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A Prelude to SPySort: Neuronal Spike Sorting with Python

Extracellular recordings with multi-electrode arrays is one of the basic tools of contemporary neuroscience. These recordings are mostly used to monitor the activities, understood as sequences of emitted action potentials, of many individual neurons. But the raw data produced by extracellular recordings are most commonly a mixture of activities from several neurons. In order to get the activities of the individual contributing neurons, a pre-processing step called spike sorting is required. We present here a pure Python implementation of a well tested spike sorting procedure. The latter was designed in a modular way in order to favour a smooth transition from an interactive sorting, for instance with IPython, to an automatic one. Surprisingly enough-or sadly enough, depending on one's view point-, recoding our now 15 years old procedure into Python was the occasion of major methodological improvements.

Introduction

The role of neuronal synchronisation in the information processing performed by (actual) neuronal networks is an actively debated question in neuroscience. Direct experimental measurement of synchronisation requires the recording of the activities of "as many neurons as possible" with a fine time resolution. In this context, multi-electrode arrays (MEA) recordings constitute nowadays the technique of choice. The electrodes making an MEA are located in the extracellular space and can thereby record the action potentials or spikes emitted by many neurons in their vicinity-an analogy is provided by a microphone for an electrode and many static people talking all at once in a language unknown to us for the neurons. Electrophysiologists can therefore monitor many neurons with a "limited" tissue damage-the more electrodes are pushed into a tissue, the more damage ensues-: a very attractive feature of the methodology. But this attractive feature comes at a price: since many neurons are recorded from a single electrode, the raw data are a mixture (of single neuron activities) and a comprehensive use of the data requires the separation of this mixture into its individual components. This "separation" step is what is referred to as spike sorting in neurophysiology.

Extracellular recordings have been used for a long time (60 years at least) and it is not surprising that many spike sorting procedures have appeared in the literature (see [START_REF] Gaute | Towards reliable spike-train recordings from thousands of neurons with multielectrodes[END_REF] for a recent review).

1 Extracellular recordings are also used daily in an applied context when neurologists perform electromyography-extracellular recording from skeletal muscles where the recorded action potentials are generated by the muscular cells, not by neurons-giving data and data analysis problems very similar to the ones we have presented so far. Very similar spike sorting methods have been developed in the former context (e.g., [8]) but scientists working in the different contexts ("neurons" and "muscles") do not seem to be aware that they have colleagues doing the same thing on slightly different data! We present here a rather "simple" approach (in the realm of the existing ones) which is the one we have used most often in the last 15 years. This approach was published in 2002 [11] and was successively "incarnated" using IGOR Pro (Wavemetrics), Scilab, MATLAB (MathWorks), R and now Python. This work which was initially planed as a recoding of our present R code into Python was also the occasion to re-think some of the key steps of our procedure. This lead to a major improvement (also back ported to our R code) in the way a specific step, the sampling jitter estimation and correction, is performed. This new development is given due space in the sequel.

This contribution is written with two generic readers in mind: scientific python users and neurophysiologists doing spike sorting. For the first "reader" we present another example of an actual scientific data analysis problem that is easily handled within the scientific Python ecosystem. The second reader is likely to perform spike sorting with a commercial software provided by one of the MEA amplifiers manufacturers. We do not want to claim that these software are necessarily bad, but it is our experience that when we deal with data sets from different preparations, it is extremely useful to be able to adapt our method to the specific features of the data. For instance, when switching from the first olfactory relay of a locust (Schistocerca americana) to the first olfactory relay of a cockroach (Periplaneta americana)-they have many different features [2]-, we will start in a interactive mode, say with IPython, using the method previously developed for the locust, try out some alternative approaches at the key steps (spike detection, dimension reduction, clustering) before settling on a new procedure involving only few experiment specific parameters. The nature of the Python environment providing interactive development and leading to "black box" procedures is a clear advantage here. Doing this kind of method adaptation is hard, not to say impossible, with commercial solutions implementing a "one size fits all" approach. It moreover turns out that it is, nowadays, not that hard to implement the full sequence of steps required for spike sorting thanks to environments like Python that are both user friendly and computationally efficient. So we hope to motivate our second reader to give a try to open solutions giving access to "what's going on under the hood". In addition we are advocates of the reproducible research paradigm [START_REF] Delescluse | Making neurophysiological data analysis reproducible. Why and how?[END_REF] and an implementation of the latter requires accessibility of the code used for a published analysis.

Organization of this manuscript

The first part of the manuscript is a short overview of our sorting procedure. The first appendix contains a very detailed tutorial showing how the analysis presented in the first part was performed. The second appendix contains the definition of each function specifically coded for this analysis. SpySort is work in progress. We are currently migrating the function based approach of the second appendix into a class / method one. It will then be integrated to OpenElectrophy.

Data properties

The data used for illustration here were recorded from the first olfactory relay, the antennal lobe, of a locust (Schistocerca americana). Recording setting and acquisition details are described in [11]. The first second of data from the four recording sites is shown on Fig. 1.

Figure1: First second of data recorded from the four recording sites of a tetrode.

Here, the action potentials or spikes are the sharp (upward and downward) deviations standing out of the "noise". When doing spike sorting we try to find how many different neurons contribute to the data and, for each spike, what is the (most likely) neuron that generated it.

Why are we using tetrodes?

The main parameter controlling the amplitude of a recorded spike is the distance between the neuron and the electrode. It follows that if two similar neurons are equidistant to a given electrode, they will give rise to nearly identical spikes-for an elaboration on that and on how the signals recorded on different electrodes could be use to perform source localisation, see [START_REF] Mircea | Spike source localization with tetrodes[END_REF]9] . These (nearly) identical recorded spikes are a big problem since the spike waveform (combination of shape and amplitude) is going to be our classification criterion. In some preparation, like the locust antennal lobe (but not the cockroach antennal lobe) using tetrodes, groups of four closely spaced electrodes, is going to help us as illustrated in figure 2.

Figure2: 100 ms of data from the four recording sites of a tetrode.

Imagine here that only the lowest electrode is available. Given the noise level, it would be hard to decide if the four spikes are originating from the same neuron or not. If we now look at the same events from the additional viewpoints provided by the other electrodes (the three upper traces) it is clear that the four events cannot arise from the same neuron: the first and fourth events (seen on the lowest trace) are large on the four electrodes, while the second and third are large on the top and bottom traces but very tiny on the two middle traces.

Main modelling assumptions

We will simplify the neurons discharge statistics by modelling them as independent Poisson processesthe successive inter spike intervals (ISI) of a given neuron are independently and identically distributed following an exponential distribution, they are also independent of the ISI of the other neurons. This is obviously a gross simplification: we know that the ISI of a given neuron are not Poisson distributed and that the discharges of different neurons are correlated-that is precisely what we want to study with these experiments-but the deviations of the actual data generation mechanism from our simple model (independent Poisson processes) has, in general, a negligible impact on the sorting results. If we want to work with more realistic models, we can (although not yet in Python), but the computational price is rather heavy [START_REF] Delescluse | Efficient spike-sorting of multi-state neurons using inter-spike intervals information[END_REF]13]. We do go even further on the simplification path for these data since we are going to "forget" about the different discharge rates (at the classification stage, Sec. peeling) and use only the amplitude information.

When a neuron fires a spike the same underlying waveform with some additive auto-correlated Gaussian noise is recorded on each site (more precisely there is one waveform per electrode and per neuron). Four comments:

• For some data sets (e.g., [START_REF] Delescluse | Efficient spike-sorting of multi-state neurons using inter-spike intervals information[END_REF]) the underlying waveform of a given neuron is changing during the discharge; we can model that if necessary [START_REF] Delescluse | Efficient spike-sorting of multi-state neurons using inter-spike intervals information[END_REF]13], but the computational cost is high and the neurons of the data set considered here do not exhibit this feature.

• Following [START_REF] Mircea | Spike source localization with tetrodes[END_REF] we could simplify the model assuming that we have a single "mother" waveform per neuron and that the underlying waveform seen on each electrode are just scaled versions of the mother waveform. We haven't implemented this feature yet but it will come next.

• Some authors [14] argue that the additive noise would be better described by a multivariate tdistribution; they are lead to this assumption because they do not resolve superposed eventswhen two or more neurons fire at nearly the same time the observed event is a "superposition": the sum of the underlying waveforms of the different neurons plus noise. If superpositions are resolved, the Gaussian noise assumption is perfectly reasonable [11] .

• The noise is necessarily auto-correlated since the data are low-pass filtered prior to digitization.

The sorting procedure

A very detailed, "step-by-step", account of the analysis presented here can be found on our dedicated web page¹ as well as in the Appendix of this manuscript. For most of the steps only a brief description is given in order to save space for the original part. We moreover focus on the first part of the analysis of what is typically a large data set. Experimentalists usually record for hours if not days [2] from the same preparation. In our experience such recordings are stable on a time scale of 10 minutes or more. It therefore makes perfect sense to split the analysis in two parts:

¹http://xtof.perso.math.cnrs.fr/locust_sorting_python.html.

1. Model estimation: in the "easy" settings as here, a model boils down to a catalogue of waveforms, one waveform per neuron and per recording sites. More sophisticated models can be used but the case illustrated here-and that is not a rare case-they are not necessary.

2. Once the model / waveform catalogue has been obtained the data are processed; that is events are detected and classification is performed by template matching-the catalog's waveforms being the templates.

The key point is that part 1 can be done on a short data stretch-in the example bellow we are going to use 10 seconds of data. This part is also the one that can require the largest amount of user input, in particular when a choice on the number of neurons to include in the model has to be made. The second part is straightforward to automate: a short Python script loading, say, 2 minutes of data and the catalogue will do the template matching as illustrated in [Sec. peeling]. A "poor's man" illustration of this 2 parts approach is provided here since the model is estimated on the first half of the data set and the classification is performed on the whole set. When applying this approach, one should monitor the number of unclassified events over a given time period and update the model if this number increases suddenly.

Data normalization

If the data have not been high-passed filtered prior to digitization, they are so filtered (with a cutoff frequency between 200 and 500 Hz) using function firwin of module scipy.signal. The trace of each electrode is then median subtracted and divided by its median absolute deviation (MAD). The MAD provides a robust estimate of the standard deviation of the recording noise. After this normalisation, detection thresholds are comparable on the different electrode.

Spike detection

Spikes are detected as local extrema above a threshold. More precisely, the data are first filtered with a box filter (a moving average) in order to reduce the high frequency noise; the filtered data are normalized like the raw data before being "rectified": amplitude below a threshold are set to zero; the filtered and rectified data from each electrodes are added together and local maxima are identified. This is a very simple method that works well for these data. This is clearly an import step that must typically be adapted to the data one works with. For instance when the signal to noise ratio is lower, we often construct a "typical waveform"-by detecting the largest events first, averaging and normalizing them (peak at 1 and mean at 0)-that we convolve with the raw data. The detection is subsequently done on these filtered data. Working with an environment like Python we can do that with a few lines of code, try different ideas and different parameters, etc.

Events set (sample) construction

After a satisfying detection has been obtained, events are "cut" from the raw data. An optimal cut length is obtained by first using overly large cuts (say 80 sampling points on both sides of the detected peak). The point-wise MAD is computed and the locations at which the MAD reaches 1 (the noise level on the normalised traces) give the domain within which "useful sorting information" is to be found. New shorter cuts are then made (in the illustrated case, Fig. 3, using 14 points before the peak and 30 points after) and an event is then described by a set of N amplitudes on 4 electrodes (in our case 180 amplitudes). The first 200 events are shown in Figure 3. 

Dimension reduction

The cuts shown in Fig. 3 are 3 ms or 45 sampling points long. That means that our sample space has 45x4 = 180 dimensions. Our model assumptions imply that, in the absence of recording noise, each neuron would generate a single point in this space-strictly speaking, because of the sampling jitter (see Sec. jitter-estimation), each neuron would generate a small cloud-and the recording noise will transform these "centers" into clouds, each cloud having the same variance-covariance matrix-this is of course expected only for the events that are not superpositions. At that stage sorting reduces to a clustering problem and doing clustering in a 180 dimensional space is rarely a good idea. We therefore reduce the dimension of our events' space using principal component analysis (PCA) keeping only a few of the first principal components. But before that, the "most obvious" superpositions are removed from the sample. We do that because a few superpositions can dominate (and strongly corrupt) the result of a PCA analysis. The goal of this initial part of our procedure is moreover to build a catalogue of underlying waveform associated with each neuron.

The actual sorting will be subsequently accounting for superpositions when they occur. The "most obvious superpositions" are removed by looking for side peaks on each individual event. Figure 4 (made with scatter matrix of pandas) shows the events projected on the plans defined by every pair of the first four principal components.

Figure4: Scatter plot matrices of the events that are not superpositions on the plans defined by every pair of the first four principal components.

We get an upper bound on the number of components to keep by building figures like Fig. 4 with higher order components until the projected data look featureless (like a two dimensional Gaussian). We get an idea of the number of neurons by counting the number of clouds on the "good" projections (looking at the plot on row 1 and column 2 in Fig. 4 we see 10 clouds).

Dynamic visualization

At that stage, dynamic visualisation can help a lot. We therefore typically export in csv format the data projected on the sub-space defined by principal components up to the upper bound found as just described. We then visualise the data with the free software GGobi. The latter is extremely useful to: reduce further the dimension of the sub-space used; refine the initial guess on the number of clouds; evaluate the clouds shape (which conditions the clustering algorithm used).

Clustering

Although most of the spike sorting literature focuses on clustering methods, in our experience standard, well known and thoroughly tested methods work fine. After observing the data as in Fig. 4 and with GGobi, we can decide what method should be used: a "simple" K-Means; a Gaussian mixture model (GMM) fitted with an E-M algorithm-both implemented in scikit-learn-; bagged-clustering [7] that we implemented in Python. For the data analysed here, we see 10 well separated clusters (clouds) that have uniform (spherical) shapes, suggesting that the K-Means are going to work well.

Figure 5 shows the events attributed to the first 2 clusters. In order to facilitate model comparison (when models with different numbers of neurons are used or when a K-Means fit is compared with a GMM fit), clusters are ordered according to their centers' sizes. That is, for each cluster the pointwise median is computed and its size, the sum of its absolute values (an L1 norm), is obtained.

The point-wise MAD has been added to the events as a red trace in Fig. 5. If the reader remembers our modelling assumptions he or she will see a problem with the MAD of the second cluster (right column) on the top electrode: the MAD is clearly increasing on the rising phase of the event while our hypothesis imply that the MAD should be flat. But this MAD increase is obviously due to bad events' alignment. Seeing this kind of data, before rejecting our model hypothesis, we should try to better align the events to see if that could solve the problem. This is what we are going to do in the next section.

Jitter estimation and cancellation

The "misaligned" events of Fig. 5 (top right) have two origins. First, even in the absence of recording noise, we would have a jitter since the clock of our A/D card cannot be synchronised with the "clocks" of the neurons we are recording. This implies that when we are repetitively sampling spikes from a given neuron, the delay between the actual spike's peak and its closest sampling time will fluctuate (in principle uniformly between -1/2 and +1/2 a sampling period). Since we are working with the sampled versions of the spikes and are aligning them on their apparent peaks, we are introducing a distortion or a sampling jitter [11]. In addition, and that's the second origin of the misaligned events, we definitely have some recording noise present in the data and because of this noise we are going to make mistakes when we detect our local maxima at the very beginning of our procedure. In other word we would like to find local maxima of the signal but we can't do better (at that stage) than finding the local maxima of the signal + noise. Having a clear idea of the origin of the misalignment, we could decide that the MAD increase is not a real problem (we could in principle re-align the events and get rid of it) and live with it. Unfortunately, if we want Figure5: Left: the 52 events attributed to cluster 0. Right: the 65 events attributed to cluster 1. In red, the point-wise MAD (robust estimate of the standard deviation).

to handle properly the superposed events, we have to estimate and compensate the sampling jitter as will soon become clear. When we first published our method [11] we dealt with this jitter problem by using Nyquist theorem that tells us that if our data were properly sampled-with a sampling frequency larger than twice the low-pass cutoff frequency of our acquisition filter-we can reconstruct exactly the data in-between our sampled points by convolving the sampled data with a sinc function. We therefore went on, over sampling the data numerically, before shifting our individual events in order to align them on their cluster centre. This approach has several shortcomings: i) the support of the sinc is infinite but we are dealing with finite (in time) data and are therefore doing an approximate reconstruction; ii) computing the (approximate) interpolated values takes time. Luckily, recoding our procedure into Python led us to finally "see the light"-others [10] followed a similar path before us. We can indeed solve our problem much more efficiently, without using the sinc function.

Formally if we write 𝑔(𝑡), the observed waveform of an event within one of our cuts (the time t runs from -1 ms to +2 ms in our examples), and 𝑓(𝑡), the underlying waveform-we are considering an event that is not a superposition and we write things for a single recording site to keep notations lighter, the generalisation to several recording sites is straightforward-we have:

𝑔(𝑡) = 𝑓(𝑡 + 𝛿) + 𝑍(𝑡) , (1) 
where 𝛿 is the jitter we want to estimate and 𝑍(𝑡) is a centred Gaussian process. A Taylor expansion to the second order in 𝛿 gives-the key difference with [10] is the use of the second order expansion, it seems to simplify considerably the subsequent estimation problem-:

𝑔(𝑡) ≈ 𝑓(𝑡) + 𝛿𝑓 ′ (𝑡) + 𝛿 􏷡 /2 𝑓 ″ (𝑡) + 𝑍(𝑡) . (2) 
If we assume that 𝛿 is the realisation of a random variable Δ with a null expectation, E(Δ) = 0that's a reasonable assumption given the origins of the jitter-and finite variance, 𝜎 􏷡 􏸷 , then:

E 􏿴𝑔(𝑡)􏿷 ≈ 𝑓(𝑡) + 𝜎 􏷡 􏸷 /2 𝑓 ″ (𝑡) . (3) 
In other words, to the first order in 𝛿 (i.e., setting 𝜎 􏷡 􏸷 to 0), the expected value of the event equals the underlying waveform. Sticking to the first order we get for the variance:

Var 􏿴𝑔(𝑡)􏿷 = E 􏿯 􏿴𝑔(𝑡) -𝑓(𝑡)􏿷 􏷡 􏿲 ≈ 𝜎 􏷡 􏸷 𝑓 ′ (𝑡) 􏷡 + 𝜎 􏷡 𝑍 . (4) 
Implying that the square root of the events variance minus the noise variance should be proportional to their absolute derivative; this explains why the MAD (a robust estimate of the standard deviation) peaks on the rising phase of the cluster centre (Fig. 5, top right) since that's where the time derivative is the largest.

Equation 3 tells us that our cluster centres estimated as point-wise median are likely to be "good" (in other words their error should be dominated by sampling variance, not by bias). Using the same argument, we can get first an estimate of the time derivative of the raw data by using the central difference (divided by two), then we can make cuts at the same locations and in exactly the same way as our original cuts and compute cluster specific point-wise medians giving us reasonable estimates of the time derivatives of the cluster centres (the 𝑓 ′ (𝑡) above). We can iterate this procedure one step further to get estimates of the second derivatives of the cluster centres (the 𝑓 ″ (𝑡) above).

We now have the required elements to go back to our jitter (𝛿) estimation problem using Eq. 2. We don't have 𝑔(𝑡), 𝑓(𝑡), 𝑓 ′ (𝑡) or 𝑓 ″ (𝑡) directly but only sampled versions of those, that is: 􏿴𝑔 􏷠 = 𝑔(𝑡 􏷠 ), … , 𝑔 𝑤 = 𝑔(𝑡 𝑤 )􏿷, where 𝑤 is the width of one of our cuts (45 sampling points). Starting with the first order in 𝛿, we can get an estimate δ of 𝛿 by minimising the residual sum of squares (RSS) criterion:

δ = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝛿 􏾜 𝑖 􏿴𝑔 𝑖 -𝑓 𝑖 -𝛿 𝑓 ′ 𝑖 􏿷 􏷡 . (5) 
Since the (𝑓 𝑖 ) and (𝑓 ′ 𝑖 ) are known, we are just solving a classical linear regression problem whose solution is:

δ = ∑ 𝑖 (𝑔 𝑖 -𝑓 𝑖 ) 𝑓 ′ 𝑖 ∑ 𝑖 𝑓 ′􏷡 𝑖 . (6) 
We could take the noise auto-correlation (that we can estimate) into account, but it turns out to be not worth it (the precision gain is not really offsetting the computational cost). We now solve the second order optimisation problem:

δ = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝛿 􏾜 𝑖 􏿴𝑔 𝑖 -𝑓 𝑖 -𝛿 𝑓 ′ 𝑖 -𝛿 􏷡 /2 𝑓 ″ 𝑖 􏿷 􏷡 . (7) 
Since the latter does not admit (in general) a closed form solution, we perform a single Newton-Raphson step, starting from δ to get δ . Only a single Newton-Raphson step is used because there is not much to be gained by refining the solution of an optimisation problem (Eq. 7) that only provides an approximate solution to the problem we are really interested in-which would be written here: δ = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝛿 ∫ 􏿴𝑔(𝑡) -𝑓(𝑡 + 𝛿)􏿷 􏷡 𝑑𝑡-the main error is likely to arise from the second order approximation of the latter-this point is clearly made in an other context, predictor-corrector method for ordinary differential equation, by [1, pp. 133-134].

Figure 6 illustrates jitter estimation and cancellation at work. The left column shows one of the events attributed to cluster 1 (black, 𝑔(𝑡) in our previous discussion) together with the cluster centre estimate (blue, 𝑓(𝑡) in our previous discussion) and the difference of the two (red, 𝑔(𝑡) -𝑓(𝑡) in our previous discussion). The right column shows again the event (black) with the aligned centre (blue, 𝑓(𝑡) + δ 𝑓 ′ (𝑡) + δ 􏷡 /2 𝑓 ′􏷡 (𝑡) in the previous discussion) and the difference of the two (red).

Figure6: Left: event 50 of cluster 1 (black), centre of cluster 1 (blue), difference of the 2 (red).

Right: event 50 of cluster 1 (black), aligned centre of cluster 1 (blue), difference of the 2 (red).

Spikes "peeling"

We have almost reached the end of our journey. The clustering step gave us a catalogue of waveforms: the cluster centre, its first and second derivative for each of the 𝐾 neurons / clusters on each site. We now go back to the raw data and for each detected event we do:

1. Compute the sum of squares of the amplitudes defining the event (over the 4 cuts corresponding to the 4 electrodes) to get 𝑅 􏷡 .

2. For each of the 𝐾 neurons, align the centre's waveform on the event (as described in the previous section) and subtract it from the event. Compute the sum of the squares of the (residual) amplitudes to get 𝑅 􏷡 𝑗 where 𝑗 = 1, … , 𝐾.

3. Find ̂𝑗 = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝑗 𝑅 􏷡 𝑗 and if 𝑅 􏷡 ̂𝑗 < 𝑅 􏷡 then:

• Keep the jitter corrected time for ̂𝑗 in the list of spikes and keep ̂𝑗 as the neuron of origin.

• Subtract the ̂𝑗-th aligned centre from the raw data otherwise tag the event as unclassified and don't perform any subtraction.

Once every detected event has been examined, we are left with a "new" version of the raw data from which the aligned "best" centre waveforms have been subtracted (only when doing so was reducing the sum of squares of the amplitudes over the cuts). For the event illustrated in Fig.

JitterCancellationIllustrated we go from the black trace on the left column to the red trace on the right column. It is clear that for this "peeling procedure" to work we have to cancel the jitter otherwise we would be going from the black trace on the left column to the red trace on the same column (where what remains as a peak amplitude similar to what we started with!).

We then iterate the procedure, taking the "new" raw data as if they were original data, detecting events as on the raw data, etc. We do that until we do not find anymore events for which the proposed subtraction is accepted; that is until we are only left with unclassified events. The first two iterations of this procedure are illustrated on figure PeelingIllustrated. See how the superposed event in the middle of the trace (left column) is nicely resolved into its two components.

Conclusions

Recoding our procedure from R to Python turned out to be easy (and an excellent way to learn Python for the first author). The efficient memory management provided by numpy for large arrays turns out to be very attractive. The "idiosyncrasies" of matplotlib turn out to be the longest to digest-for an R user-, but once they are mastered, IPython provides an excellent environment for interactive sorting. We are clearly going to carry out the subsequent developments of our methods-starting by porting our C code dealing with more sophisticated data generation models [START_REF] Delescluse | Efficient spike-sorting of multi-state neurons using inter-spike intervals information[END_REF]13]-within the Python ecosystem.

More fundamentally, the new jitter estimation and cancellation procedure we introduced is deceptively simple-similar to the method of [10] but much simpler; to be fair, these authors also considered a possible amplitude and duration variability of the spikes generated by a given neuron. It is in fact, we think, an important step forward since it allows electrophysiologists to process superposed events systematically-some were already doing it-and efficiently. And, in our view, without superposed events processing there is no trustworthy spike sorting.

Figure7: Illustration the "peeling" procedure. Left: raw data (black) and first prediction (red); middle: previous raw data minus previous prediction (black) and new prediction (red); right: what's left (no more waveforms corresponding to the catalogue's content). The small spike left on the right (clearly visible in the middle on the four sites) does not belong to any neuron of the catalogue because the events used to built the latter where detected as local maxima (and we would need to detect local minima to catch events like the one we see here).
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A. An analysis step by step

This appendix contains a step by step and fully explicit description of the analysis presented in the paper. Python 3 has been used. We use moreover the classical Python interface, as opposed to IPython, to make the reproducibility of this analysis fully explicit (that is, our source file can be run in batch mode and regenerate the analysis together with the manuscript).

A.1. Downloading the data

The data are available on zenodo [12] The data were stored as single precision floating point number in HDF5 format with one 'data set' per recording channel. The four data sets are labeled: 1, 2, 3 and 4. 20 seconds of data sampled at 15 kHz are contained in these files (see [11] for details). We will get access to the file's content with module h5py.

A.2. Importing the required modules and loading the data

The individual functions developed for this kind of analysis are defined at the end of this document (Sec. B). They can also be downloaded as a single file sorting withpython .py which must then be imported with for instance:

import sorting_with_python as swp
where it is assumed that the working directory of your python session is the directory where the file sorting with python.py can be found. We are going to use numpy and pylab. We are also going to use the interactive mode of the latter:

import numpy as np import matplotlib.pylab as plt import h5py plt.ion()

If instead of the "basic" Python console, IPython with the --pylab command line argument is used, the above statements are not required and prefixes np. and plt. are not necessary in the sequel. We load the data with:

# Open the HDF5 file containing the data in read only mode f = h5py.File("LocustDemoData.hdf5", "r") # Get the arrays' shape dset = f["1"] data_shape = dset.shape data_len = data_shape[0] # Read the data stored on 32 bit in 64 bit arrays data = [np.empty(data_shape,dtype=np.float64) for i in range(4)] for i in range(4):

dset = f[str(i+1)] dset.read_direct(data[i])
f.close()

A.3. Preliminary analysis

We are going to start our analysis by some "sanity checks" to make sure that nothing "weird" happened during the recording.

A.3.1. Five number summary

We should start by getting an overall picture of the data like the one provided by the mquantiles method of module scipy.stats.mstats using it to output a five-number summary. The five numbers are the minimum, the first quartile, the median, the third quartile and the maximum: In the above result, each row corresponds to a recording channel, the first column contains the minimal value; the second, the first quartile; the third, the median; the fourth, the third quartile; the fifth, the maximal value. We see that the data range (maximum -minimum) is similar (close to 20) on the four recording sites. The inter-quartiles ranges are also similar.

from

A.3.2. Were the data normalized?

We can check next if some processing like a division by the standard deviation (SD) has been applied: 

[np.std(x)

A.4. Plot the data

Plotting the data for interactive exploration is trivial. The only trick is to add (or subtract) a proper offest (that we get here using the maximal value of each channel from our five-number summary), this is automatically implemented in our plot data list function:

tt = np.arange(0,data_len)/1.5e4 swp.plot_data_list(data,tt,0.1)
The first channel is drawn as is, the second is offset downward by the sum of its maximal value and of the absolute value of the minimal value of the first, etc. We then get something like Fig. 8. It is also good to "zoom in" and look at the data with a finer time scale (Fig. 9) with:

plt.xlim([0,0.2])

A.5. Data renormalization

We are going to use a median absolute deviation (MAD) based renormalization. The goal of the procedure is to scale the raw data such that the noise SD is approximately 1. Since it is not straightforward to obtain a noise SD on data where both signal (i.e., spikes) and noise are present, we use this robust type of statistic for the SD: And we normalize accordingly (we also subtract the median which is not exactly 0): data = list(map(lambda x: (x-np.median(x))/swp.mad(x), data))

data_mad =
We can check on a plot (Fig. 10) how MAD and SD compare: Figure8: The whole (20 s) Locust antennal lobe data set.

A.5.1. A quick check that the MAD "does its job"

We can check that the MAD does its job as a robust estimate of the noise standard deviation by looking at Q-Q plots of the whole traces normalized with the MAD and normalized with the "classical" SD (Fig. 11): We see that the behavior of the "away from normal" fraction is much more homogeneous for small, as well as for large in fact, quantile values with the MAD normalized traces than with the SD normalized ones. If we consider automatic rules like the three sigmas we are going to reject fewer events (i.e., get fewer putative spikes) with the SD based normalization than with the MAD based one.

A.6. Detect peaks

We are going to filter the data slightly using a "box" filter of length 3. That is, the data points of the original trace are going to be replaced by the average of themselves with their four nearest neighbors. We will then scale the filtered traces such that the MAD is one on each recording sites and keep only the parts of the signal which above 4: We can see the difference between the raw trace and the filtered and rectified one (Fig. 12) on which spikes are going to be detected with: We now use function peak on the sum of the rows of our filtered and rectified version of the data:

sp0 = swp.peak(data_filtered.sum(0))
Giving 1795 pikes, a mean inter-event interval of 167.0 sampling points, a standard deviation of 144.0 sampling points, a smallest inter-event interval of 16 sampling points and a largest of 1157 sampling points.

Figure11: Performances of MAD based vs SD based normalizations. After normalizing the data of each recording site by its MAD (plain colored curves) or its SD (dashed colored curves), Q-Q plot against a standard normal distribution were constructed. Colors: site 1, black; site 2, orange; site 3, blue; site 4, red.

A.6.1. Interactive spike detection check

We can then check the detection quality with:

swp.plot_data_list_and_detection(data,tt,sp0) plt.xlim([0,0.2])

A.6.2. Split the data set in two parts

As explained in the text, we want to "emulate" a long data set analysis where the model is estimated on the early part before doing template matching on what follows. We therefore get an "early" and a "late" part by splitting the data set in two:

sp0E = sp0[sp0 <= data_len/2.] sp0L = sp0[sp0 > data_len/2.]
In sp0E, the number of detected events is: 908 ; the mean inter-event interval is: 165.0; the standard deviation of the inter-event intervals is: 139.0; the smallest inter-event interval is: 16 sampling points long; the largest inter-event interval is: 931 sampling points long.

In sp0L, the number of detected events is: 887; the mean inter-event interval is: 169.0; the standard deviation of the inter-event intervals is: 149.0; the smallest inter-event interval is: 16 sampling points long; the largest inter-event interval is: 1157 sampling points long. 

A.7. Cuts

After detecting our spikes, we must make our cuts in order to create our events' sample. The obvious question we must first address is: How long should our cuts be? The pragmatic way to get an answer is:

• Make cuts much longer than what we think is necessary, like 50 sampling points on both sides of the detected event's time.

• Compute robust estimates of the "central" event (with the median) and of the dispersion of the sample around this central event (with the MAD).

• Plot the two together and check when does the MAD trace reach the background noise level (at 1 since we have normalized the data).

• Having the central event allows us to see if it outlasts significantly the region where the MAD is above the background noise level.

Clearly cutting beyond the time at which the MAD hits back the noise level should not bring any useful information as far a classifying the spikes is concerned. So here we perform this task as follows: evtsE = swp.mk_events(sp0E,np.array(data),49,50) evtsE_median=apply(np.median,0,evtsE) evtsE_mad=apply(swp.mad,0,evtsE) plt.plot(evtsE_median, color='red', lw=2) plt.axhline(y=0, color='black') for i in np.arange(0,400,100): plt.axvline(x=i, color='black', lw=2)

for i in np.arange(0,400,10): plt.axvline(x=i, color='grey') plt.plot(evtsE_median, color='red', lw=2) plt.plot(evtsE_mad, color='blue', lw=2)

Figure13: Robust estimates of the central event (black) and of the sample's dispersion around the central event (red) obtained with "long" (100 sampling points) cuts. We see clearly that the dispersion is back to noise level 15 points before the peak and 30 points after the peak.

Fig. 13 clearly shows that starting the cuts 15 points before the peak and ending them 30 points after should fulfill our goals. We also see that the central event slightly outlasts the window where the MAD is larger than 1.

A.7.1. Events

Once we are satisfied with our spike detection, at least in a provisory way, and that we have decided on the length of our cuts, we proceed by making cuts around the detected events. : evtsE = swp.mk_events(sp0E,np.array(data),14,30)

We can visualize the first 200 events with: swp.plot_events(evtsE,200) Figure14: First 200 events of evtsE. Cuts from the four recording sites appear one after the other. The background (white / grey) changes with the site. In red, robust estimate of the "central" event obtained by computing the pointwise median. In blue, robust estimate of the scale (SD) obtained by computing the pointwise MAD.

A.7.2. Noise

Getting an estimate of the noise statistical properties is an essential ingredient to build respectable goodness of fit tests. In our approach "noise events" are essentially anything that is not an "event" is the sense of the previous section. I wrote essentially and not exactly since there is a little twist here which is the minimal distance we are willing to accept between the reference time of a noise event and the reference time of the last preceding and of the first following "event". We could think that keeping a cut length on each side would be enough. That would indeed be the case if all events were starting from and returning to zero within a cut. But this is not the case with the cuts parameters we chose previously (that will become clear soon). You might wonder why we chose so short a cut length then. Simply to avoid having to deal with too many superposed events which are the really bothering events for anyone wanting to do proper sorting. To obtain our noise events we are going to use function mk noise which takes the same arguments as function mk events plus two numbers:

• safety factor a number by which the cut length is multiplied and which sets the minimal distance between the reference times discussed in the previous paragraph.

• size the maximal number of noise events one wants to cut (the actual number obtained might be smaller depending on the data length, the cut length, the safety factor and the number of events).

We cut noise events with a rather large safety factor: noiseE = swp.mk_noise(sp0E,np.array(data),14,30,safety_factor=2.5,size=2000)

A.7.3. Getting "clean" events

Our spike sorting has two main stages, the first one consist in estimating a model and the second one consists in using this model to classify the data. Our model is going to be built out of reasonably "clean" events. Here by clean we mean events which are not due to a nearly simultaneous firing of two or more neurons; and simultaneity is defined on the time scale of one of our cuts. When the model will be subsequently used to classify data, events are going to decomposed into their (putative) constituent when they are not "clean", that is, superposition are going to be looked and accounted for.

In order to eliminate the most obvious superpositions we are going to use a rather brute force approach, looking at the sides of the central peak of our median event and checking if individual events are not too large there, that is do not exhibit extra peaks. We first define a function doing this job: def good_evts_fct(samp, thr=3): samp_med = apply(np.median,0,samp) samp_mad = apply(swp.mad,0,samp) above = samp_med > 0 samp_r = samp.copy() for i in range(samp.shape[0]): samp_r[i,above] = 0 samp_med[above] = 0 res = apply(lambda x: np.all(abs((x-samp_med)/samp_mad) < thr), 1,samp_r) return res

We then apply our new function to our sample using a threshold of 8 (set by trial and error):

goodEvts = good_evts_fct(evtsE,8)
Out of 898 events we get 843 "good" ones. As usual, the first 200 good ones can be visualized with: show_median=False, show_mad=False)

A.8. Dimension reduction A.8.1. Principal Component Analysis (PCA)

Our events are living right now in an 180 dimensional space (our cuts are 45 sampling points long and we are working with 4 recording sites simultaneously). It turns out that it hard for most humans to perceive structures in such spaces. It also hard, not to say impossible with a realistic sample size, to estimate probability densities (which is what model based clustering algorithms are actually doing) in such spaces, unless one is ready to make strong assumptions about these densities.

It is therefore usually a good practice to try to reduce the dimension of the sample space used to represent the data. We are going to that with principal component analysis (PCA), using it on our "good" events. With this "back to the roots" approach, u should be an orthonormal matrix whose column are made of the principal components (and v should be the transpose of u since our matrix varcovmat is symmetric and real by construction). s is a vector containing the amount of sample variance explained by each principal component.

A.8.2. Exploring PCA results

PCA is a rather abstract procedure to most of its users, at least when they start using it. But one way to grasp what it does is to plot the mean event plus or minus, say five times, each principal components like: We can see on Fig. 15 that the first 3 PCs correspond to pure amplitude variations. An event with a large projection (score) on the first PC is smaller than the average event on recording sites 1, 2 and 3, but not on 4. An event with a large projection on PC 1 is larger than average on site 1, smaller than average on site 2 and 3 and identical to the average on site 4. An event with a large projection on PC 2 is larger than the average on site 4 only. PC 3 is the first principal component corresponding to a change in shape as opposed to amplitude. A large projection on PC 3 means that the event as a shallower first valley and a deeper second valley than the average event on all recording sites.

We now look at the next 4 principal components: An event with a large projection on PC 4 (Fig. 16) tends to be "slower" than the average event. An event with a large projection on PC 5 exhibits a slower kinetics of its second valley than the average event. PC 4 and 5 correspond to effects shared among recording sites. PC 6 correspond also to a "change of shape" effect on all sites except the first. Events with a large projection on PC 7 rise slightly faster and decay slightly slower than the average event on all recording site. Notice Figure15: PCA of evtsE (for "good" events) exploration (PC 1 to 4). Each of the 4 graphs shows the mean waveform (black), the mean waveform + 5 x PC (red), the mean -5 x PC (blue) for each of the first 4 PCs. The fraction of the total variance "explained" by the component appears in the title of each graph. also that PC 7 has a "noisier" aspect than the other suggesting that we are reaching the limit of the "events extra variability" compared to the variability present in the background noise. This guess can be confirmed by comparing the variance of the "good" events sample with the one of the noise sample to which the variance contributed by the first K PCs is added: This suggests that keeping the first 10 PCs should be more than enough.

Figure16: PCA of evtsE (for "good" events) exploration (PC 4 to 7). Each of the 4 graphs shows the mean waveform (black), the mean waveform + 5 x PC (red), the mean -5 x PC (blue). The fraction of the total variance "explained" by the component appears in between parenthesis in the title of each graph.

A.8.3. Static representation of the projected data: construction of Fig. 4

We can build a scatter plot matrix showing the projections of our "good" events sample onto the plane defined by pairs of the few first PCs: 

A.8.4. Dynamic visualization of the data with GGobi

The best way to discern structures in "high dimensional" data is to dynamically visualize them. To this end, the tool of choice is GGobi, an open source software available on Linux, Windows and MacOS. We start by exporting our data in csv format to our disk: The following terse procedure should allow the reader to get going with GGobi:

import csv f =
• Launch GGobi

• In menu: File -> Open, select evtsE.csv.

• Since the glyphs are rather large, start by changing them for smaller ones:

-Go to menu: Interaction -> Brush.

-On the Brush panel which appeared check the Persistent box.

-Click on Choose color & glyph....

-On the chooser which pops out, click on the small dot on the upper left of the left panel.

-Go back to the window with the data points.

-Right click on the lower right corner of the rectangle which appeared on the figure after you selected Brush.

-Dragg the rectangle corner in order to cover the whole set of points.

-Go back to the Interaction menu and select the first row to go back where you were at the start.

• Select menu: View -> Rotation.

• Adjust the speed of the rotation in order to see things properly.

We easily discern 10 rather well separated clusters. Meaning that an automatic clustering with 10 clusters on the first 3 principal components should do the job.

A.9. Clustering with K-Means

Since our dynamic visualization shows 10 well separated clusters in 3 dimension, a simple k-means should do the job. We are using here the KMeans class of scikit-learn: In order to facilitate comparison when models with different numbers of clusters or when different models are used, clusters are sorted by "size". The size is defined here as the sum of the absolute value of the median of the cluster (an L1 norm): 

cluster_median = list([(i, np.apply_along_axis(np.median,0, evtsE[goodEvts,:][c10 == i,:])) for i in range(10) if sum(c10 == i) > 0]) cluster_size = list([np.sum(np.abs(x[1])) for x in cluster_median]) new_order = list(reversed(np.argsort(cluster_size))) new_order_reverse = sorted(range(len(new_order)), key=new_order.__getitem__) c10b = [new_order_reverse[i] for i in c10]

A.9.2. Results inspection with GGobi

We start by checking our clustering quality with GGobi. To this end we export the data and the labels of each event:

f = open('evtsEsorted.csv','w') w = csv.writer(f) w.writerows(np.concatenate((np.dot(evtsE[goodEvts,:],u[:,:8]), np.array([c10b]).T), axis=1)) f.close() An again succinct description of how to do the dynamical visual check is:

• Load the new data into GGobi like before.

• In menu: Display -> New Scatterplot Display, select evtsEsorted.csv.

• Change the glyphs like before.

• In menu: Tools -> Color Schemes, select a scheme with 10 colors, like Spectral, Spectral 10.

• In menu: Tools -> Automatic Brushing, select evtsEsorted.csv tab and, within this tab, select variable c10b. Then click on Apply.

• Select View -> Rotation like before and see your result.

A.10. Spike "peeling": a "Brute force" superposition resolution

We are going to resolve (the most "obvious") superpositions by a "recursive peeling method":

1. Events are detected and cut from the raw data or from an already peeled version of the data.

2. The closest center (in term of Euclidean distance) to the event is found.

3. If the residual sum of squares (RSS), that is: (actual data -best center) 􏷡 , is smaller than the squared norm of a cut, the best center is subtracted from the data on which detection was performed-jitter is again compensated for at this stage.

4. Go back to step 1 or stop.

To apply this procedure, we need, for each cluster, estimates of its center and of its first two derivatives. Function mk center dictionary does the job for us. We must moreover build our clusters' centers such that they can be used for subtraction, this implies that we should make them long enough, on both side of the peak, to see them go back to baseline. Formal parameters before and after bellow should therefore be set to larger values than the ones used for clustering: We can use the function on every detected event. A trick here is to store the matrix version of the data in order to avoid the conversion of the list of vectors (making the data of the different channels) into a matrix for each detected event:

data0 = np.array(data) round0 = [swp.classify_and_align_evt(sp0[i],data0,centers) for i in range(len(sp0))]
We can check how many events got unclassified on a total of 1766 :

len([x[1] for x in round0 if x[0] == '?']) 22
Using function predict data, we create an ideal data trace given events' positions, events' origins and a clusters' catalog:

pred0 = swp.predict_data(round0,centers)
We then subtract the prediction (pred0) from the data (data0) to get the "peeled" data (data1):

data1 = data0 -pred0
We can compare the original data with the result of the "first peeling" to get Fig. 19:

plt.plot(tt, data0[0,], color='black') plt.plot(tt, data1[0,], color='red',lw=0 .3) plt.plot(tt, data0[1,]-15, color='black') plt.plot(tt, data1[1,]-15, color='red',lw=0.3) plt.plot(tt, data0[2,]-25, color='black') plt.plot(tt, data1[2,]-25, color='red',lw=0.3) plt.plot(tt, data0[3,]-40, color='black') plt.plot(tt, data1[3,]-40, color='red',lw=0.3) plt.xlabel('Time (s) 
') plt.xlim([0.9,1])

A.10.2. Second peeling

We then take data1 as our former data0 and we repeat the procedure. We do it with slight modifications: detection is done on a single recording site and a shorter filter length is used before detecting the events. Doing detection on a single site (here site 0) allows us to correct some drawbacks of our crude spike detection method. When we used it the first time we summed the filtered and rectified versions of the data before looking at peaks. This summation can lead to badly defined spike times when two neurons that are large on different recording sites, say site 0 and site 1 fire at nearly the same time. The summed event can then have a peak in between the two true peaks and our jitter correction cannot resolve that. We are therefore going to perform detection on the different sites. The jitter estimation and the subtraction are always going to be done on the 4 recording sites: We classify the events and obtain the new prediction and the new "data":

round1 = [swp.classify_and_align_evt(sp1[i],data1,centers)
for i in range(len(sp1))] pred1 = swp.predict_data(round1,centers) data2 = data1 -pred1

We can check how many events got unclassified on a total of 244:

len([x[1] for x in round1 if x[0] == '?']) 58
We can compare the first peeling with the second one (Fig. 20): 

A.10.3. Third peeling

We take data2 as our former data1 and we repeat the procedure detecting on channel 1: The classification follows with the prediction and the number of unclassified events: Figure21: 100 ms of the locust data set. Black, second peeling; red, third peeling. In this portion of data we see events but none belonging to our centers catalog.

A.10.4. Fourth peeling

We take data3 as our former data2 and we repeat the procedure detecting on channel 2: The classification follows with the prediction and the number of unclassified events: round3 = [swp.classify_and_align_evt(sp3[i],data3,centers) for i in range(len(sp3))] pred3 = swp.predict_data(round3,centers) data4 = data3 -pred3 len([x [START_REF] Forman | Numerical Methods that Work[END_REF] 

for x in round3 if x[0] == '?']) 16
We can compare the third peeling with the fourth one (Fig. 22) looking at a different part of the data than on the previous figures: The classification follows with the prediction and the number of unclassified events: round4 = [swp.classify_and_align_evt(sp4[i],data4,centers) for i in range(len(sp4))] pred4 = swp.predict_data(round4,centers) data5 = data4 -pred4 len([x [START_REF] Forman | Numerical Methods that Work[END_REF] for x in round4 if x[0] == '?']) 53 Figure22: 100 ms of the locust data set (different time frame than on the previous plot). Black, third peeling; red, fourth peeling. On this portion of the trace, nothing was detected on site 2 (the third one, remember that Python starts numbering at 0).

We can compare the third peeling with the fourth one (Fig. 23): Figure23: 100 ms of the locust data set. Black, fourth peeling; red, fifth peeling. Two events got detected on channel 3 and subtracted.

A.10.6. General comparison

We can compare the raw data with the fifth peeling on the first second (Fig. 24): Figure24: The first second of the locust data set. Black, raw data; red, fifth peeling.

We can also look at the remaining unclassified events; they don't look like any of our templates (Fig. 25): bad_ones = [x [START_REF] Forman | Numerical Methods that Work[END_REF] for x in round4 if x[0] == '?'] r4BE = swp.mk_events(bad_ones, data4) swp.plot_events(r4BE)

A.11. Getting the spike trains

Once we have decided to stop the peeling iterations we can extract our spike trains with (notice the syntax difference between Python 3 and Python 2):

B. Individual function definitions

Short function are presented in 'one piece'. The longer ones are presented with their docstring first followed by the body of the function. To get the actual function you should replace the «docstring» appearing in the function definition by the actual doctring. This is just a direct application of the literate programming paradigm. More complicated functions are split into more parts with their own descriptions.

B.1. plot data list

We define a function, plot data list, making our raw data like displaying command lighter, starting with the docstring:

"""Plots data when individual recording channels make up elements of a list.

Parameters ----------data_list: a list of numpy arrays of dimension 1 that should all

be of the same length (not checked). time_axes: an array with as many elements as the components of data_list. The time values of the abscissa. linewidth: the width of the lines drawing the curves. color: the color of the curves.

Returns -------

Nothing is returned, the function is used for its side effect: a plot is generated. """ Then the definition of the function per se: 

B.2. peak

We define function peak which detects local maxima using an estimate of the derivative of the signal. Only putative maxima that are farther apart than minimal dist sampling points are kept. The function returns a vector of indices. Its docstring is:

"""Find peaks on one dimensional arrays. ----------x: a one dimensional array on which scipy.signal.fftconvolve can be called. minimal_dist: the minimal distance between two successive peaks. not_zero: the smallest value above which the absolute value of the derivative is considered not null. ------ 

Parameters

Returns

B.3. cut sgl evt

Function mk events (defined next) that we will use directly will call cut sgl evt. As its name says cuts a single event (an return a vector with the cuts on the different recording sites glued one after the other). Its docstring is:

"""Cuts an 'event' at 'evt_pos' on 'data'.

Parameters ----------evt_pos: an integer, the index (location) of the (peak of) the event. data: a matrix whose rows contains the recording channels. before: an integer, how many points should be within the cut before the reference index / time given by evt_pos. after: an integer, how many points should be within the cut after the reference index / time given by evt_pos.

Returns -------A vector with the cuts on the different recording sites glued one after the other. """

And the function per se: 

B.4. mk events

Function mk events takes a vector of indices as its first argument and returns a matrix with has many rows as events. Its docstring is

"""Make events matrix out of data and events positions.

Parameters ---------positions: a vector containing the indices of the events. data: a matrix whose rows contains the recording channels. before: an integer, how many points should be within the cut before the reference index / time given by evt_pos. after: an integer, how many points should be within the cut after the reference index / time given by evt_pos.

Returns -------

A matrix with as many rows as events and whose rows are the cuts on the different recording sites glued one after the other. """

And the function per se: 

B.5. plot events

In order to facilitate events display, we define an event specific plotting function starting with its docstring:

B.6. plot data list and detection

We define a function, plot data list and detection, making our data and detection displaying command lighter. Its docstring:

"""Plots data together with detected events. Parameters ----------data_list: a list of numpy arrays of dimension 1 that should all be of the same length (not checked). time_axes: an array with as many elements as the components of data_list. The time values of the abscissa. evts_pos: a vector containing the indices of the detected events. linewidth: the width of the lines drawing the curves. color: the color of the curves.

Returns -------

Nothing is returned, the function is used for its side effect: a plot is generated. """ And the function: 

B.7. mk noise

Getting an estimate of the noise statistical properties is an essential ingredient to build respectable goodness of fit tests. In our approach "noise events" are essentially anything that is not an "event". I wrote essentially and not exactly since there is a little twist here which is the minimal distance we are willing to accept between the reference time of a noise event and the reference time of the last preceding and of the first following "event". We could think that keeping a cut length on each side would be enough. That would indeed be the case if all events were starting from and returning to zero within a cut. But this is not the case with the cuts parameters we chose previously (that will become clear soon). You might wonder why we chose so short a cut length then. Simply to avoid having to deal with too many superposed events which are the really bothering events for anyone wanting to do proper sorting. To obtain our noise events we are going to use function mk noise which takes the same arguments as function mk events plus two numbers:

• safety factor a number by which the cut length is multiplied and which sets the minimal distance between the reference times discussed in the previous paragraph.

• size the maximal number of noise events one wants to cut (the actual number obtained might be smaller depending on the data length, the cut length, the safety factor and the number of events).

We define now function mk noise starting with its docstring:

"""Constructs a noise sample.

Parameters ---------positions: a vector containing the indices of the events. data: a matrix whose rows contains the recording channels. before: an integer, how many points should be within the cut before the reference index / time given by evt_pos. after: an integer, how many points should be within the cut after the reference index / time given by evt_pos. safety_factor: a number by which the cut length is multiplied and which sets the minimal distance between the reference times discussed in the previous paragraph. size: the maximal number of noise events one wants to cut (the actual number obtained might be smaller depending on the data length, the cut length, the safety factor and the number of events).

Returns -------

A matrix with as many rows as noise events and whose rows are the cuts on the different recording sites glued one after the other.

"""

And the function: 

B.8. mad

We define the mad function in one piece since it is very short: def mad(x):

"""Returns the Median Absolute Deviation of its argument. """ return np.median(np.absolute(x -np.median(x)))*1.4826 B.9. mk aligned events

B.9.1. The jitter: A worked out example

Function mk aligned events is somehow the "heavy part" of this document. Its job is to align events on their templates while taking care of two jitter sources: the sampling and the noise one. Rather than getting into a theoretical discussion, we illustrate the problem with one of the events detected on our data set. Cluster 1 is the cluster exhibiting the largest sampling jitter effects, since it has the largest time derivative, in absolute value, of its median event . This is clearly seen when we superpose the 50th event from this cluster with the median event (remember that we start numbering at 0). So we get first our estimate for center or template of cluster 1: Figure26: The median event of cluster 1 (red) together with event 50 of the same cluster (black).

A Taylor expansion shows that if we write g(t) the observed 50th event, δ the sampling jitter and f(t) the actual waveform of the event then: 𝑔(𝑡) = 𝑓(𝑡 + 𝛿) + 𝜀(𝑡) ≈ 𝑓(𝑡) + 𝛿 𝑓 ′ (𝑡) + 𝛿 􏷡 /2 𝑓 ″ (𝑡) + 𝜀(𝑡) ;

(8

)
where ε is a Gaussian process and where 𝑓 ′ and 𝑓 ″ stand for the first and second time derivatives of 𝑓. Therefore, if we can get estimates of 𝑓 ′ and 𝑓 ″ we should be able to estimate δ by linear regression (if we neglect the 𝛿 􏷡 term as well as the potentially non null correlation in ε) or by non linear regression (if we keep the latter). We start by getting the derivatives estimates: dataD = apply(lambda x: fftconvolve(x,np.array([1,0,-1])/2.,'same'), 1, data) evtsED = swp.mk_events(sp0E,dataD,14,30) dataDD = apply(lambda x: fftconvolve(x,np.array([1,0,-1])/2.,'same'), 1, dataD) evtsEDD = swp.mk_events(sp0E,dataDD,14,30) c1D_median = apply(np.median,0, evtsED[goodEvts,:][np.array(c10b)==1,:]) c1DD_median = apply(np.median,0, evtsEDD[goodEvts,:][np.array(c10b)==1,:])

We then get something like Fig. 27: For the 50th event of the cluster we get: We then get the first and second derivatives of the data: dataD = apply(lambda x: fftconvolve(x,np.array([1,0,-1])/2., 'same'), 1, data) dataDD = apply(lambda x: fftconvolve(x,np.array([1,0,-1])/2.,'same'), 1, dataD)

Events are cut from the different data 'versions', derivatives of order 0, 1 and 2 («mk aligned eventsget-events»): evts = mk_events(positions, data, before, after) evtsD = mk_events(positions, dataD, before, after) evtsDD = mk_events(positions, dataDD, before, after)

A center or template is obtained by taking the pointwise median of the events we just got on the three versions of the data («mk aligned events-get-centers»): center = apply(np.median,0,evts) centerD = apply(np.median,0,evtsD) centerD_norm2 = np.dot(centerD,centerD) centerDD = apply(np.median,0,evtsDD) centerDD_norm2 = np.dot(centerDD,centerDD) centerD_dot_centerDD = np.dot(centerD,centerDD)

Given an event, make a first order jitter estimation and compute the norm of the initial residual, h order0 norm2, and of its first order jitter corrected version, h order1 norm2 («mk aligned eventsdo-job-on-single-event-order1»):

"""Align events on the central event using first or second order Taylor expansion.

Parameters ---------positions: a vector of indices with the positions of the detected events. data: a matrix whose rows contains the recording channels. before: an integer, how many points should be within the cut before the reference index / time given by positions. after: an integer, how many points should be within the cut after the reference index / time given by positions.

Returns -------A tuple whose elements are:

A matrix with as many rows as events and whose rows are the cuts on the different recording sites glued one after the other. These events have been jitter corrected using the second order Taylor expansion. A vector of events positions where "actual" positions have been rounded to the nearest index. A vector of jitter values.

Details -------(1)

The data first and second derivatives are estimated first.

(2) Events are cut next on each of the three versions of the data.

(3) The global median event for each of the three versions are obtained.

(4) Each event is then aligned on the median using a first order Taylor expansion. [START_REF] Delescluse | Making neurophysiological data analysis reproducible. Why and how?[END_REF] If this alignment decreases the squared norm of the event [START_REF] Gaute | Towards reliable spike-train recordings from thousands of neurons with multielectrodes[END_REF] an improvement is looked for using a second order expansion. If this second order expansion still decreases the squared norm and if the estimated jitter is larger than 1, the whole procedure is repeated after cutting a new the event based on a better peak position (7). """

To end up with the function itself:

Figure3:

  Figure3: First 200 events. The cuts are 3 ms (45 sampling points) long. Identical scales on each sub-plot.

Figure9:

  Figure9: First 200 ms of the Locust data set.

Figure10:

  Figure10: First 200 ms on site 1 of the Locust data set. In red: +/-the MAD; in dashed blue +/-the SD.

  plt.plot(tt, data[0],color='black') plt.axhline(y=4,color="blue",linestyle="dashed") plt.plot(tt, data_filtered[0,],color='red') plt.xlim([0,0.2]) plt.ylim([-5,10]) plt.xlabel('Time (s)')

Figure12:

  Figure12: First 200 ms on site 1 of data set data. The raw data are shown in black, the detection threshold appears in dashed blue and the filtered and rectified trace on which spike detection is going to be preformed appears in red.

  swp.plot_events(evtsE[goodEvts,:][:200,:]) while the bad guys can be visualized with: swp.plot_events(evtsE[goodEvts.__neg__(),:],

  from numpy.linalg import svd varcovmat = np.cov(evtsE[goodEvts,:].T) u, s, v = svd(varcovmat)

  from sklearn.cluster import KMeans km10 = KMeans(n_clusters=10, init='k-means++', n_init=100, max_iter=100) km10.fit(np.dot(evtsE[goodEvts,:],u[:,0:3])) c10 = km10.fit_predict(np.dot(evtsE[goodEvts,:],u[:,0:3]))

  Figure18: Last 5 clusters. Cluster 5 at the top, cluster 9 at the bottom. Red, cluster specific central / median event. Blue, cluster specific MAD. Notice the change in ordinate scale compared to the previous figure.

  centers = { "Cluster " + str(i) : swp.mk_center_dictionary(sp0E[goodEvts][np.array(c10b)==i], np.array(data)) for i in range(10)} A.10.1. First peeling Function classify and align evt is used next. For each detected event, it matches the closest template, correcting for the jitter, if the closest template is close enough: swp.classify_and_align_evt(sp0[0],np.array(data),centers) ['Cluster 7', 281, -0.14107835097978202]

Figure19: 100

 100 Figure19: 100 ms of the locust data set. Black, original data; red, after first peeling.

  Figure20: 100 ms of the locust data set. Black, first peeling; red, second peeling.

  data_filtered = apply(lambda x: fftconvolve(x,np.array([1,1,1])/3.,'same'), 1,data2) data_filtered = (data_filtered.transpose() / \ apply(swp.mad,1,data_filtered)).transpose() data_filtered[data_filtered < 4] = 0 sp2 = swp.peak(data_filtered[1,:]) len(sp2) 129

  plt.plot(tt, data3[0,], color='black') plt.plot(tt, data4[0,], color='red',lw=0.3) plt.plot(tt, data3[1,]-15, color='black') plt.plot(tt, data4[1,]-15, color='red',lw=0.3) plt.plot(tt, data3[2,]-25, color='black') plt.plot(tt, data4[2,]-25, color='red',lw=0.3) plt.plot(tt, data3[3,]-40, color='black') plt.plot(tt, data4[3,]-40, color='red',lw=0.3) plt.xlabel('Time (s)') plt.xlim([3.9,4])A.10.5. Fifth peelingWe take data4 as our former data3 and we repeat the procedure detecting on channel 3: data_filtered = apply(lambda x: fftconvolve(x,np.array([1,1,1])/3.,'same'), 1,data4) data_filtered = (data_filtered.transpose() / \ apply(swp.mad,1,data_filtered)).transpose() data_filtered[data_filtered < 4] = 0 sp4 = swp.peak(data_filtered[3,:]) len(sp4) 170

  plt.plot(tt, data4[0,], color='black') plt.plot(tt, data5[0,], color='red',lw=0.3) plt.plot(tt, data4[1,]-15, color='black') plt.plot(tt, data5[1,]-15, color='red',lw=0.3) plt.plot(tt, data4[2,]-25, color='black') plt.plot(tt, data5[2,]-25, color='red',lw=0.3) plt.plot(tt, data4[3,]-40, color='black') plt.plot(tt, data5[3,]-40, color='red',lw=0.3) plt.xlabel('Time (s)') plt.xlim([3.9,4])

  plt.plot(tt, data0[0,], color='black') plt.plot(tt, data5[0,], color='red',lw=0.3) plt.plot(tt, data0[1,]-15, color='black') plt.plot(tt, data5[1,]-15, color='red',lw=0.3) plt.plot(tt, data0[2,]-25, color='black') plt.plot(tt, data5[2,]-25, color='red',lw=0.3) plt.plot(tt, data0[3,]-40, color='black') plt.plot(tt, data5[3,]-40, color='red',lw=0.3) plt.xlabel('Time (s)') plt.xlim([0,1])

  c1_median = apply(np.median,0,evtsE[goodEvts,:][np.array(c10b)==1,:]) And we do the plot (Fig. 26): plt.plot(c1_median,color='red') plt.plot(evtsE[goodEvts,:][np.array(c10b)==1,:][50,:],color='black')

Figure27:

  Figure27: The median event of cluster 1 subtracted from event 50 of the same cluster (red); 1.5 times the first derivative of the median event (blue)-corresponding to δ=1.5-; 1.5 times the first derivative + 1.5 2 /2 times the second (black)-corresponding again to δ=1.5-.

  Figure30: Event 50 of cluster 1 (black), second order approximation of f(t+δ) (blue) and residual (red) for δ-obtained by a succession of a linear regression (order 1) and a single Newton-Raphson step-equal to: 1.3748048144324905.
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  and can be downloaded with (watch out, you must use slightly different commands if you're using Python 2):

	try:
	from urllib.request import urlretrieve # Python 3
	except ImportError:
	from urllib import urlretrieve # Python 2
	urlretrieve('https://zenodo.org/record/14607/files/LocustDemoData.hdf5',
	'LocustDemoData.hdf5')

  We can easily obtain the size of the digitization set:[np.min(np.diff(np.sort(np.unique(x)))) for x in data]

	A.3.3. Discretization step amplitude
	[0.0067090988159179688,
	0.0091938972473144531,
	0.011888027191162109,
	0.0096139907836914062]
	for x in data]
	[0.99999833366776292,
	0.99999833345578371,
	0.99999833309865449,
	0.99999833355136358]
	We see that SD normalization was indeed applied to these data…

  ## an index of the noise cut with a long enough ## interval i_pos = positions[idx_l[interval_idx]] + minimal_length ## Variable defined next contains the number of noise cuts ## that can be made from the "currently" considered long-enough ## inter event interval n_at_interval_idx = nb_i[idx_l[interval_idx]]while within_idx < n_at_interval_idx and n_idx < nb_possible: res[n_idx,:]= cut_sgl_evt(int(i_pos),data,before,after)

	def mk_noise(positions, data, before=14, after=30, safety_factor=2, size=2000):
	<<mk_noise-docstring>>
	sl = before+after+1 ## cut length
	ns = data.shape[0] ## number of recording sites
	i1 = np.diff(positions) ## inter-event intervals
	minimal_length = round(sl*safety_factor)
	## Get next the number of noise sweeps that can be
	## cut between each detected event with a safety factor
	nb_i = (i1-minimal_length)//sl
	## Get the number of noise sweeps that are going to be cut
	nb_possible = min(size,sum(nb_i[nb_i>0]))
	res = np.zeros((nb_possible,sl*data.shape[0]))
	## Create next a list containing the indices of the inter event
	## intervals that are long enough
	idx_l = [i for i in range(len(i1)) if nb_i[i] > 0]
	## Make next an index running over the inter event intervals
	## from which at least one noise cut can be made
	interval_idx = 0
	## noise_positions = np.zeros(nb_possible,dtype=numpy.int)
	n_idx = 0
	while n_idx < nb_possible:
	within_idx = 0 ## noise_positions[n_idx] = i_pos
	n_idx += 1
	i_pos += sl
	within_idx += 1
	interval_idx += 1
	## return (res,noise_positions)
	return res

A.9.1. Cluster specific plots

Looking at the first 5 clusters we get Fig. 17 The number of spikes attributed to each neuron is: """Plot events.

Parameters ----------evts_matrix: a matrix of events. Rows are events. Cuts from different recording sites are glued one after the other on each row. n_plot: an integer, the number of events to plot (if 'None', default, all are shown). n_channels: an integer, the number of recording channels. events_color: the color used to display events. events_lw: the line width used to display events. show_median: should the median event be displayed? median_color: color used to display the median event. median_lw: line width used to display the median event.

show_mad: should the MAD be displayed? mad_color: color used to display the MAD. mad_lw: line width used to display the MAD.

Returns -------Noting, the function is used for its side effect. """

And the function per se: We can use this estimated value of delta hat as an initial guess for a procedure refining the estimate using also the 𝛿 􏷡 term. The obvious quantity we should try to minimize is the residual sum of square, RSS defined by: RSS(𝛿) = ‖𝐠 -𝐟 -𝛿 𝐟 ′ -𝛿 􏷡 /2 𝐟 ″ ‖ 􏷡 .

We can define a function returning the RSS for a given value of δ as well as an event evt a cluster center (median event of the cluster) center and its first two derivatives, centerD and centerDD: We then get the Fig. 28 The left panel of the above figure shows that our initial guess for δ is not bad but still approximately 0.2 units away from the actual minimum. The classical way to refine our δ estimatein 'nice situations' where the function we are trying to minimize is locally convex-is to use the Newton-Raphson algorithm which consists in approximating locally the 'target function' (here our RSS function) by a parabola having locally the same first and second derivatives, before jumping to the minimum of this approximating parabola. If we develop our previous expression of RSS(𝛿) we get:

where 𝐡 stands for 𝐠 -𝐟. By differentiation with respect to δ we get:

And a second differentiation leads to:

The equation of the approximating parabola at 𝛿 (𝑘) is then:

If the residual's norm decrease upon first order jitter correction, try a second order one. At the end compare the norm of the second order jitter corrected residual (h order2 norm2) with the one of the first order (h order1 norm2). If the former is larger or equal than the latter, set the estimated jitter to its first order value («mk aligned events-do-job-on-singleevent-order2»):

And now the function's docstring («mk aligned events-docstring»): 

B.10. mk center dictionary

We define function mk center dictionary starting with its docstring:

""" Computes clusters 'centers' or templates and associated data.

Clusters' centers should be built such that they can be used for subtraction, this implies that we should make them long enough, on both side of the peak, to see them go back to baseline. Formal parameters before and after bellow should therefore be set to larger values than the ones used for clustering. Parameters ---------positions : a vector of spike times, that should all come from the same cluster and correspond to reasonably 'clean' events. data : a data matrix. before : the number of sampling point to keep before the peak. after : the number of sampling point to keep after the peak.

Returns -------A dictionary with the following components: center: the estimate of the center (obtained from the median). centerD: the estimate of the center's derivative (obtained from the median of events cut on the derivative of data). centerDD: the estimate of the center's second derivative (obtained from the median of events cut on the second derivative of data). centerD_norm2: the squared norm of the center's derivative. centerDD_norm2: the squared norm of the center's second derivative. centerD_dot_centerDD: the scalar product of the center's first and second derivatives. center_idx: an array of indices generated by np.arange(-before,after+1). """

The function starts by evaluating the first two derivatives of the data («get-derivatives»): from scipy.signal import fftconvolve from numpy import apply_along_axis as apply dataD = apply(lambda x: fftconvolve(x,np.array([1,0,-1])/2.,'same'), 1, data) dataDD = apply(lambda x: fftconvolve(x,np.array([1,0,-1])/2.,'same'), 1, dataD)

The function is defined next:

def mk_center_dictionary(positions, data, before=49, after=80): <<mk_center_dictionary-docstring>> <<mk_center_dictionary-get-derivatives>> evts = mk_events(positions, data, before, after) evtsD = mk_events(positions, dataD, before, after) evtsDD = mk_events(positions, dataDD, before, after) evts_median = apply(np.median,0,evts) evtsD_median = apply(np.median,0,evtsD) evtsDD_median = apply(np.median,0,evtsDD) return {"center" : evts_median, "centerD" : evtsD_median, "centerDD" : evtsDD_median, "centerD_norm2" : np.dot(evtsD_median,evtsD_median), "centerDD_norm2" : np.dot(evtsDD_median,evtsDD_median), "centerD_dot_centerDD" : np.dot(evtsD_median, evtsDD_median), "center_idx" : np.arange(-before,after+1)}

B.11. classify and align evt

We now define with the following docstring («classify and align evt-docstring»):

"""Compares a single event to a dictionary of centers and returns the name of the closest center if it is close enough or '?', the corrected peak position and the remaining jitter. ----------evt_pos : a sampling point at which an event was detected. data : a data matrix. centers : a centers' dictionary returned by mk_center_dictionary. before : the number of sampling point to consider before the peak. after : the number of sampling point to consider after the peak.

Parameters

Returns -------A list with the following components:

The name of the closest center if it was close enough or '?'. The nearest sampling point to the events peak.

The jitter: difference between the estimated actual peak position and the nearest sampling point. """

The first chunk of the function takes a dictionary of centers, centers, generated by mk center dictionary, defines two variables, cluster names and n sites, and builds a matrix of centers, cen-tersM:

Extract the event, evt, to classify and subtract each center from it, delta, to find the closest one, cluster idx, using the Euclidean squared norm («cluster idx»): evt = cut_sgl_evt(evt_pos,data=data,before=before, after=after) delta = -(centersM -evt) cluster_idx = np.argmin(np.sum(delta**2,axis=1))

Get the name of the selected cluster, good cluster name, and its 'time indices', good cluster idx.

Then, extract the first two derivatives of the center, centerD and centerDD, their squared norms, centerD norm2 and centerDD norm2, and their dot product, centerD dot centerDD («get-centers»):

Do a first order jitter correction where h contains the difference between the event and the center. Obtain the estimated jitter, jitter0 and the squared norm of the first order corrected residual, h order1 norm2 («jitter-order-1»): 

B.12. predict data

We define function predict data that creates an ideal data trace given events' positions, events' origins and a clusters' catalog. We start with the docstring:

"""Predicts ideal data given a list of centers' names, positions, jitters and a dictionary of centers.

Parameters ----------class_pos_jitter_list : a list of lists returned by classify_and_align_evt. centers_dictionary : a centers' dictionary returned by mk_center_dictionary. nb_channels : the number of recording channels. data_length : the number of sampling points.

Returns -------A matrix of ideal (noise free) data with nb_channels rows and data_length columns. """

And the function: