
HAL Id: hal-01111551
https://hal.science/hal-01111551v1

Submitted on 30 Jan 2015 (v1), last revised 2 Jun 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Arithmetic algorithms for extended precision using
floating-point expansions

Mioara Joldes, Olivier Marty, Jean-Michel Muller, Valentina Popescu

To cite this version:
Mioara Joldes, Olivier Marty, Jean-Michel Muller, Valentina Popescu. Arithmetic algorithms for
extended precision using floating-point expansions. [Research Report] LIP - ENS Lyon; LAAS-CNRS;
ENS Cachan. 2015. �hal-01111551v1�

https://hal.science/hal-01111551v1
https://hal.archives-ouvertes.fr

Arithmetic algorithms for extended precision

using floating-point expansions

Mioara Joldes1, Olivier Marty2, Jean-Michel Muller3 and
Valentina Popescu4

1
CNRS, LAAS Laboratory, 7 Avenue du Colonel Roche, 31031 Toulouse, France

2ENS Cahan, 61 Avenue du Président Wilson, 94230 Cachan, France
3CNRS, Inria Grenoble Rhône-Alpes / LIP Laboratoire de l’Informatique du Parallélisme - ARIC,

ENS Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
4Inria Grenoble Rhône-Alpes / LIP Laboratoire de l’Informatique du Parallélisme - ARIC, ENS

Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France

January 30, 2015

Abstract

Many numerical problems require a higher computing precision than
the one offered by standard floating-point (FP) formats. One common way
of extending the precision is to represent numbers in a multiple component
format. By using the so-called floating-point expansions, real numbers are
represented as the unevaluated sum of standard machine precision FP
numbers. This representation offers the simplicity of using directly avail-
able, hardware implemented and highly optimized FP operations and is
used by multiple-precision libraries such as Bailey’s QD or the analogue
Graphics Processing Units (GPU) tuned version, GQD. In this article we
revisit algorithms for adding and multiplying FP expansions, then we in-
troduce and prove new algorithms for normalizing, dividing and square
rooting of FP expansions. The new method used for computing the re-
ciprocal a−1 and the square root

√
a of a FP expansion a is based on an

adapted Newton-Raphson iteration where the intermediate calculations
are done using “truncated” operations (additions, multiplications) involv-
ing FP expansions. We give here a thorough error analysis showing that it
allows very accurate computations. More precisely, after q ≥ 0 iterations,
the computed FP expansion x = x0+ . . .+x2q−1 satisfies, for the recip-

rocal algorithm, the relative error bound:
∣∣∣x−a−1

a−1

∣∣∣ ≤ 2−2q(p−3)−1 and,

respectively, for the square root one:
∣∣∣x− 1√

a

∣∣∣ ≤ 2−2q(p−3)−1
√

a
, where

p > 2 is the precision of the FP representation used (p = 24 for single
precision and p = 53 for double precision).

1 Introduction

Many numerical problems in dynamical systems or planetary orbit dynamics,
such as the long-term stability of the solar system [12], finding sinks in the Henon
Map [10], iterating the Lorenz attractor [1], etc., require higher precisions than

1

the standard double precision (now called binary64 [7]). Quad or higher pre-
cision is rarely implemented in hardware, and the most common solution is to
use software emulated higher precision libraries, also called arbitrary precision
libraries. There are mainly two ways of representing numbers in higher preci-
sion. The first one is the multiple-digit representation: numbers are represented
with a sequence of possibly high-radix digits coupled with a single exponent.
An example is the representation used in GNU MPFR [5], an open-source C
library, which, besides arbitrary precision, also provides correct rounding for
each atomic operation (basic operations and functions). The second way is the
multiple-term representation in which a number is expressed as the unevaluated
sum of several standard floating-point (FP) numbers. This sum is usually called
a FP expansion. Bailey’s library QD [6] uses this approach and supports double-
double (DD) and quad-double (QD) computations, i.e. numbers are represented
as the unevaluated sum of 2 or 4 standard double-precision FP numbers. It is
known [13], however, that the DD and QD formats and the operations imple-
mented in that library are not compliant with the IEEE 754-2008 standard,
and do not provide correctly rounded operations. However, this multiple-term
representation offers the simplicity of using directly available and highly opti-
mized hardware implemented FP operations. This makes most multiple-term
algorithms straightforwardly portable to highly parallel architectures, such as
GPUs. In consequence, there is a demand for algorithms for arithmetic op-
erations with FP expansions, that are sufficiently simple yet efficient, and for
which effective error bounds and thorough proofs are given. Several algorithms
already exist for addition and multiplication [13, 6, Thm. 44, Chap. 14].

In this article we mainly focus on division (and hence, reciprocal) and square
root, which are less studied in literature. For these algorithms we also provide a
thorough error analysis and effective error bounds. There are two classes of al-
gorithms for performing division and square root: the so-called digit-recurrence
algorithms [4], that generalize the paper-and-pencil method, and the algorithms
based on the Newton-Raphson iteration [20, 2]. While the algorithms suggested
so far for dividing expansions belong to the former class, here we will be inter-
ested in studying the possible use of the latter class: since its very fast, quadratic
convergence is appealing when high precision is at stake.

Another contribution of this article is a new method for the renormalization
of FP expansions. This operation ensures certain precision related requirements
and is an imprortant basic brick in most computations with FP expansions. Our
renormalization procedure takes advantage of the computer’s pipeline, so it is
fast in practice. For the sake of completeness, we also briefly present a variant
of addition and multiplication algorithms which we implemented, and for which
we intend on providing a full error analysis in a future related article.

A preliminary version of our work concerning only the case of division was
recently presented in [9].

The outline of the paper is the following: in Section 2 we recall some basic
notions about FP expansions and the algorithms used for handling them. Then,
in Section 3 we give the new renormalization algorithm along with the proof of
correctness. In Section 4 we present methods for computing the division, includ-
ing existing algorithms based on long classical division on expansions (Sec. 4.1)
and the Newton based method (Sec. 4.2), followed by the correctness proof, the
error analysis and the complexity analysis. After that, in Section 5 we give a
similar method for computing the square root of an expansion along with the

2

complexity analysis of the algorithm. Finally, in Section 6 we assess the per-
formance of our algorithms – in terms of number of FP operations and proven
accuracy bounds –.

2 Floating-point expansions

A normal binary precision-p floating-point (FP) number is a number of the form

x = Mx · 2ex−p+1,

with 2p−1 ≤ |Mx| ≤ 2p − 1 and Mx is an integer. The integer ex is called
the exponent of x, and Mx · 2−p+1 is called the significand of x. We denote
accordingly to Goldberg’s definition: ulp(x) = 2ex−p+1 [13, Chap. 2] (ulp is an
acronym for unit in the last place). Another useful concept is that of unit in the
last significant place: uls(x) = ulp(x) · 2zx , where zx is the number of trailing
zeros at the end of Mx.

In order to ensure the uniqueness of the representation we need to set the
first bit of the significand to 1 and adjust the exponent according to that. This
is called a normalized representation. This is not possible if x is less than
2emin , where emin is the smallest allowed exponent. Such numbers are called
subnormal, the first bit of the significand is 0 and the exponent is the minimum
representable one. The IEEE 754-2008 standard specifies that an underflow
exception is raised every time subnormal numbers occur.

A natural extension of the notion of DD or QD is the notion of floating-point
expansion. The arithmetic on FP expansions was first developed by Priest [16],
and in a slightly different way by Shewchuk [19]. If, starting from a set of FP
inputs, we only perform exact operations, then the values we obtain are always
equal to finite sums of FP numbers. Such finite sums are called expansions.
Hence, a natural idea is to try to manipulate such expansions, for performing
calculations that are either exact, either approximate, yet very accurate.

Definition 2.1. A FP expansion u with n terms is the unevaluated sum of
n FP numbers u0, u1, . . . , un−1, in which all nonzero terms are ordered by
magnitude (i.e., ui 6= 0⇒ |ui| ≥ |ui+1|). Each ui is called a component of u.

It can be easily seen that the notion of expansion is redundant since a nonzero
number always has more than one representation as a FP expansion. To make
the concept useful in practice and easy to manipulate, we must introduce a con-
straint on the components: the ui’s cannot “overlap”. The notion of overlapping
varies depending on the authors. We give here two very different definitions,
using the above-introduced notation.

Definition 2.2. (Nonoverlapping FP numbers) Assuming x and y are normal
numbers with representations Mx · 2ex−p+1 and My · 2ey−p+1 (with 2p−1 ≤
|Mx| , |My| ≤ 2p − 1), they are P-nonoverlapping (that is, nonoverlapping ac-
cording to Priest’s definition [17]) if |ey − ex| ≥ p.

Definition 2.3. An expansion is P-nonoverlapping (that is, nonoverlapping
according to Priest’s definition [17]) if all of its components are mutually P-
nonoverlapping.

3

A visual representation of Definition 2.3 can be seen in Fig. 1 (a).
Shewchuk [19] weakens this into nonzero-overlapping sequences as shown in

Fig. 1 (b):

Definition 2.4. An expansion u0, u1, . . . , un−1 is S-nonoverlapping (that is,
nonoverlapping according to Shewchuk’s definition [19]) if for all 0 < i < n, we
have eui−1

− eui
≥ p− zui−1

.

(a)

(b)

Figure 1: Nonoverlapping sequence by (a) Priest’s scheme and (b) Shewchuk’s
scheme.

In general, a P-nonoverlapping expansion carries more information than an
S-nonoverlapping one with the same number of components. In the worst case,
in radix 2, an S-nonoverlapping expansion with 53 components may not contain
more information than one double-precision FP number; it suffices to put one
bit of information into every component.

When Priest first started developing the FP expansion arithmetic, he con-
sidered that all the computations were done in faithful FP arithmetic (see [17]),
since round-to-nearest rounding mode was not so common. More recently, a
slightly stronger sense of nonoverlapping was introduced in 2001 by Hida, Li
and Bailey [6]:

Definition 2.5. An expansion u0, u1, . . . , un−1 is B-nonoverlapping (that is,
nonoverlapping according to Bailey’s definition [6]) if for all 0 < i < n, we have
|ui| ≤ 1

2 ulp(ui−1).

Remark 2.6. Note that for P-nonoverlapping expansions we have |ui| ≤ 2p−1
2p ulp(ui−1)

and for S-nonoverlapping expansions |ui| ≤ 2p−1
2p uls(ui−1).

Even though we presented here three different types of nonoverlapping, in
what follows we will focus only on the P and B-nonoverlapping expansions,
since in general they provide more precision per given number of terms of a FP
expansion.

2.1 Error free transforms

The majority of algorithms performing arithmetic operations on expansions are
based on the so-called error-free transforms (EFT) (such as the algorithms

4

2Sum, Fast2Sum, Dekker’s product and 2MultFMA presented for instance in [13]),
that make it possible to compute both the result and the rounding error of a
FP addition or multiplication. This implies that in general, each such error-free
transform applied to two FP numbers, still returns two FP numbers. Although
these algorithms use native precision operations only, they keep track of all
accumulated rounding errors, ensuring that no information is lost.

We present here the two algorithms that we use as basic bricks for our work.
The algorithm 2Sum (Algorithm 1) computes the exact sum of two FP numbers
a and b and return the result under the form s+e, where s is the result rounded
to nearest and e is the rounding error. This algorithm requires only 6 native
precision FP operations (flops), which it was proven to be optimal in [11], if we
have no information on the ordering of a and b.

Algorithm 1 2Sum (a, b).

s← RN(a+ b)
// RN stands for performing the operation in rounding to nearest mode.
t← RN(s− b)
e← RN(RN(a− t) + RN(b− RN(s− t)))
return (s, e) such that s = RN(a+ b) and s+ e = a+ b

There exists a similar algorithm, that performs the same addition using
only 3 native precision FP operations. This one is called Fast2Sum [13] and it
requires the exponent of a to be larger than or equal to that of b. This condition
might be difficult to check, but of course, if |a| ≥ |b|, it will be satisfied.

For multiplying two FP numbers there exist two algorithms: Dekker’s prod-
uct and 2MultFMA. These algorithms compute the product of two FP numbers
a and b and returns the exact result as p, the result rounded to nearest plus e, the
rounding error. The first one requires 17 flops to achieve the final result. The
most expensive part of the algorithm is the computation of the error e = a·b−p,
but if a fused-multiply-add (FMA [13]) instruction, that takes only one flop, is
available, this value is easily computed. This gives the algorithm 2MultFMA
(Algorithm 2) that takes only 2 flops. This algorithm works providing that the
product a · b does not overflow and ea + eb ≥ emin + p− 1, where ea and eb are
the exponents of a and b and emin is the minimum representable exponent. If
the second condition is not satisfied, the product may not be representable as
the exact sum of two FP numbers (e would be below the underflow threshold).

Algorithm 2 2MultFMA (a, b).

p← RN(a · b)
// RN stands for performing the operation in rounding to nearest mode.
e← fma(a, b,−p)
return (p, e) such that p = RN(a · b) and p+ e = a · b

Correctness proofs of these two algorithms can be found in [13, Chap. 4].
These EFT can be extended to work on several inputs by chaining, resulting

in the so-called distillation algorithms [18]. From these we make use of the

5

VecSum algorithm [19, 15], presented in Fig. 7 and Algoithm 3, which is simply
a chain of 2Sum that performs an EFT on n FP numbers.

Algorithm 3 VecSum (x0, . . . xn−1).

Input: x0, . . . , xn−1 FP numbers.
Output: e0 + . . .+ en−1 = x0 + . . .+ xn−1.
sn−1 ← xn−1

for i← n− 2 to 0 do
(si, ei+1)← 2Sum(xi, si+1)

end for
e0 ← s0

return e0, . . . , en−1

Figure 2: VecSum with n terms. Each 2Sum box performs Algorithm 1, the
sum is outputted to the left and the error downwards.

2.2 Addition and multiplication algorithms for expansions

In general, an algorithm that performs addition of two expansions a and b with
n and m terms, respectively, will return a FP expansion with at most n + m
terms. Similarly, for multiplication, the product is a FP expansion with at
most 2nm terms [16]. So-called normalization algorithms are used to render the
result nonoverlapping, and this also implies a potential reduction in the number
of terms.

Many variants of algorithms that compute the sum and the product of two
FP expansions have been presented in the literature [16, 19, 6, 18]. In this article
we only briefly present the algorithms that we used in our actual computer
implementation. These are generalizations of Bailey’s algorithms for DD and
QD [6] and were first presented in [10]. Although we have implemented fully
customized versions, we give here only the “k input - k output” variants of our
algorithms.

6

Algorithm 4 Algorithm of addition of FP expansions with k terms.

Input: FP expansions a = a0 + . . .+ ak−1; b = b0 + . . .+ bk−1.
Output: FP expansion r = r0 + . . .+ rk−1.
1: (r0, e0)← 2Sum(a0, b0)
2: for n← 1 to k − 1 do
3: (sn, en)← 2Sum(an, bn)
4: rn, e0, . . . , en−1 ← VecSum(sn, e0, . . . , en−1)
5: end for
6: rk ← 0
7: for i← 0 to k − 1 do
8: rk ← rk + ei
9: end for

10: r[0 : k − 1]← Renormalize(r[0 : k])
11: return FP expansion r = r0 + . . .+ rk−1.

The addition algorithm presented in Algorithm 4 and Fig. 3 is based on a
chain of 2Sum EFTs. Given two FP expansions a and b, each with k terms,
it produces the k most significant FP components of the sum r = a + b. In
the renormalization step (see line 10 of Algorithm 4), we use an extra error
correction term, so we perform our “error free transformation scheme” k + 1
times. The last term is computed using simple round-to-nearest FP addition
because the resulted errors are not accounted for anymore. At step n = 0 we
compute the exact sum a0 + b0 = r0 + e0. Since |e0| ≤ 1

2 ulp(r0), we use the
following intuition: let ε = 1

2 ulp(r0), then roughly speaking, if r0 is of order
of O(Λ), then e0 is of order O(εΛ). At each step n = 1, . . . , k we compute
the exact result of an + bn = sn + en, where sn and en are of order O(εnΛ)
and O(εn+1Λ), respectively. From previous steps we have already obtained n
error terms of order O(εnΛ) that we add together with sn to obtain the term
rn of order O(εnΛ) before the renormalization step. This addition is done using
VecSum (Algorithm 3). The (k + 1)-th component rk is obtained by a simple
summation of the previously obtained terms of order O(εkΛ).

Note that, in this setting, subtraction is simpler than for the multiple digit
case, and can be performed simply by negating the FP terms in b.

In Fig. 4 and Algorithm 5 we present the multiplication algorithm. As in the
case of addition, we consider two FP expansions a and b, each with k terms and
we compute the k most significant FP components of the product r = a · b. We
use the same type of intuition, so for the product (p, e) = 2ProdFMA(ai, bj), p
is of order O(εnΛ) and e of order O(εn+1Λ), where n = i+ j, and we consider
only the terms for which 0 ≤ n ≤ k. This implies that for each n we have n+ 1
products to compute (see line 4 of Algorithm 5). Next, we need to add all terms
of the same order of magnitude. By induction, it can be easily shown that beside
the n+ 1 products, we also have n2 terms resulting from the previous iteration.
This addition is performed using VecSum (Algorithm 3) to obtain rn in line 6.
The remaining terms are concatenated with the errors from the n+ 1 products,
and the entire e0, . . . , e(n+1)2−1 array is used in the next iteration. The (k+ 1)-
st component rk is obtained by simple summation of all remaining errors with
the simple products of order O(εkΛ). 2ProdFMA is not needed in the last step

7

Figure 3: Addition of FP expansions with k terms. Each 2Sum box performs
Algorithm 1, the sum is outputted downwards and the error to the right; the
circled + sign represents standard round-to-nearest FP addition.

8

Algorithm 5 Algorithm of multiplication of FP expansions with k terms.

Input: FP expansions a = a0 + . . .+ ak−1; b = b0 + . . .+ bk−1.
Output: FP expansion r = r0 + . . .+ rk−1.
1: (r0, e0)← 2ProdFMA(a0, b0)
2: for n← 1 to k − 1 do
3: for i← 0 to n do
4: (pi, êi)← 2ProdFMA(ai, bn−i)
5: end for
6: rn, e[0 : n2 + n− 1]← VecSum(p[0 : n], e[0 : n2 − 1])
7: e[0 : (n+ 1)2 − 1]← e[0 : n2 + n− 1], ê[0 : n]
8: end for
9: for i← 1 to k − 1 do

10: rk ← rk + ai · bk−i
11: end for
12: for i← 0 to k2 − 1 do
13: rk ← rk + ei
14: end for
15: r[0 : k − 1]← Renormalize(r[0 : k])
16: return FP expansion r = r0 + . . .+ rk−1.

since the errors are not reused. For the addition and multiplication algorithms
presented in this section, we intend to provide an effective error analysis in a
future work. An important step for this goal is to provide a thorough proof for
the renormalization, which is used at the end of each of these two algorithms.
So, in what follows we focus on our new algorithm for renormalization of FP
expansions.

3 Renormalization algorithm for expansions

While several renormalization algorithms have been proposed in literature, Priest [16]
algorithm seems to be the only one provided with a complete proof of correct-
ness. But that algorithm has many conditional branches, which make it slow in
practice, and has a worst case FP operation count of: R(n) = 20(n− 1), for an
input FP expansion with n-terms.

In an attempt to overcome the branching problem we developed a new al-
gorithm (see Algorithm 6), for which we provide a full correctness proof.

First, we need to define the concept of FP numbers that overlap by at most
d digits.

Definition 3.1. Consider an array of FP numbers: x0, x1, . . . , xn−1. According
to Priest’s [16] definition, they overlap by at most d digits (0 ≤ d < p) if and
only if ∀i, 0 ≤ i ≤ n− 2,∃ki, δi such that:

2ki ≤ |xi| < 2ki+1, (1)

2ki−δi ≤ |xi+1| ≤ 2ki−δi+1, (2)

δi ≥ p− d, (3)

δi + δi+1 ≥ p− zi−1, (4)

9

Figure 4: Multiplication of FP expansions with k terms. Each 2MultFMA box
performs Algorithm 2, the product is outputted downwards and the error to the
right; the VecSum box performs Algorithm 3, in which the most significant com-
ponent of the sum is outputted downwards; the circled + and ∗ signs represent
standard round-to-nearest FP addition and multiplication.

10

where zi−1 is the number of trailing zeros at the end of xi−1 and for i = 0,
z−1 := 0.

Proposition 3.2. Let x0, x1, . . . , xn−1 be an array of FP numbers which overlap
by at most d digits (0 ≤ d < p). The following properties hold:

|xj+1| < 2d ulp(xj), (5)

ulp(xj+1) ≤ 2d−p ulp(xj), (6)

|xj+2 + xj+1| ≤ (2d + 22d−p) ulp(xj). (7)

Proof. We have ulp(xj) = 2kj−p+1 and from (3) we get |xj+1| < 2kj−δj+1 <
2p−δj ulp(xj) < 2d ulp(xj). This proves that property (5) holds for all 0 ≤ j <
n− 1.

By applying (3) we get ulp(xj+1) = 2kj−δj−p+1 ≤ 2d−p ulp(xj), which
proves that (6) holds for all 0 ≤ j < n− 1.

We have |xj+1| ≤ 2d ulp(xj) and |xj+2| ≤ 2d ulp(xj+1) ≤ 22d−p ulp(xj) from
which (7) immediately follows.

The renormalization algorithm (see Algorithm 6 and Fig. 5) is based on
different layers of chained 2Sum. For the sake of simplicity, these are grouped
in simpler layers based on VecSum. We will prove that our algorithm returns a
P-nonoverlapping sequence.

Proposition 3.3. Consider an array x0, x1, . . . , xn−1, consisting of FP num-
bers that overlap by at most d ≤ p− 2 digits and let m an input parameter, with
1 ≤ m ≤ n− 1. Provided that no underflow / overflow occurs during the calcu-
lations, the renormalization Algorithm 6 returns a ”truncation” to m terms of a
P-nonoverlapping FP expansion f = f0+. . .+fn−1 such that x0+. . .+xn−1 = f .

Algorithm 6 Renormalization algorithm

Input: FP expansion x = x0+. . .+xn−1 consisting of FP numbers that overlap
by at most d digits, with d ≤ p− 2; m length of output FP expansion.

Output: FP expansion f = f0 + . . . + fm−1 with fi+1 ≤ (1
2 + 2−p+2 +

2−p) ulp(fi), for all 0 ≤ i < m− 1.
1: e[0 : n− 1]← V ecSum(x[0 : n− 1])
2: f (0)[0 : m]← V ecSumErrBranch(e[0 : n− 1],m+ 1)
3: for i← 0 to m− 2 do
4: f (i+1)[i : m]← V ecSumErr(f (i)[i : m])
5: end for
6: return FP expansion f = f

(1)
0 + . . .+ f

(m−1)
m−2 + f

(m−1)
m−1 .

In order to prove this proposition, in what follows, we prove first several
intermediate properties. The notations used in the proof (si, ei, εi, fi, ρi and
gi) are defined on the schematic drawings of the algorithms discussed. We also
make the important remark that at each step we prove that all the 2Sum blocks
can be replaced by Fast2Sum ones, but for simplicity of the proof we chose to
present first the 2Sum version.

11

Figure 5: Renormalization of FP expansions with n terms. The VecSum box
performs Algorithm 3, the VecSum-ErrBranch box, Algorithm 7 and the Vec-
SumErr box, Algorithm 8.

12

First level (line 1, Algorithm 6)

It consists in applying Algorithm 3, VecSum (see also Fig. 7) on the input array,
from where we obtain the array e = (e0, e1, . . . , en−1).

Proposition 3.4. After applying the VecSum algorithm, the output array e =
(e0, e1, . . . , en−1) is S-nonoverlapping and may contain interleaving zeros.

Proof. Observe first that since si = RN(xi + si+1), si is closer to xi + si+1 than
xi. Hence |(xi + si+1)− si| ≤ |(xi + si+1)− xi|, and so |ei+1| ≤ |si+1|.

Similarly, si is closer to xi + si+1 than si+1, so |ei+1| ≤ |xi|. From (5) we
get:

|xj+1| + |xj+2|+ · · · ≤
≤ [2d + 22d−p + 23d−2p + 24d−3p + . . .] ulp(xj)

≤ 2d
2p

2p − 1
ulp(xj). (8)

We know that sj+1 = RN(xj+1 + RN(· · ·+ xn−1)) and by using a property
given by Jeannerod and Rump in [8] we get:

|sj+1 − (xj+1 + . . .+ xn−1)|
≤ (n− j − 2) · 2−p · (|xj+1|+ · · ·+ |xn−1|) . (9)

From (8) and (9) we have:

|sj+1| ≤ 2d
2p

2p − 1
(1 + (n− j − 2)2−p) ulp(xj).

It is easily seen that

2d
2p

2p − 1
(1 + (n− j − 2)2−p) ≤ 2p−1, (10)

is satisfied for p ≥ 4 and n ≤ 16, for p ≥ 5 and n ≤ 32 and so on. This includes
all practical cases, when d ≤ p− 2, so that ulp(sj+1) < ulp(xj).

Therefore xj and sj+1 are multiples of ulp(sj+1), thus xj + sj+1 is mul-
tiple of ulp(sj+1), hence RN(xj + sj+1) is multiple of ulp(sj+1) and |ej+1| =
|xj + sj+1 − RN(xj + sj+1)| is multiple of ulp(sj+1).

Also, by definition of 2Sum, we have |ej+2| ≤ 1
2 ulp(sj+1). Now, we are

able to compare |ej+1| and |ej+2|. Since |ej+1| is a multiple of ulp(sj+1), either
ej+1 = 0 or ej+1 is larger than 2 |ej+2| and multiple of 2k, such that 2k > |ej+2|.
This implies that the array e = (e0, e1, . . . , en−1) is S-nonoverlapping and may
have interleaving zeros.

Remark 3.5. Since we have |sj+1| ≤ 2p−1 ulp(xj), for d ≤ p− 2 and p ≥ 4 for n
up to 16 and also ulp(xj) ≤ 21−p |xj | we can deduce that |sj+1| ≤ |xj |. Hence,
at this level we can use instead of 2Sum basic blocks the Fast2Sum ones.

Second level (line 2, Algorithm 6)

It is applied on the array e obtained previously. This is also a chain of 2Sum, but
instead of starting from the least significant, we start from the most significant

13

component. Also, instead of propagating the sum we propagate the error. If
however, the error after a 2Sum block is zero, then we propagate the sum
(this is shown in Figure 6). In what follows we will refer to this algorithm by
VecSumErrBranch (see Algorithm 7). The following property holds:

Proposition 3.6. Let an input array e = (e0, . . . , en−1) of S-non-overlapping
terms and 1 ≤ m ≤ n the required number of output terms. After appling
VecSumErrBranch, the output array of f = (f0, . . . , fm−1), with 0 ≤ m ≤ n− 1
satisfies |fi+1| ≤ ulp(fi) for all 0 ≤ i < m− 1.

Proof. The case when the array e contains at most 2 elements is trivial. Consider
now at least 3 elements. By definition of 2Sum, we have |ε1| ≤ 1

2 ulp(f0) and
by definition of S-nonoverlapping,

e0 = E0 · 2k0 with |e1| < 2k0 ,

e1 = E1 · 2k1 with |e2| < 2k1 .

Hence, f0 and ε1 are both multiples of 2k1 . Two possible cases occur:
(i) ε1 = 0. If we choose to propagate directly ε1 = 0, then f1 = e2 and ε2 = 0.

This implies by induction that fi = ei+1,∀i ≥ 1. So, directly propagating the
error poses a problem, since the whole remaining chain of 2Sum is executed
without any change. So, as shown in Algorithm 7, line 11, when εi+1 = 0 we
propagate the sum fj .

(ii) ε1 6= 0. Then |e2| < |ε1| and |ε1 + e2| < 2 |ε1|, from where we get
|f1| = |RN(ε1 + e2)| ≤ 2 |ε1| ≤ ulp(f0).

We prove by induction the following statement: at step i > 0 of the loop in
Algorithm 7, both fj−1 and εi are multiples of 2ki with |ei+1| < 2ki . We proved
above that i = 1 holds. Suppose now it holds for i and prove for i+1. Since fj−1

and εi are multiples of 2ki with |ei+1| < 2ki and ei+1 = Ei+1 ·2ki+1 with |ei+2| <
2ki+1 (by definition of S-nonoverlapping), it follows that both fj and εi+1 are
multiples of 2ki+1 (by definition of 2Sum).

Finally, we prove the relation between fj and fj−1. If εi+1 = 0, we propagate
fj , i.e. εi+1 = fj . Otherwise |ei+1| < |εi|, so |ei+1 + εi| < 2 |εi| and finally
|fj | = |RN(ei+1 + εi)| ≤ 2 |εi| ≤ ulp(fj−1).

Remark 3.7. For this algorithm we can also use the Fast2Sum algorithm instead
of 2Sum. We already showed that either |ei+1| < |εi|, or εi = 0, in which case
we replace εi = fj−1, which is a multiple of 2ki with |ei+1| < 2ki .

Third level and further (lines 3-5, Algorithm 6)

On the previously obtained array we apply a similar chain of 2Sum, starting
from the most significant component and propagating the error. The advantage
in these subsequent levels is that no conditional branching is needed anymore
(see Algorithm 8).

We prove the following property:

Proposition 3.8. After applying Algorithm 8, VecSumErr on an input array
f = (f0, . . . , fm), with |fi+1| ≤ ulp(fi), for all 0 ≤ i ≤ m− 1, the output array
g = (g0, . . . , gm) satisfies |g1| ≤

(
1
2 + 2−p+2

)
ulp(g0) and |gi+1| ≤ ulp(gi), for

0 < i ≤ m− 1.

14

Algorithm 7 Second level of the renormalization algorithm - VecSumEr-
rBranch
Input: S-nonoverlapping FP expansion e = e0 + . . . + en−1; m length of the

output expansion.
Output: FP expansion f = f0 + . . .+fm−1 with fj+1 ≤ ulp(fj), 0 ≤ j < m−1.
1: j ← 0
2: ε0 = e0

3: for i← 0 to n− 2 do
4: (fj , εi+1)← 2Sum(εi, ei+1)
5: if εi+1 6= 0 then
6: if j ≥ m− 1 then
7: return FP expansion f = f0 + . . .+ fm−1. //enough output terms
8: end if
9: j ← j + 1

10: else
11: εi+1 ← fj
12: end if
13: end for
14: if εn−1 6= 0 and j < m then
15: fj ← εn−1

16: end if
17: return FP expansion f = f0 + . . .+ fm−1.

Figure 6: VecSumErrBranch with n terms. Each 2Sum box performs Algo-
rithm 1, the sum is outputted downwards and the error to the right. If the error
is zero, the sum is propagated to the right, otherwise the error is propagated
and the sum is outputted.

15

Algorithm 8 Third level of the renormalization algorithm - VecSumErr

Input: FP expansion f = f0 + . . . + fm with |fi+1| ≤ ulp(fi), for all 0 ≤ i ≤
m− 1.

Output: FP expansion g = g0 + . . .+ gm with |g1| ≤
(

1
2 + 2−p+2

)
ulp(g0) and

|gi+1| ≤ ulp(gi), for 0 < i ≤ m− 1.
1: ρ0 = f0

2: for i← 0 to m− 1 do
3: (gi, ρi+1)← 2Sum(ρi, fi+1)
4: end for
5: gm ← εm
6: return FP expansion g = g0 + . . .+ gm.

Figure 7: VecSumErr with m+1 terms. Each 2Sum box performs Algorithm 1,
the sum is outputted downwards and the error to the right.

16

Proof. Since |f1| ≤ ulp(f0) and g0 = RN(f0 + f1) we have:

1

2
ulp(f0) ≤ ulp(g0) ≤ 2 ulp(f0),

and

|ρ1| ≤
1

2
ulp(g0).

We also have:

|f1| ≤ ulp(f0), which implies ulp(f1) ≤ 2−p+1 ulp(f0),

|f2| ≤ ulp(f1) ≤ 2−p+2 ulp(g0).

Hence:

|ρ1 + f2| ≤
(

1

2
+ 2−p+2

)
ulp(g0).

Since
(

1
2 + 2−p+2

)
ulp(g0) is a FP number, we also have:

|g1| = |RN(ρ1 + f2)| ≤
(

1

2
+ 2−p+2

)
ulp(g0).

This bound is very close to 1
2 ulp(g0) and it seems that in most practi-

cal cases, one actually has |g1| ≤ 1
2 ulp(g0). This implies that g0 and g1 are

“almost” B-nonoverlapping and a simple computation shows that they are P-
nonoverlapping as soon as p ≥ 3, which occurs in all practical cases.

As we iterate further, we get:

|ρi+1| ≤
1

2
ulp(gi),

|fi+1| ≤ ulp(fi), which implies ulp(fi+1) ≤ 2−p+1 ulp(fi).

We know that ρi is multiple of ulp(fi) and from this we can derive two cases:
(i) ρi = 0, and as a consequence ∀j ≥ i, gj = fj+1 and gm = 0. In the second
case (ii) we get:

|fi+1| ≤ |ρi| ≤
1

2
ulp(gi−1),

|fi+1 + ρi| ≤ ulp(gi−1),

|gi| = |RN(fi+1 + ρi)| ≤ ulp(gi−1).

Remark 3.9. For Algorithm 8 we can also use the faster algorithm, Fast2Sum(ρi, fi+1),
because we either have ρi = 0 or |fi+1| ≤ |ρi|.

The above proposition clearly shows that while we obtain a nonoverlapping
condition for the first two elements of the resulting array g, for the others we
don’t prove to strengthen the existing bound |gi+1| ≤ ulp(gi). There is an ad-
vantage however: if zeros appear in the summation process, they are pushed at
the end; we don’t use any branching. This suggest to continue applying a sub-
sequent level of the same algorithm on the remaining elements, say g1, . . . , gm.
This is the idea of applying m−1 levels of VecSumErr in lines 3-5, Algorithm 6.
We are now able to prove Prop. 3.3.

17

Proof. (of Prop. 3.3) Consider m ≥ 2, otherwise the output reduces to only
one term. Then, the loop in lines 3-5, Algorithm 6 is executed at least once.

From Prop. 3.4, 3.6 and 3.8 we deduce that
∣∣∣f (1)

1

∣∣∣ ≤ (
1
2 + 2−p+2

)
ulp(f

(1)
0)

and
∣∣∣f (1)
i+1

∣∣∣ ≤ ulp(f
(1)
i), for i > 0. If m = 2 then f

(1)
0 , f

(1)
1 are outputted

and the proposition is proven. Otherwise, f
(1)
0 is kept unchanged and another

VecSumErr is applied to remaining f
(1)
1 , . . . , f

(1)
m . We have:∣∣∣f (1)

1

∣∣∣ ≤ (
1

2
+ 2−p+2

)
ulp(f

(1)
0),∣∣∣f (1)

2

∣∣∣ ≤ ulp(f
(1)
1) ≤ 2−p+1

(
1

2
+ 2−p+2

)
ulp(f

(1)
0),

≤ 2−p+1 ulp(f
(1)
0).

Hence, ∣∣∣f (2)
1

∣∣∣ =
∣∣∣RN(f

(1)
1 + f

(1)
2)
∣∣∣ ,

≤
(

1

2
+ 2−p+2 + 2−p+1

)
ulp(f

(1)
0).

Similarly, ∣∣∣f (2)
2

∣∣∣ ≤ (
1

2
+ 2−p+2

)
ulp(f

(2)
1),∣∣∣f (2)

3

∣∣∣ ≤ ulp(f
(2)
2) ≤ 2−p+1

(
1

2
+ 2−p+2

)
ulp(f

(2)
1),

≤ 2−p+1 ulp(f
(2)
1).

So, f
(1)
0 , f

(2)
1 , f

(2)
2 are nonoverlapping. It easily follows by induction that after

m− 1 loop iterations the output f
(1)
0 , . . . , f

(m−1)
m−2 , f

(m−1)
m−1 is a P-nonoverlapping

expansion. Finally, when all n − 1 terms are considered, after at most n − 1

loop iterations we have: x0 + . . .+ xn−1 = f
(1)
0 + . . .+ f

(n−1)
n−2 + f

(n−1)
n−1 .

Remark 3.10. In the worst case, Algorithm 6 performs n− 1 Fast2Sum calls in
the first level and n − 2 Fast2Sum calls plus n − 1 comparisons in the second
one. During the following m− 1 levels we perform m− i Fast2Sum calls, with
0 ≤ i < m− 2. This accounts for a total of Rnew(n,m) = 7n+ 3

2m
2 + 3

2m− 13
FP operations.

In table 1 we give some effective values of the worst case FP operation count
for Priest’s renormalization algorithm [16] and Algorithm 6. It can be seen that
for n ≤ 7 our algorithm performs better or the same. Even though from values
of n > 7 Algorithm 6 performs worse in terms of operation count than Priest’s
one, in practice, the last m − 1 levels will take advantage of the computers
pipeline, because we do not need branching conditions anymore, which makes
it faster in practice.

In what follows we denote by AddRoundE (x[0 : n − 1], y[0 : m − 1], k), an
algorithm for expansions addition, which given two (P− or B−) nonoverlapping
expansions, returns the k most significant terms of the exact normalized (P− or

18

Table 1: FP operation count for Algorithm 6 vs. Priest’s renormalization algo-
rithm [16]. We consider that both algorithms compute n−1 terms in the output
expansion.

q 2 4 7 8 10 12 16
Alg. 6 10 45 120 151 222 305 507

Priest’s alg. [16] 20 60 120 140 180 220 300

B−) nonoverlapping sum. If no request is made on the number of terms to be
returned, then we denote simply by AddE (x[0 : n− 1], y[0 : m− 1]). Similarly,
we denote by MulRoundE, MulE, SubRoundE, SubE, DivRoundE, RenormalizeE
algorithms for multiplication, subtraction, division and normalization.

4 Reciprocal algorithm

4.1 Algorithms using classical long division on expansions

In reference [16], division is done using the classical long division algorithm (a
variation of the algorithm we use for paper-and-pencil calculations), which is
recalled in Algorithm 9.

Algorithm 9 Priest’s [16] division algorithm. We denote by f [0 : . . .] and
expansion f whose number of terms is not known in advance.

Input: FP expansion a = a0 + . . .+an−1; b = b0 + . . .+ bm−1; length of output
quotient FP expansion d.

Output: FP expansion q = q0 + . . . with at most d terms s.t.
∣∣∣ q−a/ba/b

∣∣∣ <
21−b(p−4)d/pc.

1: q0 = RN(a0/b0)
2: r(0)[0 : n− 1]← a[0 : n− 1]
3: for i← 1 to d− 1 do
4: f [0 : . . .]← MulE (qi−1, b[0 : m− 1])
5: r(i)[0 : . . .]← RenormalizeE (SubE (r(i−1)[0 : . . .], f [0 : . . .]))

6: qi = RN(r
(i)
0 /b0)

7: end for
8: q[0 : . . .]← RenormalizeE (q[0 : d− 1])
9: return FP expansion q = q0 +

Bailey’s division algorithm [6] is very similar. For instance, let a = a0 +a1 +
a2 + a3 and b = b0 + b1 + b2 + b3 be QD numbers. First, one approximates the
quotient q0 = a0/b0, then compute the remainder r = a − q0b in quad-double.
The next correction term is q1 = r0/b0. Subsequent terms qi are obtained by
continuing this process. Note that at each step when computing r full quad-
double multiplication and subtraction must be performed since most of the
bits will be canceled out when computing q3 and q4, in Bailey’s algorithm. A
renormalization step is performed only at the end, on q0 + q1 + q2 + ... in order
to ensure non-overlapping. No error bound is given in [6].

19

Note that in Algorithm 9 [16] a renormalization step is performed after each
computation of r = r − qib. An error bound is given in [16]:

Proposition 4.1. [16] Consider two P-nonoverlapping expansions: a = a0 +
. . . + an−1 and b = b0 + . . . + bm−1, Priest division algorithm [16] computes a
quotient expansion q = q0 + . . .+ qd−1 s.t.∣∣∣∣q − a/ba/b

∣∣∣∣ < 21−b(p−4)d/pc. (11)

In Daumas and Finot’s paper [3], Priest’s division algorithm is improved by
using only estimates of the most significant component of the remainder r0 and
storing the less significant components of the remainder and the terms −qib
unchanged in a set that is managed with a priority queue. While the asymp-
totic complexity of this algorithm is better, in practical simple cases Priest’s
algorithm is faster due to the control overhead of the priority queue [3]. The
error bound obtained with Daumas’ algorithm is (using the same notations as
above): ∣∣∣∣q − a/ba/b

∣∣∣∣ < 2−d(p−1)
d−1∏
i=0

(4i+ 6). (12)

4.2 Reciprocal of expansions with an adapted Newton-
Raphson iteration

The classical Newton-Raphson iteration for computing reciprocals is briefly re-
called in what follows [20, 2, 13, Chap. 2]. It is based on the Newton iteration
for computing the roots of a given function f , which is:

xn+1 = xn −
f(xn)

f ′(xn)
. (13)

When x0 is close to a root α, f ′(α) 6= 0, the iteration converges quadratically.
For computing 1/a we look for roots of the function f(x) = 1/x − a which
implies using the iteration

xn+1 = xn(2− axn). (14)

The iteration converges to 1/a for all x0 ∈ (0, 2/a). However, taking any point
in (0, 2/a) as the starting point x0 would be a poor choice. A much better
choice is to choose x0 equal to a FP number very close to 1/a. This only
requires one FP division. The quadratic convergence of (14) is deduced from
xn+1− 1

a = −a(xn− 1
a)2. This iteration is self-correcting because minor errors,

like rounding errors, do not modify the limit value.
While iteration (14) is well known, in Algorithm 10 we use an adaptation

for computing reciprocals of FP expansions, with truncated operations involving
FP expansions. Our algorithm works with both B- and P-nonoverlapping FP
expansions. For the sake of clarity we consider first the case of B-nonoverlapping
FP expansions, and then make the necessary adjustments for P-nonoverlapping
expansions in Proposition 4.4.

20

Algorithm 10 Truncated Newton iteration based algorithm for reciprocal of
an FP expansion.

Input: FP expansion a = a0 + . . .+ a2k−1; length of output FP expansion 2q.

Output: FP expansion x = x0 + . . .+ x2q−1 s.t.
∣∣x− 1

a

∣∣ ≤ 2−2q(p−3)−1

|a|
.

1: x0 = RN(1/a0)
2: for i← 0 to q − 1 do
3: v̂[0 : 2i+1 − 1]← MulRoundE (x[0 : 2i − 1], a[0 : 2i+1 − 1], 2i+1)
4: ŵ[0 : 2i+1 − 1]← SubRoundE (2, v̂[0 : 2i+1 − 1], 2i+1)
5: x[0 : 2i+1 − 1]← MulRoundE (x[0 : 2i − 1], ŵ[0 : 2i+1 − 1], 2i+1)
6: end for
7: return FP expansion x = x0 + . . .+ x2q−1.

4.3 Error analysis of Algorithm 10

In the following, let a = a0 + . . . + a2k−1 be a B-nonoverlapping FP expan-
sion with 2k terms and q ≥ 0. We will prove that our algorithm returns an
approximation x = x0 + . . .+x2q−1 of 1

a , in the form of a B-nonoverlapping FP
expansion with 2q terms, such that∣∣∣∣x− 1

a

∣∣∣∣ ≤ 2−2q(p−3)−1

|a|
. (15)

We will first prove the following proposition:

Proposition 4.2. Consider a B-nonoverlapping expansion u = u0+u1+. . .+uk
with k > 0 normal binary FP terms of precision p. Denote u(i) = u0 + u1 +
· · ·+ui, i ≥ 0, i.e. “a truncation” of u to i+ 1 terms. The following inequalities
hold for 0 ≤ i ≤ k:

|ui| ≤ 2−ip |u0| , (16)∣∣∣u− u(i)
∣∣∣ ≤ 2−ip |u| η

1− η
, (17)

(
1− 2−ip

η

1− η

)
|u| ≤

∣∣∣u(i)
∣∣∣ ≤ (1 + 2−ip

η

1− η

)
|u| , (18)

∣∣∣∣ 1u − 1

u0

∣∣∣∣ ≤ 1

|u|
η, (19)

where

η =

∞∑
j=0

2(−j−1)p =
2−p

1− 2−p
.

Proof. By definition of a B-nonoverlapping expansion and since for any nor-
mal binary FP number ui, ulp(ui) ≤ 2−p+1 |ui| we have |ui| ≤ 1

2 ulp(ui−1) ≤
2−p |ui−1| and (16) follows by induction.

21

Consequently we have |u− u0| = |u1 + u2 + · · ·+ uk| ≤ 2−p |u0|+2−2p |u0|+
· · ·+ 2−kp |u0| ≤ |u0| η. One easily observes that u and u0 have the same sign.
One possible proof is by noticing that 1− η > 0 and − |u0| η ≤ u− u0 ≤ |u0| η.
Suppose u0 > 0, then −u0η ≤ u−u0 ≤ u0η, and hence u0(1−η) ≤ u ≤ u0(1+η)
which implies u > 0. The case u0 < 0 is similar. It follows that

|u|
1 + η

≤ |u0| ≤
|u|

1− η
. (20)

For (17) we use (20) together with:∣∣∣u− u(i)
∣∣∣ ≤ ∞∑

j=0

2(−i−j−1)p |u0| ≤ 2−ipη |u0| ,

and (18) is a simple consequence of (17). Similarly, (19) follows from
∣∣∣ 1
u −

1
u0

∣∣∣ =

1
|u|

∣∣∣u0−u
u0

∣∣∣ ≤ 1
|u|η.

Proposition 4.3. Provided that no underflow (subnormal numbers appear) /
overflow occurs during the calculations, Algorithm 10 is correct when run with
B-nonoverlapping expansions.

Proof. The input of the algorithm is a = a0 +a1 + · · ·+a2k−1 a non-overlapping
FP expansion in which every term ai is a normal binary FP number of precision
p. Let fi = 2i+1 − 1 and a(fi) = a0 + a1 + . . . + afi i.e. “a truncation” of a to
fi + 1 terms, with 0 ≤ i.

For computing 1/a we use Newton iteration: x0 = RN(1/a0), xi+1 = xi(2−
a(fi)xi)), i ≥ 0 by truncating each operation involving FP expansions in the
following way:

• let vi := (a(fi) ·xi) be the exact product represented as a non-overlapping

FP expansion on 22(i+1) terms, we compute v̂i := v
(2i)
i i.e. vi “truncated

to” 2i+1 terms;

• let wi := 2 − v̂i be the exact result of the subtraction represented as a

non-overlapping FP expansion on 2i+1 + 1 terms, we compute ŵi := w
(2i)
i

i.e. vi “truncated to” 2i+1 terms;

• let τi := xi · ŵi be the exact product represented as a non-overlapping

FP expansion on 2 · 2i(2i+1) terms, we compute xi+1 := τ
(2i+1−1)
i i.e. τi

“truncated to” 2i+1 terms.

Let us first prove a simple upper bound for the approximation error in x0:

ε0 =

∣∣∣∣x0 −
1

a

∣∣∣∣ ≤ 2η

|a|
. (21)

Since x0 = RN(1/a0), then
∣∣∣x0 − 1

a0

∣∣∣ ≤ 2−p
∣∣∣ 1
a0

∣∣∣, so
∣∣x0 − 1

a

∣∣ ≤ 2−p
∣∣∣ 1
a0

∣∣∣ +∣∣∣ 1a − 1
a0

∣∣∣ ≤ (1+η)2−p+η
|a| ≤ 2η

|a| (from (20)).

Let us deduce an upper bound for the approximation error in x at step i+1,
εi+1 =

∣∣xi+1 − 1
a

∣∣. For this, we will use a chain of triangular inequalites that

22

make the transition from our “truncated” Newton error, to the “untruncated”
one. Let γi = 2−(2i+1−1)p η

1−η . We have from Proposition 4.2, eq. (17):

|xi+1 − τi| ≤ γi |xi · ŵi| , (22)

|wi − ŵi| ≤ γi |wi| ≤ γi |2− v̂i| , (23)

|vi − v̂i| ≤ γi
∣∣∣a(fi) · xi

∣∣∣ , (24)∣∣∣a− a(fi)
∣∣∣ ≤ γi |a| . (25)

From (22) we have:

εi+1 ≤ |xi+1 − τi|+
∣∣∣∣τi − 1

a

∣∣∣∣
≤ γi |xi · ŵi|+

∣∣∣∣xi · ŵi − 1

a

∣∣∣∣
≤ γi |xi(wi − ŵi)|+ γi |xiwi|+

∣∣∣∣xi · ŵi − 1

a

∣∣∣∣
≤ (1 + γi) |xi| |wi − ŵi|+ γi |xiwi|

+

∣∣∣∣xi · wi − 1

a

∣∣∣∣ .
Using (23) and (24):

εi+1 ≤
∣∣∣∣xi · wi − 1

a

∣∣∣∣+ ((1 + γi)γi + γi) |xiwi|

≤
∣∣∣∣xi · (2− vi)− 1

a

∣∣∣∣+ |xi| · |(vi − v̂i)|

+ (γi(1 + γi) + γi) |xi| (|(2− vi)|+ |vi − v̂i|)

≤
∣∣∣∣xi · (2− a(fi) · xi)−

1

a

∣∣∣∣
+ γi(1 + γi)

2
∣∣x2
i

∣∣ ∣∣∣a(fi)
∣∣∣

+ (γi(1 + γi) + γi)
∣∣∣xi(2− a(fi) · xi)

∣∣∣ .
By (25), we have:∣∣∣∣xi · (2− a(fi) · xi)−

1

a

∣∣∣∣ ≤ |a| ∣∣∣∣xi − 1

a

∣∣∣∣2 + γi |xi|2 |a| ,

|xi|2
∣∣∣a(fi)

∣∣∣ ≤ (1 + γi) |xi|2 |a| ,

and ∣∣∣xi · (2− a(fi) · xi)
∣∣∣ ≤ |a| ∣∣∣∣xi − 1

a

∣∣∣∣2 + γi |xi|2 |a|+
1

|a|
.

23

Hence we have:

εi+1 ≤ (1 + γi)
2 |a|

∣∣∣∣xi − 1

a

∣∣∣∣2
+ γi(1 + γi)

2(2 + γi)
∣∣x2
i

∣∣ |a|
+ γi(2 + γi)

1

|a|
. (26)

We now prove by induction that for all i ≥ 0:

εi =

∣∣∣∣xi − 1

a

∣∣∣∣ ≤ 2−2i(p−3)−1

|a|
. (27)

For i = 0, this holds from (21) and the fact that η = 1
2p−1 ≤ 2−p+1. For the

induction step, we have from (26):

εi+1 ≤ (1 + γi)
2 |a| |εi|2

+ γi(1 + γi)
2(2 + γi) (1± εi |a|)2 1

|a|

+ γi(2 + γi)
1

|a|
, (28)

which implies

|a| εi+1

2−2i+1(p−3)
≤ (1 + γi)

2

4
+

(1 + 2−p+2)(2 + γi)

64

·
(

1 + (1 + γi)
2
(

1 + 2−2i(p−3)−1
)2
)

≤ 1

2
. (29)

This completes our proof.

Proposition 4.4. Algorithm 10 is correct when run with P-nonoverlapping
expansions.

Proof. It is easy to see that the previous analysis holds, provided that we
use Remark 2.6. This mainly implies the following changes η′ = 2

2p−3 , γ′i =(
2

2p−1

)2i+1−1
η′

1−η′ . With this change it is easy to verify that equations (21)–

(28) hold as soon as p > 2. Note that for the induction step at i = 1, a tighter

bound is needed for ε′0 ≤
2−p(1+η′)+η′

|a| ≤ 2η′

|a|
3−2−p

4 , but the rest of the proof is

identical, safe for some tedious computations.

4.4 Complexity analysis for reciprocal

As presented before, our algorithm has the feature of using “truncated” expan-
sions, while some variants of AddRoundE and MulRoundE need to compute the
result fully and only then truncate. This is the case of Priest’s addition and

24

multiplication, which are not tuned for obtaining “truncated” expansions on
the fly –and thus penalize our algorithm–. On the other hand, our algorithms,
presented in Sec. 2.2, take into account only the significant terms of the input
expansions in order to compute the result. Even though these algorithms have
not been proven to work properly yet, we obtained promising results in prac-
tice, so we will perform the complexity analysis based on them and we intend
on providing full proofs in the near future.

We present here the operation count of our algorithms, by taking 6 FP op-
erations for 2Sum (Algorithm 1) [13], 3 for Fast2Sum [13] and 2 for 2MultFMA
(Algorithm 2) [13]. For the sake of simplicity we will consider that the input
expansions have the same number of terms and that the output is smaller or as
big as the inputs.
– The renormalization (Algorithm 6) of an overlapping expansion x with n

terms, requires (2n − 3) +
m−2∑
i=0

m − i Fast2Sum calls and n − 1 comparisons.

This accounts for Rnew(n,m) = 7n+ 3
2m

2 + 3
2m− 13 FP operations.

– The addition (Algorithm 4) of two P-nonoverlapping expansions requires
k∑
i=1

i

2Sum calls, k − 1 simple FP additions and a renormalization Rnew(k + 1, k).
This accounts for A(k) = 9

2k
2 + 25

2 k − 7 FP operations.
–> The special case of adding a FP expansion to a single FP value accounts for
only A1(k) = 3

2k
2 + 29

2 k − 6.
– The multiplication (Algorithm 5) of two P-nonoverlapping expansions requires
k∑
i=1

i 2MultFMA calls,
k−1∑
i=1

(n2 +n) 2Sum calls, k−1 FP multiplications, followed

by k2 + k − 2 FP additions and a renormalization Rnew(k + 1, k) in the end.
This accounts for M(k) = 2k3 + 7

2k
2 + 19

2 k − 9 FP operations.
–> The special case of multiplying a FP expansion to a single FP value accounts
for only M1(k) = 9

2k
2 + 17

2 k − 7.
– Using these algorithms for addition and multiplication of FP expansions,

Priest’s division (Algorithm 9) requires d divisions and (d−1)(M1(k))+
d−1∑
i=0

A(k+

2k(i − 1)) + Rnew(d, d) function calls in the worst case. This accounts for
D(d, k) = 6d3k2 − 18d2k2 + 25

2 d
2k + 3

2d
2 + 21dk2 − 33

2 dk −
9
2d−

9
2k

2 − 17
2 k − 6

FP operations.

Proposition 4.5. Using for addition and multiplication of FP expansions the
algorithms presented in Sec. 2.2, Algorithm 10 requires 32

7 8q + 34
3 4q + 67 · 2q −

24q − 1720
21 FP operations.

Proof. We observe that during the ith iteration the following operations with
expansions are performed: 2 multiplications M(2i+1); one addition A1(2i+1).
Since q iterations are done, the total number of FP operations is: 32

7 8q + 34
3 4q +

67 · 2q − 24q − 1720
21 FP operations.

Remark 4.6. Division is simply performed with Algorithm 10 followed by a
multiplication M(2q) where the numerator expansion has 2q terms.

25

5 Square root algorithms

The families of algorithms most commonly used are exactly the same as for divi-
sion, although, in the case of FP expansions the digit-recurrence algorithm that
generalizes the paper-and-pencil technique is typically a little more complicated
than for division. This is the reason why a software implementation would be
tedious. Moreover, Newton-Raphson based algorithms offer the advantage of
assuring a quadratic convergence.

5.1 Square root of expansions with an adapted Newton-
Raphson iteration

Starting from the general Newton-Raphson iteration (13), we can compute the
square root in two different ways. We can look for the zeros of the function
f(x) = x2 − a that leads to the so called “Heron iteration”:

xn+1 =
1

2
(xn +

a

xn
). (30)

One can easily show that if x0 > 0, then xn goes to
√
a. This iteration needs a

division at each step, which counts as a major drawback.
To avoid performing a division at each step we can look for the positive root

of the function f(x) = 1
x2 − a. From here we get the iteration

xn+1 =
1

2
xn(3− ax2

n). (31)

This iteration converges to 1√
a
, provided that x0 ∈ (0,

√
3/
√
a). The result

can be multiplied by a in order to get an approximation of
√
a. To obtain

fast, quadratic, convergence, the first point x0 must be a close approximation
to 1√

a
. In this case we still need to perform a division (by 2), but this one is

much simpler. Since, dividing a FP number by 2 can be done by multiplying it
with 0.5, this being an exact operation, we can compute the division of a FP
expansion by 2 by simply multiplying each of the terms by 0.5, separately.

As in the case of the reciprocal (Sec. 4.2), in our algorithm (Algorithm 11) we
use an adaption of iteration (31), using the same truncated algorithms presented
above.

The error analysis for this algorithm follows the same principle as the one for
the reciprocal algorithm. The detailed proof is given in Appendix A. The goal
is to show that the relative error decreases after every loop of the algorithm,
by taking into account the truncations performed after each operation. The
strategy is to make the exact Newton iteration term and bound appear. We show

by induction that by the end of the ith iteration of the loop, εi =
∣∣∣x(2i) − 1√

a

∣∣∣ ≤
2−2i(p−3)−1

√
a

.

In his library, QD, Bailey also uses the Newton iteration for the square root
computation. Although he uses the same function as we do, he uses the iteration
under the form: xi+1 = xi + 1

2xi(1− ax
2
i), which from a mathematical point of

view is the same, but it requires a different implementation. Even though Bailey
does not provide an error analysis for his algorithm, we managed to prove that
the error bound is preserved when using this iteration (see Appendix A for the
detailed proof).

26

Algorithm 11 Truncated “division-free” Newton iteration (31) based algorithm
for reciprocal of the square root of an FP expansion. By “division-free” we mean
that we do not need a division of FP expansions, we just need a division by 2.

Input: FP expansion a = a0 + . . .+ a2k−1; length of output FP expansion 2q.
Output: FP expansion x = x0 + . . .+ x2q−1 s.t.∣∣∣∣x− 1√

a

∣∣∣∣ ≤ 2−2q(p−3)−1

√
a

. (32)

1: x0 = RN(1/
√
a0)

2: for i← 0 to q − 1 do
3: v̂[0 : 2i+1 − 1]← MulRoundE (x[0 : 2i − 1], a[0 : 2i+1 − 1], 2i+1)
4: ŵ[0 : 2i+1 − 1]← MulRoundE (x[0 : 2i − 1], v̂[0 : 2i+1 − 1], 2i+1)
5: ŷ[0 : 2i+1 − 1]← SubRoundE (3, ŵ[0 : 2i+1 − 1], 2i+1)
6: ẑ[0 : 2i+1 − 1]← MulRoundE (x[0 : 2i − 1], ŷ[0 : 2i+1 − 1], 2i+1)
7: x[0 : 2i+1 − 1]← ẑ[0 : 2i+1 − 1] ∗ 0.5
8: end for
9: return FP expansion x = x0 + . . .+ x2q−1.

“Heron iteration” algorithm

The same type of proof as above can be applied for the algorithm using the
“Heron iteration” (30) and the same type of truncations. In this case (Algo-
rithm 12) we obtain a slightly larger error bound for both types of nonoverlap-
ping FP expansions: |x−

√
a| ≤ 3

√
a · 2−2q(p−3)−2.

5.2 Complexity analysis for square root

We will perform our operation count based on the addition and multiplication
presented in Sec. 2.2, the same as in Section 4.4.

Proposition 5.1. Using for addition, multiplication and division of FP expan-
sions the algorithms previously presented, Algorithm 11 requires 48

7 8q + 16 · 4q +
88 · 2q − 33q − 769

7 FP operations.

Proof. We observe that during the ith iteration the following operations with
expansions are performed: 3 multiplications M(2i+1), one addition A1(2i+1)
and one division by 2. Since q iterations are done, the total number of FP
operations is: 48

7 8q + 16 · 4q + 88 · 2q − 33q − 769
7 .

Remark 5.2. We obtain the square root of an expansion by simply multiplying
the result obtained from Algorithm 11 by a, the input expansion; this means an
additional M(2q), where 2q is the number of terms in a.

Proposition 5.3. Using for addition, multiplication and division of FP expan-
sions the algorithms previously presented, Algorithm 12 requires 368

49 8q+ 232
9 4q+

180 · 2q − 12q2 − 2308
21 q − 93619

441 FP operations.

27

Algorithm 12 Truncated “Heron iteration” (30) based algorithm for square
root of an FP expansion.

Input: FP expansion a = a0 + . . .+ a2k−1; length of output FP expansion 2q.
Output: FP expansion x = x0 + . . .+ x2q−1 s.t.∣∣x−√a∣∣ ≤ 3

√
a · 2−2q(p−3)−2. (33)

1: x0 = RN(
√
a0)

2: for i← 0 to q − 1 do
3: v̂[0 : 2i+1 − 1]← DivRoundE (a[0 : 2i+1 − 1], x[0 : 2i − 1], 2i+1)
4: ŵ[0 : 2i+1 − 1]← AddRoundE (x[0 : 2i − 1], v̂[0 : 2i+1 − 1], 2i+1)
5: x[0 : 2i+1 − 1]← ŵ[0 : 2i+1 − 1] ∗ 0.5
6: end for
7: return FP expansion x = x0 + . . .+ x2q−1.

Proof. We observe that one addition A(2i+1), one division D(2i+1) and a divi-
sion by 2 are performed during each ith iteration. Since q iterations are done, the
total number of FP operations is: 368

49 8q+ 232
9 4q+180·2q−12q2− 2308

21 q− 93619
441 .

Based on this values Algorithm 11 performs slightly better than Algorithm 12,
plus in the same time, the error bound obtained is tighter.

6 Comparison and Discussion

In Table 2 we show effective values for the bounds provided by our error analysis
compared with those of Priest and Daumas for the reciprocal computation.
Our algorithm performs better for the same number of terms in the computed
quotient, say d = 2q in equations (11) and (12). Moreover, our algorithm
provides a unified error bound with quadratic convergence independent of using
underlying P- or B-nonoverlapping expansions. In the last column of the same
table we give the largest errors that we obtained through direct computation
of the reciprocal using our algorithm. The given value represents the obtained
value upper rounded to the immediate power of 2. For each table entry we
performed 1 million random tests.

The complexity analysis performed with P-nonoverlapping expansions shows
that our algorithm performs better, for expansions with more than 2 terms, even
if no error bound is requested (see Table 3 for some effective values of the worst
case FP operation count).

Note that, for instance, to guarantee an error bound of 2−d(p−3)−1, Priest’s
algorithm (based on the bound given in Prop 4.1) needs at least (dp − 3d +
2)p/(p − 4) terms, which entails a very poor complexity. This implies that
Daumas’ algorithm might be a good compromise in this case, provided that the
priority queue used there can be efficiently implemented.

This and also the performance tests that we ran confirm our hypothesis that
for higher precisions the Newton-Raphson iteration is preferable to classical
division.

28

Table 2: Error bounds values for Priest (11) vs. Daumas (12) vs. our analy-
sis (15). β gives the largest obtained errors for Algorithm 10 using the standard
FP formats double and single. *underflow occurs

Prec, iteration Eq. (11) Eq. (12) Eq. (15) β
p = 53, q = 0 2 2−49 2−51 2−52

p = 53, q = 1 1 2−98 2−101 2−104

p = 53, q = 2 2−2 2−195 2−201 2−208

p = 53, q = 3 2−6 2−387 2−401 2−416

p = 53, q = 4 2−13 2−764 2−801 2−833

p = 24, q = 0 2 2−20 2−22 2−23

p = 24, q = 1 1 2−40 2−43 2−46

p = 24, q = 2 2−2 2−79 2−85 2−92

p = 24, q = 3 2−5 2−155 2−169 *
p = 24, q = 4 2−12 2−300 2−337 *

Table 3: FP operation count for Priest vs. our algorithm; d = 2q terms are
computed in the quotient.

d 2 4 8 16
Alg. 9 [16] 62 3310 138674 5243818

Alg. 10 + Alg. 5 150 825 4763 31751

In the case of the square root, because no error bound is given for the digit-
recurrence algorithm we can only compare between the errors that we obtain
if using the two different types of Newton iteration available for computing the
square root. The effective values of the bounds are given in Table 4. You can
see that the bound provided for Algorithm 11 is only slightly tighter that the
one for Algorithm 12. The same as for the reciprocal, in the last column we
present the bounds obtained through direct computation using Algorithm 11.

Table 4: Error bounds values for (44) vs. (33). β gives the largest obtained errors
for Algorithm 11 using the standard FP formats double and single. *underflow
occurs

Prec, iteration Eq. (44) Eq. (33) β
p = 53, q = 0 2−51 3 · 2−52 2−52

p = 53, q = 1 2−101 3 · 2−102 2−103

p = 53, q = 2 2−201 3 · 2−202 2−206

p = 53, q = 3 2−401 3 · 2−402 2−412

p = 53, q = 4 2−801 3 · 2−802 2−823

p = 24, q = 0 2−22 3 · 2−23 2−23

p = 24, q = 1 2−43 3 · 2−44 2−45

p = 24, q = 2 2−85 3 · 2−86 2−90

p = 24, q = 3 2−169 3 · 2−170 *
p = 24, q = 4 2−337 3 · 2−338 *

In Table 5 we give some effective values of the worst case FP operation count
for Algorithm 11 vs Algorithm 12 based on section 5.2.

All the algorithms presented in this article were implemented in the CAM-

29

Table 5: FP operation count for Algorithm 11 vs. Algorithm 12; 2q terms are
computed in the quotient.

q 1 2 3 4
Alg. 11 + Alg. 5 192 1084 6345 42580

Alg. 12 189 1133 6285 39397

PARY (CudA Multiple Precision ARithmetic librarY) software available at
http://homepages.laas.fr/mmjoldes/campary. The library is implemented
in CUDA – an extension of the C language developed by NVIDIA [14] for their
GPUs. The algorithms presented in this article are very suitable for the GPU:
all basic operations (+,−, ∗, /,√) conform to the IEEE 754-2008 standard for
FP arithmetic for single and double precision; support for the four rounding
modes is provided and dynamic rounding mode change is supported without
any penalties. The fma instruction also is supported for all devices with CUDA
Compute Capability at least 2.0.

In the implementation we use templates for both the number of terms in the
expansion and the native type for the terms. In other words, we allow static
generation of any input-output precision combinations (e.g. add a double-double
with a quad-double and store the result on triple-double) and operations with
types like single-single, quad-single etc., are supported. All the functions are
defined using host device specifiers, which allows for the library to be
used on both CPU and GPU.

This article focuses on the theoretical part of the algorithms, but we also
performed tests to measure the performance of CAMPARY to the one of QD, re-
spectively, GQD and MPFR. The effective performance values obtained, given in
MFlops/s can be consulted at http://homepages.laas.fr/mmjoldes/campary.

As a future work we intend to generalize the theoretical analysis of DD and
QD addition/multiplication algorithms and thus to be able to provide a full
error analysis for these algorithms.

Acknowledgments

The Authors would like to thank Région Rhône-Alpes and ANR FastRelax
Project for the grants that supports this activity.

References

[1] Alberto Abad, Roberto Barrio, and Ángeles Dena. Computing periodic
orbits with arbitrary precision. Phys. Rev. E, 84:016701, Jul 2011.

[2] M. Cornea, R. A. Golliver, and P. Markstein. Correctness proofs outline for
Newton–Raphson-based floating-point divide and square root algorithms.
In Koren and Kornerup, editors, Proceedings of the 14th IEEE Symposium
on Computer Arithmetic (Adelaide, Australia), pages 96–105. IEEE Com-
puter Society Press, Los Alamitos, CA, April 1999.

30

[3] Marc Daumas and Claire Finot. Division of floating point expansions with
an application to the computation of a determinant. Journal of Universal
Computer Science, 5(6):323–338, jun 1999.

[4] M. D. Ercegovac and T. Lang. Division and Square Root: Digit-Recurrence
Algorithms and Implementations. Kluwer Academic Publishers, Boston,
MA, 1994.

[5] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR:
A Multiple-Precision Binary Floating-Point Library with Correct Round-
ing. ACM Transactions on Mathematical Software, 33(2), 2007. available
at http://www.mpfr.org/.

[6] Y. Hida, X. S. Li, and D. H. Bailey. Algorithms for quad-double precision
floating-point arithmetic. In N. Burgess and L. Ciminiera, editors, Proceed-
ings of the 15th IEEE Symposium on Computer Arithmetic (ARITH-16),
pages 155–162, Vail, CO, June 2001.

[7] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic.
IEEE Standard 754-2008, August 2008. available at http://ieeexplore.
ieee.org/servlet/opac?punumber=4610933.

[8] Claude-Pierre Jeannerod and Siegfried M. Rump. Improved error bounds
for inner products in floating-point arithmetic. SIAM Journal on Matrix
Analysis and Applications, 34(2):338–344, April 2013.

[9] M. Joldes, J.-M. Muller, and V. Popescu. On the computation of the
reciprocal of floating point expansions using an adapted newton-raphson
iteration. In Application-specific Systems, Architectures and Processors
(ASAP), 2014 IEEE 25th International Conference on, pages 63–67, June
2014.

[10] M. Joldes, V. Popescu, and W.Tucker. Searching for sinks of Hénon map
using a multiple-precision GPU arithmetic library. Technical report, LAAS,
Nov 2013.

[11] P. Kornerup, V. Lefèvre, N. Louvet, and J.-M. Muller. On the computation
of correctly-rounded sums. In Proceedings of the 19th IEEE Symposium on
Computer Arithmetic (ARITH-19), Portland, OR, June 2009.

[12] J. Laskar and M. Gastineau. Existence of collisional trajectories of Mercury,
Mars and Venus with the Earth. Nature, 459(7248):817–819, June 2009.

[13] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-
Pierre Jeannerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol,
Damien Stehlé, and Serge Torres. Handbook of Floating-Point Arithmetic.
Birkhäuser Boston, 2010. ACM G.1.0; G.1.2; G.4; B.2.0; B.2.4; F.2.1.,
ISBN 978-0-8176-4704-9.

[14] NVIDIA. NVIDIA CUDA Programming Guide 5.5. 2013.

[15] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot product. SIAM
Journal on Scientific Computing, 26(6):1955–1988, 2005.

31

[16] D. M. Priest. Algorithms for arbitrary precision floating point arith-
metic. In P. Kornerup and D. W. Matula, editors, Proceedings of the
10th IEEE Symposium on Computer Arithmetic (Arith-10), pages 132–144.
IEEE Computer Society Press, Los Alamitos, CA, June 1991.

[17] D. M. Priest. On Properties of Floating-Point Arithmetics: Numerical
Stability and the Cost of Accurate Computations. PhD thesis, University
of California at Berkeley, 1992.

[18] S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summa-
tion part I: Faithful rounding. SIAM Journal on Scientific Computing,
31(1):189–224, 2008.

[19] J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast ro-
bust geometric predicates. Discrete Computational Geometry, 18:305–363,
1997.

[20] Tjalling J. Ypma. Historical development of the Newton-Raphson method.
SIAM Rev., 37(4):531–551, December 1995.

32

A Appendix

Square root algorithm convergence proof

This proof follows the same principle as the convergence proof for the reciprocal
algorithm, and it uses the same notations. We will show that Algorithm 11,
having as an input a FP expansion a = a0 + · · ·+ a2k−1, computes and returns
an approximation of 1√

a
in the form of a FP expansion x = x0 + · · · = x2q−1,

s.t: ∣∣∣∣x− 1√
a

∣∣∣∣ ≤ 2−2q(p−3)−1

√
a

.

For the sake of clarity we present first the case of B-nonoverlapping FP
expansion, and then make the necessary adjustments for P-nonoverlapping ex-
pansion in A.2.

Proposition A.1. Algorithm 11 is correct when run with B-nonoverlapping
expansions.

Proof. In Proposition 4.2 we gave and proved some properties of the B-nonoverlapping
FP expansions. To those we are going to add a new one:∣∣∣∣ 1√

u
− 1
√
u0

∣∣∣∣ ≤ 1√
u
η. (34)

It can be seen that
∣∣∣ 1√

u
− 1√

u0

∣∣∣ = 1√
u

∣∣∣1− √
u√
u0

∣∣∣. By using Proposition 4.2

eq. (20), the fact that u and u0 have the same sign, and the fact that the square

root is an increasing function, we have:
∣∣∣1− √

u√
u0

∣∣∣ ≤ 1 −
√

1
1+η ≤ η, which

proves the property.
We continue by first proving a simple upper bound for the approximation

error in x0:

ε0 =

∣∣∣∣x0 −
1√
a

∣∣∣∣ ≤ 1√
a
η(3 + η). (35)

We denote α = RN(
√
a0), so we have x0 = RN(1/α). We know that∣∣α−√a0

∣∣ ≤ 2−p
√
a0 and

∣∣x0 − 1
α

∣∣ ≤ 2−p 1
α , so we obtain:

∣∣∣ 1
α −

1√
a0

∣∣∣ ≤ (1
1−2−p−

1) 1√
a0

. By (34) we have:∣∣∣∣x0 −
1
√
a0

∣∣∣∣ ≤ ∣∣∣∣x0 −
1

α

∣∣∣∣+

∣∣∣∣ 1α − 1
√
a0

∣∣∣∣
≤ 2−p

1

α
+

∣∣∣∣ 1α − 1
√
a0

∣∣∣∣
≤ 2−p

1
√
a0

+ (2−p + 1)

∣∣∣∣ 1α − 1
√
a0

∣∣∣∣
≤ 2η

1
√
a0
.

33

From (34) it follows:

ε0 ≤
∣∣∣∣x0 −

1
√
a0

∣∣∣∣+

∣∣∣∣ 1√
a
− 1
√
a0

∣∣∣∣
≤ 2η

1
√
a0

+ η
1√
a
.

Because
√
a√

1+η
≤ √a0, then 1√

a0
≤
√

1+η√
a
≤ 1+η/2√

a
.

Now we can conclude that ε0 ≤ (2η(1 + η
2) + η) 1√

a
≤ η(3 + η) 1√

a
.

Before going further, let Ei = εi
√
a, such that:

E0 ≤ η(3 + η).

Next we will deduce an upper bound for the approximation error in x at

step i + 1, εi+1 =
∣∣∣xi+1 − 1√

a

∣∣∣. For this, we use, same as in the case of the

reciprocal, a chain of triangular inequalities that make the transition from our
“truncated” Newton error, to the “untruncated” one.

For the truncations we use the same type of notations as for the reciprocal
error bound proof, so: at each step of the algorithm vi, wi, and yi represent the
exact results of the computations and we use the hatted notation (v̂i, ŵi, and
ŷi) to represent the results truncated to 2i+1 terms. τi denotes the exact result
of the last two operations: 1

2xi · ŷi, so xi+1 is τi’s truncation to 2i+1 terms.

Let γi = 2−(2i+1−1)p η
1−η , the same as before. We have from Proposition 4.2,

eq. (17):

|xi+1 − τi| ≤ γi |τi| ≤ γi
∣∣∣∣12xiŷi

∣∣∣∣ , (36)

|yi − ŷi| ≤ γi |yi| ≤ γi |3− ŵi| , (37)

|wi − ŵi| ≤ γi |wi| ≤ γi |xiv̂i| , (38)

|vi − v̂i| ≤ γi |vi| ≤ γi
∣∣∣xia(fi)

∣∣∣ , (39)∣∣∣a− a(fi)
∣∣∣ ≤ γi |a| . (40)

From (36) we have:

εi+1 ≤ |xi+1 − τi|+
∣∣∣∣τi − 1√

a

∣∣∣∣
≤ γi

∣∣∣∣12xiŷi
∣∣∣∣+

∣∣∣∣12xiŷi − 1√
a

∣∣∣∣ .
Using (37) and (38):

εi+1 ≤ γi(2 + γi)

∣∣∣∣12xi(3− ŵi)
∣∣∣∣

+

∣∣∣∣12xi(3− ŵi)− 1√
a

∣∣∣∣
≤ γi(2 + γi)

∣∣∣∣12xi
∣∣∣∣ (|3− wi|+ γi |wi|)

+γi

∣∣∣∣12xiwi
∣∣∣∣+

∣∣∣∣12xi(3− wi)− 1√
a

∣∣∣∣ .
34

By (39) we have:

εi+1 ≤ γi

∣∣∣∣12xi
∣∣∣∣ ((2 + γi) |3− xiv̂i|

+(1 + γi(2 + γi)) |xiv̂i|)

+

∣∣∣∣12xi(3− xiv̂i)− 1√
a

∣∣∣∣
≤ γi

∣∣∣∣12xi
∣∣∣∣ ((2 + γi)(|3− xivi|+ γi |vixi|)

+(1 + γi(2 + γi))(1 + γi) |xivi|)

+γi

∣∣∣∣12x2
i vi

∣∣∣∣+

∣∣∣∣12xi(3− xivi)− 1√
a

∣∣∣∣ .
From (40) we have:

εi+1 ≤ γi(2 + γi)

∣∣∣∣12xi
∣∣∣∣ (∣∣∣3− x2

i a
(fi)
∣∣∣

+(γi + 1)2
∣∣∣x2
i a

(fi)
∣∣∣) +

∣∣∣∣12xi(3− x2
i a

(fi))− 1√
a

∣∣∣∣
≤ γi(2 + γi)(

∣∣∣∣12xi(3− x2
i a)

∣∣∣∣+ γi

∣∣∣∣12x3
i a

∣∣∣∣)
+γi

∣∣∣∣12x3
i a

∣∣∣∣+ γi(2 + γi)(γi + 1)3

∣∣∣∣12x3
i a

∣∣∣∣
+

∣∣∣∣12xi(3− x2
i a)− 1√

a

∣∣∣∣ .
Hence we have:

εi+1 ≤ (1 + γi)
2

∣∣∣∣xi+1 −
1√
a

∣∣∣∣
+γi((γi + 1)2 + (γi + 1)3

+(γi + 1)4)

∣∣∣∣12x3
i a

∣∣∣∣
+γi(2 + γi)

1√
a
. (41)

By using the quadratic convergence of the sequence we can say that:∣∣∣∣xi+1 −
1√
a

∣∣∣∣ =
1

2

√
a(xi
√
a+ 2)

∣∣∣∣xi − 1√
a

∣∣∣∣2 . (42)

We now prove by induction that for all i ≥ 0 εi =
∣∣∣xi − 1√

a

∣∣∣ respects the

imposed bound.

We know that |xi
√
a| ≤ εi

√
a + 1 and

∣∣x3
i a
∣∣ ≤ (εi

√
a+1)3√
a

and from (41) we

35

have:

εi+1 ≤ 1

2
(1 + γi)

2
√
a(εi
√
a+ 3)ε2

i

+
1

2
γi((γi + 1)2 + (γi + 1)3

+(γi + 1)4)
(εi
√
a+ 1)3

√
a

+γi(2 + γi)
1√
a
. (43)

Using the notation Ei = εi
√
a we can transform (43) in an equation inde-

pendent of a:

Ei+1 ≤ 1

2
(1 + γi)

2(Ei + 3)E2
i

+
1

2
γi((γi + 1)2 + (γi + 1)3

+(γi + 1)4)(Ei + 1)3 + γi(2 + γi)

For the last part of the proof we denote by f a function that writes the
previous inequality as: Ei+1 ≤ f(Ei, i). We want to show that ∀i ∈ N, Ei ≤
2−2i(p−3)−1 so we will define ind(i) = 2−2i(p−3)−1.

For i = 0 we verify that E0 ≤ ind(0) for p ≥ 3.
For i ≥ 1 by induction:

• for i = 1 we can prove by using computer algebra that the inequality is
verified if p ≥ 4, which holds in practice;

• it is easily shown (by using the definition of a decreasing function and

computation for example) that the function i 7→ f(ind(i),i)
ind(i+1) is decreasing

and it’s value in 1 is < 1 for p ≥ 3. So, f(ind(i),i)
ind(i+1) ≤ 1;

• suppose that Ei ≤ ind(i), we have Ei+1

ind(i+1) ≤
f(ind(i),i)
ind(i+1) ≤ 1 which con-

cludes the induction.

At last we find the final inequality with i = q.

Proposition A.2. Algorithm 11 is correct when run with P-nonoverlapping
expansions.

Proof. The proof is similar, the same error analysis holds with the same param-
eter changes as in Prop. 4.4.

Bailey’s Iteration Convergence Proof

Similarly to the previous proof, one has from Proposition 4.2, eq. (17):

|xi+1 − τi| ≤ γi |τi| ≤ γi
∣∣xi + t̂i

∣∣ ≤ γi ∣∣∣∣xi +
ẑi
2

∣∣∣∣ , (45)

36

Algorithm 13 Algorithm for reciprocal of the square root of an FP expansion
based on Newton-Raphson interation of the form xi+1 = xi + 1

2xi(1 − ax2
i),

which is used in QD library

Input: FP expansion a = a0 + . . .+ a2k−1; length of output FP expansion 2q.
Output: FP expansion x = x0 + . . .+ x2q−1 s.t.∣∣∣∣x− 1√

a

∣∣∣∣ ≤ 2−2q(p−3)−1

√
a

. (44)

1: x0 = RN(1/
√
a0)

2: for i← 0 to q − 1 do
3: v̂[0 : 2i+1 − 1]← MulRoundE (x[0 : 2i − 1], a[0 : 2i+1 − 1], 2i+1)
4: ŵ[0 : 2i+1 − 1]← MulRoundE (x[0 : 2i − 1], v̂[0 : 2i+1 − 1], 2i+1)
5: ŷ[0 : 2i+1 − 1]← SubRoundE (1, ŵ[0 : 2i+1 − 1], 2i+1)
6: ẑ[0 : 2i+1 − 1]← MulRoundE (x[0 : 2i − 1], ŷ[0 : 2i+1 − 1], 2i+1)
7: t̂[0 : 2i+1 − 1]← ẑ[0 : 2i+1 − 1] ∗ 0.5
8: x[0 : 2i+1 − 1]← AddRoundE (x[0 : 2i − 1], t̂[0 : 2i+1 − 1], 2i+1)
9: end for

10: return FP expansion x = x0 + . . .+ x2q−1.

|zi − ẑi| ≤ γi |zi| ≤ γi |xiŷi| , (46)

|yi − ŷi| ≤ γi |yi| ≤ γi |1− ŵi| , (47)

|wi − ŵi| ≤ γi |wi| ≤ γi |xiv̂i| , (48)

|vi − v̂i| ≤ γi |vi| ≤ γi
∣∣∣xia(fi)

∣∣∣ , (49)∣∣∣a− a(fi)
∣∣∣ ≤ γi |a| . (50)

From (45) we have:

εi+1 ≤ |xi+1 − τi|+
∣∣∣∣τi − 1√

a

∣∣∣∣
≤ γi

∣∣∣∣xi +
ẑi
2

∣∣∣∣+

∣∣∣∣xi +
ẑi
2
− 1√

a

∣∣∣∣ .
Using (46) and (47):

εi+1 ≤ γi(1 + γi)

∣∣∣∣12xiŷi
∣∣∣∣

+γi

∣∣∣∣xi +
xiŷi

2

∣∣∣∣
+

∣∣∣∣xi +
xiŷi

2
− 1√

a

∣∣∣∣
≤ γi(1 + γi)

2

∣∣∣∣12xi(1− ŵi)
∣∣∣∣

37

+γi

∣∣∣∣xi +
1

2
xi(1− ŵi)

∣∣∣∣+ γ2
i

∣∣∣∣12xi(1− ŵi)
∣∣∣∣

+

∣∣∣∣xi +
1

2
xi(1− ŵi)−

1√
a

∣∣∣∣+ γi

∣∣∣∣12xi(1− ŵi)
∣∣∣∣

≤ γi(1 + γi)(2 + γi)

∣∣∣∣12xi(1− ŵi)
∣∣∣∣

+γi

∣∣∣∣xi +
1

2
xi(1− ŵi)

∣∣∣∣
+

∣∣∣∣xi +
1

2
xi(1− ŵi)−

1√
a

∣∣∣∣ .
By (48) we have:

εi+1 ≤ γi(1 + γi)(2 + γi)

∣∣∣∣12xi(1− xiv̂i)
∣∣∣∣

+γi

∣∣∣∣xi +
1

2
xi(1− xiv̂i)

∣∣∣∣
+

∣∣∣∣xi +
1

2
xi(1− xiv̂i)−

1√
a

∣∣∣∣
+γi(1 + γi)

3

∣∣∣∣12x2
i v̂i

∣∣∣∣
From (49) we have:

εi+1 ≤ γi(1 + γi)(2 + γi)

∣∣∣∣12xi(1− x2
i a

(fi))

∣∣∣∣
+γi

∣∣∣∣xi +
1

2
xi(1− x2

i a
(fi))

∣∣∣∣
+

∣∣∣∣xi +
1

2
xi(1− x2

i a
(fi))− 1√

a

∣∣∣∣
+γi(1 + γi)

3(2 + γi)

∣∣∣∣12x3
i a

(fi)

∣∣∣∣
From (50) we have:

εi+1 ≤ γi(1 + γi)(2 + γi)

∣∣∣∣12xi(1− x2
i a)

∣∣∣∣
+γi

∣∣∣∣xi +
1

2
xi(1− x2

i a)

∣∣∣∣
+

∣∣∣∣xi +
1

2
xi(1− x2

i a)− 1√
a

∣∣∣∣
+γi(1 + γi)

3(3 + 3γi + γ2
i)

∣∣∣∣12x3
i a

∣∣∣∣
From (42) and similarly to (41), one has:

εi+1 ≤ (1 + γi)

∣∣∣∣xi+1 −
1√
a

∣∣∣∣
38

+γi(1 + γi)(2 + γi)

∣∣∣∣12xi(1− x2
i a)

∣∣∣∣
+γi(1 + γi)

3(3 + 3γi + γ2
i)

∣∣∣∣12x3
i a

∣∣∣∣
+
γi√
a

We know that |xi
√
a| ≤ εi

√
a + 1 and

∣∣x3
i a
∣∣ ≤ (εi

√
a+1)3√
a

and moreover∣∣ 1
2xi(1− x

2
i a)
∣∣ ≤ 1

2

(
εi + 1√

a

) (
aε2
i + 2

√
aεi
)
, so we have:

εi+1 ≤ 1

2
(1 + γi)

√
a(εi
√
a+ 3)ε2

i

+γi(1 + γi)(2 + γi)
εi
2

(
εi +

1√
a

)(
aεi + 2

√
a
)

+
1

2
γi(1 + γi)

3(3 + 3γi + γ2
i)

(εi
√
a+ 1)3

√
a

+
γi√
a
. (51)

Using the notation Ei = εi
√
a we can transform (51) in an equation inde-

pendent of a:

Ei+1 ≤ 1

2
(1 + γi)(Ei + 3)E2

i

+γi(1 + γi)(2 + γi)
Ei
2

(Ei + 1) (Ei + 2)

+
1

2
γi(1 + γi)

3(3 + 3γi + γ2
i)(Ei + 1)3

+γi.

For the last part of the proof, we proceed exactly like in the previous proof
and are able to find the same bound ind(i) = 2−2i(p−3)−1 by applying exactly
the same inductive reasoning.

39

