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1 GERAC, Gramat, nicolas.deymier@gerac.com 2 ONERA-DEMR, Toulouse, thibault.volpert@onera.fr 3 ONERA-DTIM, Toulouse, vincent.mouysset@onera.fr 4 ONERA-DEMR, Toulouse, xavier.ferrieres@onera.fr Résumé. Dans ce papier, nous présentons une nouvelle méthode différences finies en ordre élevé (FDTDOE) pour résoudre les équations de Maxwell dans le domaine temporel sur maillage cartésien, et dans laquelle un formalisme de fil mince oblique a été introduit. Actuellement, la méthode temporelle la plus répandue pour effectuer des études numériques est basée sur le schéma de Yee (FDTD), qui peut présenter des erreurs importantes liées à la dispersion numérique du schéma. L'utilisation de la méthode FDTDOE permet de réduire considérablement ces erreurs de dispersion, et à précision égale, avec la méthode FDTD, nécessite moins de degrés de liberté, pour obtenir une solution similaire. Pour augmenter les performances de la méthode nous montrons aussi comment introduire des raffinements locaux dans le schéma. L'approche choisie pour l'introduction de ceux-ci permettra aussi de faire des couplages avec des méthodes de type Galerkin Discontinu (GD).

I. INTRODUCTION

La simulation numérique dans le domaine électromagnétique prend une place de plus en plus prépondérante. Pour de nombreux domaines (aéronautique, militaire, santé, télécommunication, etc), les études électromagnétiques requièrent des analyses toujours plus complexes et précises, pour des scènes de calcul de taille toujours plus grande. Pour répondre à ces enjeux, nous proposons une montée en ordre des schémas numériques résolvant les équations de Maxwell. En particulier, dans ce papier, nous décrivons un schéma différences finies d'ordre élevé. Nous montrons que cette méthode permet de réduire considérablement les erreurs de dispersion numérique du schéma de Yee [START_REF] Yee | Numerical solution of initial boundary value problems involving Maxwell's equations isotropic media[END_REF]. Parmi les potentiels de cette méthode, nous avons aussi la possibilité de choisir l'ordre d'approximation spatiale dans les 3 directions et ceci pour chaque cellule. Cette particularité permet de réduire les coûts de temps calcul et mémoire tout en gardant une bonne précision de la solution.

Pour approcher au mieux les détails d'une géométrie, nous montrons ensuite comment introduire des raffinements locaux à la méthode. Cette technique pourrait aussi être utilisée pour coupler cette méthode à une approche GD [START_REF] Pernet | Etude de méthodes d'ordre élevé pour résoudre les équations de Maxwell dans le domaine temporel. Application à la réduction et à la compatibilité électromagnétique[END_REF].

II. FDTD d'ORDRE ÉLEVÉ

II.1. FORMULATION

Nous considérons dans le problème continu de Maxwell que n × E = 0 à la frontière du domaine Ω (conforme avec des conditions PML pour un domaine infini). On résout alors le problème variationnel (1) suivant :

Ω ∂ t E • φ = Ω H • ∇ × φ (1) 
Ω ∂ t H • ψ = - Ω E • ∇ × ψ ∀φ ∈ H 1 0 (rot, Ω) et ψ ∈ H 1 (rot, Ω).
Pour résoudre ce problème, nous approximons les champs E et H en des points de quadrature de Gauss et Gauss-Lobatto sur un ensemble de fonctions de base définies par des polynômes de Lagrange comme décrit sur la figure 1. En particulier, l'ordre 0 en espace de ce schéma correspond au schéma de Yee. 

II.2. Stabilité

L'étude de stabilité du schéma donne un critère qui dépend à la fois de l'ordre, du pas d'espace et de la vitesse de propagation dans le milieu c min . Plus l'ordre sera élevé, plus le critère sera restrictif. A l'ordre 0, nous retrouvons la condition CFL du schéma de Yee. La condition de stabilité (2) s'écrit sous la forme:

∆t < 2 min K ∆ h,K c min λ max M -1 2 K RK M -1 2 K , (2) 
où K est l'ensemble des cellules partitionnant le domaine, ∆ h,K le pas d'espace minimal selon les 3 dimensions de la cellule

K et λ max M -1 2 K RK M -1 2 K
le rayon spectral du produit des matrices de masse et de rigidité sur l'élément de référence K. La valeur de ce rayon spectral ne dépend que des ordres d'approximation r K de la cellule K, et chacune peut donc être préalablement calculée et stockée dans une matrice CF L(r K ). Ainsi, le calcul de la condition de stabilité (2) se présente sous une forme simplifiée (3) :

∆t < 2 min K CF L(r K ) ∆ h,K c min . (3) 

II.3. Formalisme de fil mince oblique

Dans cette méthode, nous avons aussi introduit un formalisme de fil mince oblique tenant compte de l'ordre élevé du schéma. La difficulté réside dans l'emploi d'un ordre spatial élevé et variable selon les directions pour le calcul des champs. La méthode [START_REF] Volpert | High Precision Method to Solve the Maxwell Equation in the Time Domain Adapted to Structured Meshes[END_REF] proposée fournit de bons résultats (figure 2). Les contraintes de la géométrie ne permettent pas toujours de privilégier une montée en ordre sur l'ensemble du maillage. Nous présentons deux méthodes pour conserver les avantages de la méthode, le mixage des ordres d'approximation dans chaque direction et une technique de raffinement local en ordre (p).

IV.1. Raffinement local par direction

De par le potentiel de la méthode, on peut facilement définir pour chaque cellule et dans chaque direction un pas d'approximation différent. Ceci permet d'avoir d'importants raffinements locaux tout en conservant une bonne précision de la solution. Néanmoins, cette approche nous oblige à avoir des zones de raffinement par direction, ce qui reste contraignant, mais très intéressant pour certains problèmes, comme la propagation à l'intérieur de bâtiments, figure 6. 

∆t < 2 min i,K i CF L(r K i ) + CF L hyb (r K i ) ∆ h,K i c min . (4) 
où i désigne les zones de raffinements locaux

Ω i du domaine, et CF L hyb (r K ) = λ max M -1 2 K ŜK M -1 2 K -1
le rayon spectral du produit des matrices de masse et des sauts des champs électriques frontières, sur l'élément de référence K. 

Fig. 1 .

 1 Fig. 1. Cellule du schéma en ordre élevé

Fig. 2 .Fig. 3 .

 23 Fig. 2. Comparaison FDTDOE/MoM sur fil oblique

Fig. 4 .

 4 Fig. 4. Évolution d'un mode de cavité au cours du temps

Fig. 5 .

 5 Fig. 5. Cellules du schéma en ordre élevé VS schéma de Yee en 2D

Fig. 6 .

 6 Fig. 6. Raffinement par direction

Fig. 7 .

 7 Fig. 7. Calculs avec un raffinement par direction

Fig. 8 .

 8 Fig. 8. Raffinement local en p

Table 1 .

 1 Temps CPU Les performances du schéma FDTDOE en temps CPU et en précision sur la solution sont obtenues avec la montée en ordre spatial. En effet, il est connu que le fait d'augmenter l'approximation spatiale diminue la CFL, et donc le pas temporel, et accroît la précision. Cependant, pour être efficace en temps CPU et en précision, la montée en ordre requiert la possibilité d'utiliser des pas d'espace plus importants. La figure 5 illustre la position des degrés de liberté pour une cellule d'ordre 2 et son pendant FDTD de 9 mailles.

	Méthode	Maillage	Temps
	FDTD	120x120x120 184s
	FDTDOE Q3 5x5x5	7s
	GD Q3	5x5x5	24s
	IV. STRATÉGIE DE RAFFINEMENT LOCAL

  La matrice ŜK est creuse et ne dépend que de l'ordre d'approximation r K , et la valeur du rayon spectral peut donc être préalablement stockée pour chaque ordre. Le schéma de la figure8décrit un guide d'onde présentant un fort contraste d'impédance entre deux zones : epsr = 1 et epsr = 80. Chaque zone est maillée en fonction de la vitesse du milieu. La correspondance de la grille est maintenue, mais le choix des ordres d'approximation entre les deux domaines ne garantit plus la continuité des fonctions de base entre les deux zones. La méthode décrite précédemment est appliquée pour coupler les domaines. Les figures 9 et 10 présentent la solution calculée pour deux étendues d'ordres spatiaux. Les résultats sont concluants, les comparaisons des calculs pour cette méthode VS un ordre fixe ou VS un ordre variable par direction sont homogènes.

V. CONCLUSION

Nous avons présenté une méthode FDTD d'ordre élevé, sa condition de stabilité, ses intérêts en comparaison des schémas de Yee et d'une méthode GD. Nous avons proposé d'exploiter ce schéma en utilisant un ordre d'approximation spatial variable dans chaque direction. Nous avons ensuite proposé une méthode de raffinement local non conforme permettant d'améliorer la prise en compte de détails dans la géométrie, et pour laquelle une stratégie de pas de temps local pourrait être mise en oeuvre. Une stratégie de raffinement local en pas d'espace est en cours d'étude pour compléter le raffinement local en ordre.