Figure22: 100 ms of the locust data set (different time frame than on the previous plot). Black,
third peeling; red, fourth peeling. On this portion of the trace, nothing was detected on
site 2 (the third one, remember that Python starts numbering at 0).

We can compare the third peeling with the fourth one (Fig. 23):
plt.plot(tt, data4[0,], color=’black’)
plt.plot(tt, data5[0,], color=’red’,lw=0.3)
plt.plot(tt, data4[1,]-15, color=’black’)
plt.plot(tt, data5[1,]-15, color=’red’,lw=0.3)
plt.plot(tt, data4[2,]-25, color=’black’)
plt.plot(tt, data5[2,]-25, color=’red’,lw=0.3)
plt.plot(tt, data4[3,]-40, color=’black’)
plt.plot(tt, data5[3,]-40, color=’red’,lw=0.3)
plt.xlabel(’Time (s)’)
plt.xlim([3.9,4])

Figure23: 100 ms of the locust data set. Black, fourth peeling; red, fifth peeling. Two events got
detected on channel 3 and subtracted.

A.10.6. General comparison

We can compare the raw data with the fifth peeling on the first second (Fig. 24):
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plt.plot(tt, data0[0,], color=’black’)
plt.plot(tt, data5[0,], color=’red’,lw=0.3)
plt.plot(tt, data0[1,]-15, color=’black’)
plt.plot(tt, data5[1,]-15, color=’red’,lw=0.3)
plt.plot(tt, data0[2,]-25, color=’black’)
plt.plot(tt, data5[2,]-25, color=’red’,lw=0.3)
plt.plot(tt, data0[3,]-40, color=’black’)
plt.plot(tt, data5[3,]-40, color=’red’,lw=0.3)
plt.xlabel(’Time (s)’)
plt.xlim([0,1])

Figure24: The first second of the locust data set. Black, raw data; red, fifth peeling.

We can also look at the remaining unclassified events; they don’t look like any of our templates
(Fig. 25):
bad_ones = [x[1] for x in round4 if x[0] == ’?’]
r4BE = swp.mk_events(bad_ones, data4)
swp.plot_events(r4BE)

A.11. Getting the spike trains
Once we have decided to stop the peeling iterations we can extract our spike trains with (notice the
syntax difference between Python 3 and Python 2):
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Figure25: The 53 remaining bad events after the fifth peeling.

try:
round_all = round0.copy() # Python 3

except AttributeError:
round_all = round0[:] # Python 2

round_all.extend(round1)
round_all.extend(round2)
round_all.extend(round3)
round_all.extend(round4)
spike_trains = { n : np.sort([x[1] + x[2] for x in round_all

if x[0] == n]) for n in list(centers)}

The number of spikes attributed to each neuron is:
[(n,len(spike_trains[n])) for n in list(centers)]

[(’Cluster 7’, 233),
(’Cluster 6’, 238),
(’Cluster 8’, 456),
(’Cluster 4’, 63),
(’Cluster 3’, 173),
(’Cluster 5’, 149),
(’Cluster 0’, 92),
(’Cluster 2’, 101),
(’Cluster 9’, 588),
(’Cluster 1’, 173)]
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B. Individual function definitions
Short function are presented in ’one piece’. The longer ones are presented with their docstring
first followed by the body of the function. To get the actual function you should replace the «doc-
string» appearing in the function definition by the actual doctring. This is just a direct
application of the literate programming paradigm. More complicated functions are split into more
parts with their own descriptions.

B.1. plot data list

We define a function, plot data list, making our raw data like displaying command lighter,
starting with the docstring:
”””Plots data when individual recording channels make up elements
of a list.

Parameters
----------
data_list: a list of numpy arrays of dimension 1 that should all

be of the same length (not checked).
time_axes: an array with as many elements as the components of

data_list. The time values of the abscissa.
linewidth: the width of the lines drawing the curves.
color: the color of the curves.

Returns
-------
Nothing is returned, the function is used for its side effect: a
plot is generated.
”””

Then the definition of the function per se:
def plot_data_list(data_list,

time_axes,
linewidth=0.2,
color=’black’):

<<plot_data_list-doctring>>
nb_chan = len(data_list)
data_min = [np.min(x) for x in data_list]
data_max = [np.max(x) for x in data_list]
display_offset = list(np.cumsum(np.array([0] +

[data_max[i]-
data_min[i-1]

for i in
range(1,nb_chan)])))

for i in range(nb_chan):
plt.plot(time_axes,data_list[i]-display_offset[i],

linewidth=linewidth,color=color)
plt.yticks([])
plt.xlabel(”Time (s)”)

B.2. peak
We define function peak which detects local maxima using an estimate of the derivative of the
signal. Only putative maxima that are farther apart than minimal dist sampling points are
kept. The function returns a vector of indices. Its docstring is:
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”””Find peaks on one dimensional arrays.

Parameters
----------
x: a one dimensional array on which scipy.signal.fftconvolve can

be called.
minimal_dist: the minimal distance between two successive peaks.
not_zero: the smallest value above which the absolute value of
the derivative is considered not null.

Returns
-------
An array of (peak) indices is returned.
”””

And the function per se:
def peak(x, minimal_dist=15, not_zero=1e-3):

<<peak-docstring>>
## Get the first derivative
dx = scipy.signal.fftconvolve(x,np.array([1,0,-1])/2.,’same’)
dx[np.abs(dx) < not_zero] = 0
dx = np.diff(np.sign(dx))
pos = np.arange(len(dx))[dx < 0]
return pos[:-1][np.diff(pos) > minimal_dist]

B.3. cut sgl evt

Function mk events (defined next) that we will use directly will call cut sgl evt. As its name
says cuts a single event (an return a vector with the cuts on the different recording sites glued one
after the other). Its docstring is:
”””Cuts an ’event’ at ’evt_pos’ on ’data’.

Parameters
----------
evt_pos: an integer, the index (location) of the (peak of) the

event.
data: a matrix whose rows contains the recording channels.
before: an integer, how many points should be within the cut

before the reference index / time given by evt_pos.
after: an integer, how many points should be within the cut

after the reference index / time given by evt_pos.

Returns
-------
A vector with the cuts on the different recording sites glued
one after the other.
”””

And the function per se:
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def cut_sgl_evt(evt_pos,data,before=14, after=30):
<<cut_sgl_evt-docstring>>
ns = data.shape[0] ## Number of recording sites
dl = data.shape[1] ## Number of sampling points
cl = before+after+1 ## The length of the cut
cs = cl*ns ## The ’size’ of a cut
cut = np.zeros((ns,cl))
idx = np.arange(-before,after+1)
keep = idx + evt_pos
within = np.bitwise_and(0 <= keep, keep < dl)
kw = keep[within]
cut[:,within] = data[:,kw].copy()
return cut.reshape(cs)

B.4. mk events

Function mk events takes a vector of indices as its first argument and returns a matrix with has
many rows as events. Its docstring is
”””Make events matrix out of data and events positions.

Parameters
----------
positions: a vector containing the indices of the events.
data: a matrix whose rows contains the recording channels.
before: an integer, how many points should be within the cut

before the reference index / time given by evt_pos.
after: an integer, how many points should be within the cut

after the reference index / time given by evt_pos.

Returns
-------
A matrix with as many rows as events and whose rows are the cuts
on the different recording sites glued one after the other.
”””

And the function per se:
def mk_events(positions, data, before=14, after=30):

<<mk_events-docstring>>
res = np.zeros((len(positions),(before+after+1)*data.shape[0]))
for i,p in enumerate(positions):

res[i,:] = cut_sgl_evt(p,data,before,after)
return res

B.5. plot events

In order to facilitate events display, we define an event specific plotting function starting with its
docstring:
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”””Plot events.

Parameters
----------
evts_matrix: a matrix of events. Rows are events. Cuts from

different recording sites are glued one after the
other on each row.

n_plot: an integer, the number of events to plot (if ’None’,
default, all are shown).

n_channels: an integer, the number of recording channels.
events_color: the color used to display events.
events_lw: the line width used to display events.
show_median: should the median event be displayed?
median_color: color used to display the median event.
median_lw: line width used to display the median event.
show_mad: should the MAD be displayed?
mad_color: color used to display the MAD.
mad_lw: line width used to display the MAD.

Returns
-------
Noting, the function is used for its side effect.
”””

And the function per se:
def plot_events(evts_matrix,

n_plot=None,
n_channels=4,
events_color=’black’,
events_lw=0.1,
show_median=True,
median_color=’red’,
median_lw=0.5,
show_mad=True,
mad_color=’blue’,
mad_lw=0.5):

<<plot_events-docstring>>
if n_plot is None:

n_plot = evts_matrix.shape[0]

cut_length = evts_matrix.shape[1] // n_channels

for i in range(n_plot):
plt.plot(evts_matrix[i,:], color=events_color, lw=events_lw)

if show_median:
MEDIAN = np.apply_along_axis(np.median,0,evts_matrix)
plt.plot(MEDIAN, color=median_color, lw=median_lw)

if show_mad:
MAD = np.apply_along_axis(mad,0,evts_matrix)
plt.plot(MAD, color=mad_color, lw=mad_lw)

left_boundary = np.arange(cut_length,
evts_matrix.shape[1],
cut_length*2)

for l in left_boundary:
plt.axvspan(l,l+cut_length-1,

facecolor=’grey’,alpha=0.5,edgecolor=’none’)
plt.xticks([])
return
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B.6. plot data list and detection

We define a function, plot data list and detection, making our data and detection dis-
playing command lighter. Its docstring:
”””Plots data together with detected events.

Parameters
----------
data_list: a list of numpy arrays of dimension 1 that should all

be of the same length (not checked).
time_axes: an array with as many elements as the components of

data_list. The time values of the abscissa.
evts_pos: a vector containing the indices of the detected

events.
linewidth: the width of the lines drawing the curves.
color: the color of the curves.

Returns
-------
Nothing is returned, the function is used for its side effect: a
plot is generated.
”””

And the function:
def plot_data_list_and_detection(data_list,

time_axes,
evts_pos,
linewidth=0.2,
color=’black’):

<<plot_data_list_and_detection-docstring>>
nb_chan = len(data_list)
data_min = [np.min(x) for x in data_list]
data_max = [np.max(x) for x in data_list]
display_offset = list(np.cumsum(np.array([0] +

[data_max[i]-
data_min[i-1] for i in

range(1,nb_chan)])))
for i in range(nb_chan):

plt.plot(time_axes,data_list[i]-display_offset[i],
linewidth=linewidth,color=color)

plt.plot(time_axes[evts_pos],
data_list[i][evts_pos]-display_offset[i],’ro’)

plt.yticks([])
plt.xlabel(”Time (s)”)

B.7. mk noise

Getting an estimate of the noise statistical properties is an essential ingredient to build respectable
goodness of fit tests. In our approach ”noise events” are essentially anything that is not an ”event”.
I wrote essentially and not exactly since there is a little twist here which is the minimal distance we
are willing to accept between the reference time of a noise event and the reference time of the last
preceding and of the first following ”event”. We could think that keeping a cut length on each side
would be enough. That would indeed be the case if all events were starting from and returning to
zero within a cut. But this is not the case with the cuts parameters we chose previously (that will
become clear soon). You might wonder why we chose so short a cut length then. Simply to avoid
having to deal with too many superposed events which are the really bothering events for anyone
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wanting to do proper sorting. To obtain our noise events we are going to use function mk noise
which takes the same arguments as function mk events plus two numbers:

• safety factor a number by which the cut length is multiplied and which sets the mini-
mal distance between the reference times discussed in the previous paragraph.

• size the maximal number of noise events one wants to cut (the actual number obtained
might be smaller depending on the data length, the cut length, the safety factor and the
number of events).

We define now function mk noise starting with its docstring:
”””Constructs a noise sample.

Parameters
----------
positions: a vector containing the indices of the events.
data: a matrix whose rows contains the recording channels.
before: an integer, how many points should be within the cut

before the reference index / time given by evt_pos.
after: an integer, how many points should be within the cut

after the reference index / time given by evt_pos.
safety_factor: a number by which the cut length is multiplied

and which sets the minimal distance between the
reference times discussed in the previous
paragraph.

size: the maximal number of noise events one wants to cut (the
actual number obtained might be smaller depending on the
data length, the cut length, the safety factor and the
number of events).

Returns
-------
A matrix with as many rows as noise events and whose rows are
the cuts on the different recording sites glued one after the
other.
”””

And the function:
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def mk_noise(positions, data, before=14, after=30, safety_factor=2, size=2000):
<<mk_noise-docstring>>
sl = before+after+1 ## cut length
ns = data.shape[0] ## number of recording sites
i1 = np.diff(positions) ## inter-event intervals
minimal_length = round(sl*safety_factor)
## Get next the number of noise sweeps that can be
## cut between each detected event with a safety factor
nb_i = (i1-minimal_length)//sl
## Get the number of noise sweeps that are going to be cut
nb_possible = min(size,sum(nb_i[nb_i>0]))
res = np.zeros((nb_possible,sl*data.shape[0]))
## Create next a list containing the indices of the inter event
## intervals that are long enough
idx_l = [i for i in range(len(i1)) if nb_i[i] > 0]
## Make next an index running over the inter event intervals
## from which at least one noise cut can be made
interval_idx = 0
## noise_positions = np.zeros(nb_possible,dtype=numpy.int)
n_idx = 0
while n_idx < nb_possible:

within_idx = 0 ## an index of the noise cut with a long enough
## interval

i_pos = positions[idx_l[interval_idx]] + minimal_length
## Variable defined next contains the number of noise cuts
## that can be made from the ”currently” considered long-enough
## inter event interval
n_at_interval_idx = nb_i[idx_l[interval_idx]]
while within_idx < n_at_interval_idx and n_idx < nb_possible:

res[n_idx,:]= cut_sgl_evt(int(i_pos),data,before,after)
## noise_positions[n_idx] = i_pos
n_idx += 1
i_pos += sl
within_idx += 1

interval_idx += 1
## return (res,noise_positions)
return res

B.8. mad
We define the mad function in one piece since it is very short:
def mad(x):

”””Returns the Median Absolute Deviation of its argument.
”””
return np.median(np.absolute(x - np.median(x)))*1.4826

B.9. mk aligned events

B.9.1. The jitter: A worked out example

Function mk aligned events is somehow the ”heavy part” of this document. Its job is to
align events on their templates while taking care of two jitter sources: the sampling and the noise
one. Rather than getting into a theoretical discussion, we illustrate the problem with one of the
events detected on our data set. Cluster 1 is the cluster exhibiting the largest sampling jitter effects,
since it has the largest time derivative, in absolute value, of its median event . This is clearly seen
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when we superpose the 50th event from this cluster with the median event (remember that we start
numbering at 0). So we get first our estimate for center or template of cluster 1:
c1_median = apply(np.median,0,evtsE[goodEvts,:][np.array(c10b)==1,:])

And we do the plot (Fig. 26):
plt.plot(c1_median,color=’red’)
plt.plot(evtsE[goodEvts,:][np.array(c10b)==1,:][50,:],color=’black’)

Figure26: The median event of cluster 1 (red) together with event 50 of the same cluster (black).

A Taylor expansion shows that if we write g(t) the observed 50th event, δ the sampling jitter and
f(t) the actual waveform of the event then:

𝑔(𝑡) = 𝑓(𝑡 + 𝛿) + 𝜀(𝑡) ≈ 𝑓(𝑡) + 𝛿 𝑓′(𝑡) + 𝛿􏷡/2𝑓″(𝑡) + 𝜀(𝑡) ; (8)
where ε is a Gaussian process and where 𝑓′ and 𝑓″ stand for the first and second time derivatives
of 𝑓. Therefore, if we can get estimates of 𝑓′ and 𝑓″ we should be able to estimate δ by linear
regression (if we neglect the 𝛿􏷡 term as well as the potentially non null correlation in ε) or by non
linear regression (if we keep the latter). We start by getting the derivatives estimates:
dataD = apply(lambda x: fftconvolve(x,np.array([1,0,-1])/2.,’same’),

1, data)
evtsED = swp.mk_events(sp0E,dataD,14,30)
dataDD = apply(lambda x: fftconvolve(x,np.array([1,0,-1])/2.,’same’),

1, dataD)
evtsEDD = swp.mk_events(sp0E,dataDD,14,30)
c1D_median = apply(np.median,0,

evtsED[goodEvts,:][np.array(c10b)==1,:])
c1DD_median = apply(np.median,0,

evtsEDD[goodEvts,:][np.array(c10b)==1,:])

We then get something like Fig. 27:
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plt.plot(evtsE[goodEvts,:][np.array(c10b)==1,:][50,:]-\
c1_median,color=’red’,lw=2)

plt.plot(1.5*c1D_median,color=’blue’,lw=2)
plt.plot(1.5*c1D_median+1.5**2/2*c1DD_median,color=’black’,lw=2)

Figure27: The median event of cluster 1 subtracted from event 50 of the same cluster (red); 1.5
times the first derivative of the median event (blue)—corresponding to δ=1.5—; 1.5
times the first derivative + 1.52/2 times the second (black)—corresponding again to
δ=1.5—.

If we neglect the 𝛿􏷡 term we quickly arrive at:

𝛿̂ = 𝐟′ ⋅ (𝐠 − 𝐟)
‖𝐟′‖􏷡 ; (9)

where the ’vectorial’ notation like 𝐚 ⋅ 𝐛 stands here for:

􏷠􏷦􏷨
􏾜
𝑖=􏷟
𝑎𝑖𝑏𝑖 .

For the 50th event of the cluster we get:
delta_hat = np.dot(c1D_median,

evtsE[goodEvts,:][np.array(c10b)==1,:][50,:]-\
c1_median)/np.dot(c1D_median,c1D_median)

delta_hat

1.4917182692917244
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We can use this estimated value of delta hat as an initial guess for a procedure refining the
estimate using also the 𝛿􏷡 term. The obvious quantity we should try to minimize is the residual
sum of square, RSS defined by:

RSS(𝛿) = ‖𝐠 − 𝐟 − 𝛿 𝐟′ − 𝛿􏷡/2 𝐟″‖􏷡 .

We can define a function returning the RSS for a given value of δ as well as an event evt a
cluster center (median event of the cluster) center and its first two derivatives, centerD and
centerDD:
def rss_fct(delta,evt,center,centerD,centerDD):

return np.sum((evt - center - delta*centerD - delta**2/2*centerDD)**2)

To create quickly a graph of the RSS as a function of δ for the specific case we are dealing
with now (51st element of cluster 1) we create a vectorized or universal function version of the
rss for alignment we just defined:
urss_fct = np.frompyfunc(lambda x:

rss_fct(x,
evtsE[goodEvts,:]\
[np.array(c10b)==1,:][50,:],
c1_median,c1D_median,c1DD_median),1,1)

We then get the Fig. 28 with:
plt.subplot(1,2,1)
dd = np.arange(-5,5,0.05)
plt.plot(dd,urss_fct(dd),color=’black’,lw=2)
plt.subplot(1,2,2)
dd_fine = np.linspace(delta_hat-0.5,delta_hat+0.5,501)
plt.plot(dd_fine,urss_fct(dd_fine),color=’black’,lw=2)
plt.axvline(x=delta_hat,color=’red’)

The left panel of the above figure shows that our initial guess for 𝛿̂ is not bad but still approx-
imately 0.2 units away from the actual minimum. The classical way to refine our δ estimate—
in ’nice situations’ where the function we are trying to minimize is locally convex—is to use the
Newton-Raphson algorithm which consists in approximating locally the ’target function’ (here our
RSS function) by a parabola having locally the same first and second derivatives, before jumping
to the minimum of this approximating parabola. If we develop our previous expression of RSS(𝛿)
we get:

RSS(𝛿) = ‖𝐡‖􏷡 − 2𝛿𝐡 ⋅ 𝐟′ + 𝛿􏷡 􏿴‖𝐟′‖􏷡 − 𝐡 ⋅ 𝐟″􏿷 + 𝛿􏷢 𝐟′ ⋅ 𝐟″ + 𝛿
􏷣

4 ‖𝐟
″‖􏷡 ;

where 𝐡 stands for 𝐠 − 𝐟. By differentiation with respect to δ we get:

RSS′(𝛿) = −2𝐡 ⋅ 𝐟′ + 2 𝛿 􏿴‖𝐟′‖􏷡 − 𝐡 ⋅ 𝐟″􏿷 + 3 𝛿􏷡 𝐟′ ⋅ 𝐟″ + 𝛿􏷢‖𝐟″‖􏷡 .

And a second differentiation leads to:

RSS″(𝛿) = 2 􏿴‖𝐟′‖􏷡 − 𝐡 ⋅ 𝐟″􏿷 + 6 𝛿 𝐟′ ⋅ 𝐟″ + 3 𝛿􏷡‖𝐟″‖􏷡 .

The equation of the approximating parabola at 𝛿(𝑘) is then:

RSS(𝛿(𝑘) + 𝜂) ≈ RSS(𝛿(𝑘)) + 𝜂RSS′(𝛿(𝑘)) + 𝜂
􏷡

2 RSS
″(𝛿(𝑘)) ,
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Figure28: The RSS as a function of δ for event 50 of cluster 1. Left, 𝛿 ∈ [−5, 5]; right, 𝛿 ∈
[𝛿̂ − 0.5, 𝛿̂ + 0.5] and the red vertical line shows 𝛿̂.

and its minimum—if RSS″(𝛿) > 0—is located at:

𝛿(𝑘+􏷠) = 𝛿(𝑘) − RSS′(𝛿(𝑘))
RSS″(𝛿(𝑘)) .

Defining functions returning the required derivatives:
def rssD_fct(delta,evt,center,centerD,centerDD):

h = evt - center
return -2*np.dot(h,centerD) + \
2*delta*(np.dot(centerD,centerD) - np.dot(h,centerDD)) + \
3*delta**2*np.dot(centerD,centerDD) + \
delta**3*np.dot(centerDD,centerDD)

def rssDD_fct(delta,evt,center,centerD,centerDD):
h = evt - center
return 2*(np.dot(centerD,centerD) - np.dot(h,centerDD)) + \
6*delta*np.dot(centerD,centerDD) + \
3*delta**2*np.dot(centerDD,centerDD)

we can get a graphical representation (Fig. 29) of a single step of the Newton-Raphson algorithm:
rss_at_delta0 = rss_fct(delta_hat,

evtsE[goodEvts,:][np.array(c10b)==1,:][50,:],
c1_median,c1D_median,c1DD_median)

rssD_at_delta0 = rssD_fct(delta_hat,
evtsE[goodEvts,:][np.array(c10b)==1,:][50,:],
c1_median,c1D_median,c1DD_median)

rssDD_at_delta0 = rssDD_fct(delta_hat,
evtsE[goodEvts,:][np.array(c10b)==1,:]\
[50,:],c1_median,c1D_median,c1DD_median)

delta_1 = delta_hat - rssD_at_delta0/rssDD_at_delta0

52



plt.plot(dd_fine,urss_fct(dd_fine),color=’black’,lw=2)
plt.axvline(x=delta_hat,color=’red’)
plt.plot(dd_fine,

rss_at_delta0 + (dd_fine-delta_hat)*rssD_at_delta0 + \
(dd_fine-delta_hat)**2/2*rssDD_at_delta0,color=’blue’,lw=2)

plt.axvline(x=delta_1,color=’grey’)

Figure29: The RSS as a function of δ for event 50 of cluster 1 (black), the red vertical line shows
𝛿̂. In blue, the approximating parabola at 𝛿̂. The grey vertical line shows the minimum
of the approximating parabola.

Subtracting the second order in δ approximation of f(t+δ) from the observed 50th event of cluster
1 we get Fig. 30:
plt.plot(evtsE[goodEvts,:][np.array(c10b)==1,:][50,:]-\

c1_median-delta_1*c1D_median-delta_1**2/2*c1DD_median,
color=’red’,lw=2)

plt.plot(evtsE[goodEvts,:][np.array(c10b)==1,:][50,:],
color=’black’,lw=2)

plt.plot(c1_median+delta_1*c1D_median+delta_1**2/2*c1DD_median,
color=’blue’,lw=1)

B.9.2. Function definition

We start with the chunk importing the required functions from the differentmodules («mk aligned events-
import-functions»):
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Figure30: Event 50 of cluster 1 (black), second order approximation of f(t+δ) (blue) and resid-
ual (red) for δ—obtained by a succession of a linear regression (order 1) and a single
Newton-Raphson step—equal to: 1.3748048144324905.

from scipy.signal import fftconvolve
from numpy import apply_along_axis as apply
from scipy.spatial.distance import squareform

We then get the first and second derivatives of the data:
dataD = apply(lambda x: fftconvolve(x,np.array([1,0,-1])/2., ’same’),

1, data)
dataDD = apply(lambda x: fftconvolve(x,np.array([1,0,-1])/2.,’same’),

1, dataD)

Events are cut from the different data ’versions’, derivatives of order 0, 1 and 2 («mk aligned events-
get-events»):
evts = mk_events(positions, data, before, after)
evtsD = mk_events(positions, dataD, before, after)
evtsDD = mk_events(positions, dataDD, before, after)

A center or template is obtained by taking the pointwise median of the events we just got on the
three versions of the data («mk aligned events-get-centers»):
center = apply(np.median,0,evts)
centerD = apply(np.median,0,evtsD)
centerD_norm2 = np.dot(centerD,centerD)
centerDD = apply(np.median,0,evtsDD)
centerDD_norm2 = np.dot(centerDD,centerDD)
centerD_dot_centerDD = np.dot(centerD,centerDD)

Given an event, make a first order jitter estimation and compute the norm of the initial residual,
h order0 norm2, and of its first order jitter corrected version, h order1 norm2 («mk aligned events-
do-job-on-single-event-order1»):
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h = evt - center
h_order0_norm2 = sum(h**2)
h_dot_centerD = np.dot(h,centerD)
jitter0 = h_dot_centerD/centerD_norm2
h_order1_norm2 = sum((h-jitter0*centerD)**2)

If the residual’s norm decrease upon first order jitter correction, try a second order one. At the
end compare the norm of the second order jitter corrected residual (h order2 norm2) with the
one of the first order (h order1 norm2). If the former is larger or equal than the latter, set
the estimated jitter to its first order value («mk aligned events-do-job-on-single-
event-order2»):
h_dot_centerDD = np.dot(h,centerDD)
first = -2*h_dot_centerD + \
2*jitter0*(centerD_norm2 - h_dot_centerDD) + \
3*jitter0**2*centerD_dot_centerDD + \
jitter0**3*centerDD_norm2

second = 2*(centerD_norm2 - h_dot_centerDD) + \
6*jitter0*centerD_dot_centerDD + \
3*jitter0**2*centerDD_norm2

jitter1 = jitter0 - first/second
h_order2_norm2 = sum((h-jitter1*centerD- \

jitter1**2/2*centerDD)**2)
if h_order1_norm2 <= h_order2_norm2:

jitter1 = jitter0

And now the function’s docstring («mk aligned events-docstring»):
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”””Align events on the central event using first or second order
Taylor expansion.

Parameters
----------
positions: a vector of indices with the positions of the

detected events.
data: a matrix whose rows contains the recording channels.
before: an integer, how many points should be within the cut

before the reference index / time given by positions.
after: an integer, how many points should be within the cut

after the reference index / time given by positions.

Returns
-------
A tuple whose elements are:
A matrix with as many rows as events and whose rows are the
cuts on the different recording sites glued one after the
other. These events have been jitter corrected using the
second order Taylor expansion.
A vector of events positions where ”actual” positions have
been rounded to the nearest index.
A vector of jitter values.

Details
-------
(1) The data first and second derivatives are estimated first.
(2) Events are cut next on each of the three versions of the data.
(3) The global median event for each of the three versions are
obtained.
(4) Each event is then aligned on the median using a first order
Taylor expansion.
(5) If this alignment decreases the squared norm of the event
(6) an improvement is looked for using a second order expansion.
If this second order expansion still decreases the squared norm
and if the estimated jitter is larger than 1, the whole procedure
is repeated after cutting a new the event based on a better peak
position (7).
”””

To end up with the function itself:

56



def mk_aligned_events(positions, data, before=14, after=30):
<<mk_aligned_events-docstring>>
<<mk_aligned_events-import-functions>>
n_evts = len(positions)
new_positions = positions.copy()
jitters = np.zeros(n_evts)
# Details (1)
<<mk_aligned_events-dataD-and-dataDD>>
# Details (2)
<<mk_aligned_events-get-events>>
# Details (3)
<<mk_aligned_events-get-centers>>
# Details (4)
for evt_idx in range(n_evts):

# Details (5)
evt = evts[evt_idx,:]
evt_pos = positions[evt_idx]
<<mk_aligned_events-do-job-on-single-event-order1>>
if h_order0_norm2 > h_order1_norm2:

# Details (6)
<<mk_aligned_events-do-job-on-single-event-order2>>

else:
jitter1 = 0

if abs(round(jitter1)) > 0:
# Details (7)
evt_pos -= int(round(jitter1))
evt = cut_sgl_evt(evt_pos,data=data,

before=before, after=after)
<<mk_aligned_events-do-job-on-single-event-order1>>
if h_order0_norm2 > h_order1_norm2:

<<mk_aligned_events-do-job-on-single-event-order2>>
else:

jitter1 = 0
if sum(evt**2) > sum((h-jitter1*centerD-

jitter1**2/2*centerDD)**2):
evts[evt_idx,:] = evt-jitter1*centerD- \

jitter1**2/2*centerDD
new_positions[evt_idx] = evt_pos
jitters[evt_idx] = jitter1

return (evts, new_positions,jitters)

B.10. mk center dictionary

We define function mk center dictionary starting with its docstring:
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””” Computes clusters ’centers’ or templates and associated data.

Clusters’ centers should be built such that they can be used for
subtraction, this implies that we should make them long enough, on
both side of the peak, to see them go back to baseline. Formal
parameters before and after bellow should therefore be set to
larger values than the ones used for clustering.

Parameters
----------
positions : a vector of spike times, that should all come from the

same cluster and correspond to reasonably ’clean’
events.

data : a data matrix.
before : the number of sampling point to keep before the peak.
after : the number of sampling point to keep after the peak.

Returns
-------
A dictionary with the following components:
center: the estimate of the center (obtained from the median).
centerD: the estimate of the center’s derivative (obtained from

the median of events cut on the derivative of data).
centerDD: the estimate of the center’s second derivative

(obtained from the median of events cut on the second
derivative of data).

centerD_norm2: the squared norm of the center’s derivative.
centerDD_norm2: the squared norm of the center’s second

derivative.
centerD_dot_centerDD: the scalar product of the center’s first

and second derivatives.
center_idx: an array of indices generated by

np.arange(-before,after+1).
”””

The function starts by evaluating the first two derivatives of the data («get-derivatives»):
from scipy.signal import fftconvolve
from numpy import apply_along_axis as apply
dataD = apply(lambda x:

fftconvolve(x,np.array([1,0,-1])/2.,’same’),
1, data)

dataDD = apply(lambda x:
fftconvolve(x,np.array([1,0,-1])/2.,’same’),
1, dataD)

The function is defined next:
def mk_center_dictionary(positions, data, before=49, after=80):

<<mk_center_dictionary-docstring>>
<<mk_center_dictionary-get-derivatives>>
evts = mk_events(positions, data, before, after)
evtsD = mk_events(positions, dataD, before, after)
evtsDD = mk_events(positions, dataDD, before, after)
evts_median = apply(np.median,0,evts)
evtsD_median = apply(np.median,0,evtsD)
evtsDD_median = apply(np.median,0,evtsDD)
return {”center” : evts_median,

”centerD” : evtsD_median,
”centerDD” : evtsDD_median,
”centerD_norm2” : np.dot(evtsD_median,evtsD_median),
”centerDD_norm2” : np.dot(evtsDD_median,evtsDD_median),
”centerD_dot_centerDD” : np.dot(evtsD_median,

evtsDD_median),
”center_idx” : np.arange(-before,after+1)}
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B.11. classify and align evt

Wenowdefinewith the followingdocstring («classify and align evt-docstring»):
”””Compares a single event to a dictionary of centers and returns
the name of the closest center if it is close enough or ’?’, the
corrected peak position and the remaining jitter.

Parameters
----------
evt_pos : a sampling point at which an event was detected.
data : a data matrix.
centers : a centers’ dictionary returned by mk_center_dictionary.
before : the number of sampling point to consider before the peak.
after : the number of sampling point to consider after the peak.

Returns
-------
A list with the following components:
The name of the closest center if it was close enough or ’?’.
The nearest sampling point to the events peak.
The jitter: difference between the estimated actual peak
position and the nearest sampling point.

”””

The first chunk of the function takes a dictionary of centers, centers, generated bymk center dictionary,
defines two variables, cluster names and n sites, and builds a matrix of centers, cen-
tersM:
cluster_names = np.sort(list(centers))
n_sites = data.shape[0]
centersM = np.array([centers[c_name][”center”]\

[np.tile((-before <= centers[c_name]\
[”center_idx”]).\
__and__(centers[c_name][”center_idx”] \

<= after), n_sites)]
for c_name in cluster_names])

Extract the event, evt, to classify and subtract each center from it, delta, to find the closest one,
cluster idx, using the Euclidean squared norm («cluster idx»):
evt = cut_sgl_evt(evt_pos,data=data,before=before, after=after)
delta = -(centersM - evt)
cluster_idx = np.argmin(np.sum(delta**2,axis=1))

Get the name of the selected cluster, good cluster name, and its ’time indices’, good cluster idx.
Then, extract the first two derivatives of the center, centerD and centerDD, their squared
norms, centerD norm2 andcenterDD norm2, and their dot product, centerD dot centerDD
(«get-centers»):
good_cluster_name = cluster_names[cluster_idx]
good_cluster_idx = np.tile((-before <= centers[good_cluster_name]\

[”center_idx”]).\
__and__(centers[good_cluster_name]\

[”center_idx”] <= after),
n_sites)

centerD = centers[good_cluster_name][”centerD”][good_cluster_idx]
centerD_norm2 = np.dot(centerD,centerD)
centerDD = centers[good_cluster_name][”centerDD”][good_cluster_idx]
centerDD_norm2 = np.dot(centerDD,centerDD)
centerD_dot_centerDD = np.dot(centerD,centerDD)

Do a first order jitter correction where h contains the difference between the event and the center.
Obtain the estimated jitter, jitter0 and the squared norm of the first order corrected residual,
h order1 norm2 («jitter-order-1»):
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h_order0_norm2 = sum(h**2)
h_dot_centerD = np.dot(h,centerD)
jitter0 = h_dot_centerD/centerD_norm2
h_order1_norm2 = sum((h-jitter0*centerD)**2)

Do a second order jitter correction. Obtain the estimated jitter, jitter1 and the squared norm
of the second order corrected residual, h order2 norm2 («jitter-order-2»):
h_dot_centerDD = np.dot(h,centerDD)
first = -2*h_dot_centerD + \
2*jitter0*(centerD_norm2 - h_dot_centerDD) + \
3*jitter0**2*centerD_dot_centerDD + \
jitter0**3*centerDD_norm2

second = 2*(centerD_norm2 - h_dot_centerDD) + \
6*jitter0*centerD_dot_centerDD + \
3*jitter0**2*centerDD_norm2

jitter1 = jitter0 - first/second
h_order2_norm2 = sum((h-jitter1*centerD-jitter1**2/2*centerDD)**2)

Now define the function:
def classify_and_align_evt(evt_pos, data, centers,

before=14, after=30):
<<classify_and_align_evt-docstring>>
<<classify_and_align_evt-centersM>>
<<classify_and_align_evt-cluster_idx>>
<<classify_and_align_evt-get-centers>>
h = delta[cluster_idx,:]
<<classify_and_align_evt-jitter-order-1>>
if h_order0_norm2 > h_order1_norm2:

<<classify_and_align_evt-jitter-order-2>>
if h_order1_norm2 <= h_order2_norm2:

jitter1 = jitter0
else:

jitter1 = 0
if abs(round(jitter1)) > 0:

evt_pos -= int(round(jitter1))
evt = cut_sgl_evt(evt_pos,data=data,

before=before, after=after)
h = evt - centers[good_cluster_name][”center”]\
[good_cluster_idx]

<<classify_and_align_evt-jitter-order-1>>
if h_order0_norm2 > h_order1_norm2:

<<classify_and_align_evt-jitter-order-2>>
if h_order1_norm2 <= h_order2_norm2:

jitter1 = jitter0
else:

jitter1 = 0
if sum(evt**2) > sum((h-jitter1*centerD-jitter1**2/2*centerDD)**2):

return [cluster_names[cluster_idx], evt_pos, jitter1]
else:

return [’?’,evt_pos, jitter1]

B.12. predict data

We define function predict data that creates an ideal data trace given events’ positions, events’
origins and a clusters’ catalog. We start with the docstring:
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”””Predicts ideal data given a list of centers’ names, positions,
jitters and a dictionary of centers.

Parameters
----------
class_pos_jitter_list : a list of lists returned by

classify_and_align_evt.
centers_dictionary : a centers’ dictionary returned by

mk_center_dictionary.
nb_channels : the number of recording channels.
data_length : the number of sampling points.

Returns
-------
A matrix of ideal (noise free) data with nb_channels rows and
data_length columns.
”””

And the function:
def predict_data(class_pos_jitter_list,

centers_dictionary,
nb_channels=4,
data_length=300000):

<<predict_data-docstring>>
## Create next a matrix that will contain the results
res = np.zeros((nb_channels,data_length))
## Go through every list element
for class_pos_jitter in class_pos_jitter_list:

cluster_name = class_pos_jitter[0]
if cluster_name != ’?’:

center = centers_dictionary[cluster_name][”center”]
centerD = centers_dictionary[cluster_name][”centerD”]
centerDD = centers_dictionary[cluster_name][”centerDD”]
jitter = class_pos_jitter[2]
pred = center + jitter*centerD + jitter**2/2*centerDD
pred = pred.reshape((nb_channels,len(center)//nb_channels))
idx = centers_dictionary[cluster_name][”center_idx”] + \

class_pos_jitter[1]
## Make sure that the event is not too close to the
## boundaries
within = np.bitwise_and(0 <= idx, idx < data_length)
kw = idx[within]
res[:,kw] += pred[:,within]

return res
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