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Aerothermochemistry
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Jean-Pierre Croisille†

December 16, 2014

Abstract

This paper presents a high order finite volume scheme built on a new k-exact
reconstruction algorithm for general unstructured grids. The algorithm is capable of
computing accurate polynomial approximations using data from adjacent cells only,
overcoming a major obstacle to extend classical finite volume schemes beyond 2nd

order spatial accuracy. Moreover, it can easily be integrated in a cell or vertex centered
finite volume method that uses the cell averages as the only unknown per grid cell and
physical quantity. It is therefore particularly suited to upgrade existing 2nd order finite
volume solvers to higher accuracy without huge efforts in software development. Three
numerical test cases demonstrate the viability of the scheme in practical applications.
This work was announced in [13, 14].

Keywords: Finite Volume Method - High Order Accuracy - k-exact Reconstruction

1 Introduction

In this paper we investigate a class of high order finite volume approximation for fluid
dynamics on general grids. Our method follows along the lines of the Muscl method
[22, 9]. First attempts to extend the Muscl approach to unstructured grids go back 25
years and more, see [5] and the references therein. These pioneering efforts have led to
2nd order accurate finite volume schemes with highly successful applications to the Euler
and Navier Stokes equations. The possibility to handle complex geometries and the easy
modeling of boundary conditions are among the benefits of these schemes. Two specific
aspects are:
∗Onera - The French Aerospace Lab, F-92322 Châtillon, France
†Inst. Elie Cartan de Lorraine, Univ. Lorraine, UMR CNRS 7502, Ile du Saulcy, 57045 Metz, France
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1. In each cell, 2nd order interpolation (piecewise linear) requires only data from direct
cell neighbors. This is often referred to as interpolation on compact stencils.

2. The numerical solutions are completely determined by one single degree of freedom
per physical quantity and grid cell. This unknown is usually represented by the cell
average.

However, it is now widely accepted that a 2nd order accurate scheme is insufficient for a
growing number of applications. Unfortunately, when trying to extend a 2nd order scheme
to 3rd order and beyond, a well-known difficulty appears: high order spatial approximation
in cell T requires data from cells far beyond cells adjacent to T . On a general grid with
indirect data access, this fact severely impacts computational efficiency and performance
scaling.

A seminal idea to increase spatial accuracy while keeping a compact stencil is to sup-
plement the cell average with new degrees of freedom. This approach has triggered the
development of a number of successful high order discretization methods for unstructured
grids such as the Discontinuous Galerkin [8, 7], the Spectral Finite Volume [17, 16] and the
Residual Distribution scheme [1, 20]. All these schemes have many desirable properties yet
their implementation in an existing general purpose finite volume code for practical applica-
tions might be a difficult task. This is particularly true in the case of legacy softwares, such
as Cedre 1 , which handles many complex models. To name a few, this includes modeling
of multi-species and multi-phase flow, combustion, turbulence, and the geometric repre-
sentation of moving and overlapping grids. Supplementing cell averages with additional
degrees of freedom obviously requires an important restructuring of the code. Therefore
keeping the cell average as the sole unknown per cell and physical quantity remains an
attractive option.

This raises again the question how to efficiently calculate piecewise high order recon-
struction based on data located in adjacent cells only. This question is central to the
k-exact approach for finite volumes. The main topic of this paper is an original approxi-
mation algorithm 2 that is able to carry out this difficult task. It has the crucial advantage
that its implementation in an existing finite volume scheme modifies only the interpolation
step. The other ingredients need just minimal upgrades to guarantee the global accuracy
of the scheme, such as high order quadratures for the fluxes and high order time step-
ping methods. In particular, the application of this high order spatial discretization to a
conservation law results in the same number of semi-discrete equations as for a 2nd order
finite volume scheme. This simplifies the use of implicit time stepping methods and the
integration of complex physical models in the numerical scheme.

1The present study was carried out within the project Cedre. Cedre is the reference software for
aerothermochemistry at Onera, http://www.onera.fr/cedre.

2This algorithm was first described in a private communication by Pierre Brenner, Airbus Defence and
Space SAS, 51-61 Route de Verneuil 78130 Les Mureaux, France.
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Our second purpose is to show numerical evidence that a drastic higher order accuracy
is effectively reached in complex situations with the new scheme. Specifically we numeri-
cally analyze the grid convergence of our scheme on two test cases having significance for
applications involving sound or vortex propagation. In the first test-case, the numerical
propagation of an acoustic wave in a three-dimensional channel is shown. The second test
compares the numerical propagation of an inviscid isothermal vortex with the exact one.
The domain is a periodic box and the challenge for this nonlinear case is to preserve the
shape of the vortex after a large number of periods. Finally we illustrate the capability
of the scheme to handle real world applications with a laminar flame test case. For this
case, additional treatments such as slope limiting and positivity preserving are used. These
two specific questions are not studied in detail here and will be the topic of a forthcoming
paper.

The outline is as follows. Sec. 2 gives a brief summary of the physical modeling
background in which the scheme is implemented so far. In Sec. 3 we recall the basic
setting of finite volume methods based on k-exact reconstruction. Sec. 4 presents the new
compact k-exact reconstruction algorithm. Sec. 5 presents the numerical test cases and
finally conclusion and several perspectives are drawn in Sec. 6.

2 Modeling in Aerothermochemistry

Although the scheme presented here is suitable for general conservation laws, its intended
use is mainly modeling in aerothermochemistry, the study of fluids taking into account
the effect of motion, heat fluxes and chemical reactions. Here we restrict ourselves to
fluid mixtures in mechanical and thermal equilibrium, so that a single valued pressure and
temperature field is defined everywhere in the flow. The equations that are considered
are the compressible Euler (or Navier-Stokes) equations for multi-species flows with a
general equation of state. These equations are closely connected with turbulence modeling,
chemical reactions, etc. This section gives a brief summary.

2.1 Conservation Laws for Multi-species Flow

The general form of a convection-diffusion-reaction system to be solved on a domain Ω ⊂ R3

for a time interval [t0, t1] is
∂tq + div (f +ϕ) = ς. (2.1)

The unknown q in (2.1) is a function Ω × [t0, t1] 3 (x, t) 7→ q(x, t) ∈ Rm. In the present
setting, q comprises four types of variables:

• ρ =
[
ρ1, ρ2, . . . , ρnsp

]T are the densities of nsp species and the total density is ρ =
ρ1 + ρ2 + · · ·+ ρnsp .

• ρv = ρ [v1, v2, v3]T is the momentum vector.
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• ρE is the total energy per volume unit. Let εint denote the internal energy of the
mixture, then E = εint + 1

2 |v|
2.

• ρz with z = [z1, z2, ...znsc ]T represents nsc convected scalar quantities. The zi are
either passive scalars or used in the modeling of turbulence, combustion, etc.

The total number of unknowns is m = nsp + nsc + 4 and the vector q is expressed as

q = [ρ, ρv, ρE, z]T . (2.2)

Let p and T denote the pressure and the temperature, respectively, and define the vector
of mass fractions yk = ρk

ρ by
y ,

[
y1, . . . , ynsp

]T
. (2.3)

By definition ρ = ρy and
∑nsp
k=1 yk = 1. The quantities f , ϕ and ς in (2.1) represent

the convective fluxes, the viscous fluxes and the source terms, respectively. The convective
fluxes f are the fluxes of the Euler equations with components f =

[
fρ,fv,fE ,f z

]
defined

by 

fρ,i = vi
[
ρ1, . . . , ρnsp

]T
(fv)i,j = ρvivj + pδij , 1 ≤ j ≤ 3
fE,i = (ρE + p) vi
f z,i = ρvi [z1, . . . , znsc ]T .

, 1 ≤ i ≤ 3 . (2.4)

2.2 Specific Physical Modeling

Equations of State The system (2.1) with the fluxes (2.4) cannot be solved without
additional closure conditions. These include at least a caloric equation of state

εint = ε (p,ρ) . (2.5)

The case ϕ 6= 0 or σ 6= 0 usually requires the specification of a thermal equation of state

T = T (p,ρ) (2.6)

or a pressure law
p = p (ρ, T ) . (2.7)

These equations of state establish a relation between the quantities q and the so-called
physical variables, which are defined by

u = [y, p, T,v, z]T . (2.8)

Note that (2.8) represents a vector with m + 1 = nsp + nsc + 5 components (instead of
m components in (2.2) due to the constraint on the mass fractions in (2.3). For certain
applications, it can be more convenient to use u than q.3

3We assume in this paper that q 7→ u(q)is one-to-one.
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Diffusive Fluxes Depending on the modeling, the diffusive fluxes ϕ include the following
terms:

• The tensor of viscous strains ϕv is given by the Stokes law

ϕv = 2µv (u)S (u) +
(
κv (u)− 2

3µv (u)
)

(div v) I, (2.9)

where the strain rate tensor is given by S (u) = 1
2

(
∇v + ∇vT

)
.

• Standard modeling of heat conduction is given by Fourier’s law

ϕE = −λH (u) ∇T . (2.10)

• A classical modeling of species diffusion is given by Fick’s law with a diagonal tensor
D

ϕρ,i = −D (u) ∇yi . (2.11)

Turbulence Modeling Turbulence modeling is based on filtering of the conservative
variables q at a specified scale. The unresolved scales of the turbulent flow are classically
represented by additional terms in the diffusive fluxes ϕ. In particular Rans or Les models,
the coefficients in (2.9), (2.10) and (2.11) are deduced from scalars such as the turbulent
kinetic energy k and its rate of dissipation ε. These scalars are collected as components of
the variable z = [k, ε, ...] and they are therefore part of the physical variable u. Therefore
the notational formalism remains the same as in the case without turbulence model. In
particular Les 4 modeling is taken in account as follows:

• In laminar calculations, (2.9), (2.10) and (2.11) include only the physical transport
coefficients. This hypothesis is coined as the Miles 5 approach. In this case numerical
dissipation is assumed to handle unresolved turbulent scales.

• The diffusion coefficients in (2.9), (2.10) and (2.11) can also include a specific algebraic
model. For instance in the Smagorinsky model , the laminar viscosity µ is replaced
by µ+µsgs, with µsgs = ρ (Csh)2 |S (u)|, where h is the local mesh size and Cs ∼ 0.17
[21].

Source Terms The source term ς in (2.1) represents body forces and chemical phenom-
ena:

• Body forces appear as a source term in the momentum equation. The corresponding
work is a source term in the energy equation.

4Large Eddy Simulation
5Monotonically Integrated Large Eddy Simulation
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(a) Two cells Tα and Tβ sharing a face Aαβ . (b) Neighborhoods of a cell Tα: cells in V(1)
α in

light color and cells in V(2)
α \ V(1)

α in dark color.

Figure 3.1: The geometry of two-dimensional polyhedral grids.

• Chemical reactions induce source terms in the density equation for each species.
Whenever R reactions indexed by r = 1, · · · , Rch are involved, the source term for
the density ρj is expressed as a sum in the form:

ςj =Mj

Rch∑
r=1

νj,rWr. (2.12)

In (2.12), Mj is the molar mass of species j and νj,r is the algebraic stoichiometric
coefficient of species j in reaction r. For an Arrhenius reaction, Wr is a function of
T and ρj

Mj
.

3 High Order Finite Volume Schemes

In this section we briefly review the setting of a finite volume scheme based on k-exact
reconstruction on general unstructured grids.

3.1 Geometric Notation for Unstructured Meshes

A general unstructured grid of the domain Ω ⊂ Rd consists of N general polyhedra Tα with
an arbitrary number of faces Ω =

⋃N
α=1 Tα. The following notation is depicted in Fig. 3.1a.

Two cells Tα and Tβ are called adjacent if they share a face denoted by Aαβ = Tα ∩ Tβ.
Note that no connectivity restriction is imposed on the mesh. The volume of a cell Tα and
the area of a face Aαβ are denoted by |Tα| and |Aαβ|, respectively. The barycenters of Tα
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and Aαβ are xα and xαβ, respectively. It is useful to define the vector

hαβ , xβ − xα . (3.1)

Calculating a numerical flux in a finite volume scheme require a precise definition of the
geometry of the interface Aαβ , which is in general not planar. In our case, Aαβ is defined
as the disjoint union of the triangles formed by two consecutive points of the contour ∂Aαβ
and a point Oαβ of the face. A convenient choice for Oαβ is the barycenter xαβ of Aαβ.
The surface vector aαβ is deduced from the knowledge of Aαβ. The normal unit vector of
the face Aαβ, with orientation from Tα to Tβ, is denoted by ναβ . It is deduced from the
surface vector aαβ by ναβ = aαβ/|Aαβ|.

The following definitions of neighborhoods of a cell Tα are used in the design of the
algorithm hereafter, see Fig. 3.1b:

• The 1st neighborhood of a cell Tα is the set

V(1)
α , {β |Tβ is adjacent to Tα } ∪ {α} . (3.2)

• The nth neighborhood is defined recursively by

V(n)
α ,

⋃
γ∈V(n−1)

α

V(1)
γ . (3.3)

Each neighborhood Vα = ∪mk=1Tβk of a cell Tα is associated with a matrix Hα defined by

HT
α = col (hαβ1 ,hαβ2 , . . . ,hαβm) ∈M3,m (R) . (3.4)

The matrix (3.4) is useful for the definition of 2nd order interpolation in Sec. 4 and 7. For
each cell Tα, the tensor x(k)

α is the moment defined by its components

x
(k)
α;i1,...,ik ,

1
|Tα|

ˆ
Tα

(xi1 − xα;i1) · · · (xik − xα;ik) dx . (3.5)

For each pair of cells Tα and Tβ, the tensor z(k)
αβ is defined by its components

z
(k)
αβ;i1,...,ik ,

1
|Tβ|

ˆ
Tβ

(xi1 − xα;i1) · · · (xik − xα;ik) dx . (3.6)

Furthermore the kth power xk of a vector x ∈ R3 is defined as the tensor of order k with
components: (

xk
)
i1,i2,...,ik

, xi1xi2 · · ·xik , 1 ≤ i1, i2, . . . , ik ≤ 3 . (3.7)

For tensors a and b of rank k with components ai1,...,ik and bi1,...,ik , respectively, we use
the dot product • defined by

a • b =
d∑

i1,...,ik=1
ai1,...,ikbi1,...,ik . (3.8)
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3.2 Basic design of Finite Volume Schemes

In this section we review the setup of the semi-discrete finite volume method with the
notation of Sec. 3.1. Integration of the conservation law (2.1) over a given non moving cell
Tα gives

d

dt

(
1
|Tα|

ˆ
Tα
q dx

)
= − 1
|Tα|

∑
β∈V(1)

α

ˆ
Aαβ

nαβ · (f +ϕ) ds+ 1
|Tα|

ˆ
Tα
ς dx . (3.9)

Note that identity (3.9) can be extended to the Arbitrary Eulerian Lagrangian (ALE)
context of moving and deformable meshes.

The identity (3.9) infers a semi-discrete time-dependent system that approximates (2.1)
as follows. First, the cell averages on the left-hand side of (3.9) are defined by

qα(t) , 1
|Tα|

ˆ
Tα
q (x, t) dx (3.10)

The qα(t) are collected into a vector q (t) = [q1 (t) , . . . , qN (t)]T that becomes the principal
unknown. 6.

Consider now the quantities f , ϕ and σ in the right hand side of (3.9). They depend
on the continuous unknown q (x, t) and its derivatives. They have to be approximated
with quantities depending on the vector q (t). For the applications presented here, the
treatment of the convective fluxes f is the crucial point and in the rest of Sec. 3, we set
ϕ = 0 and σ = 0 for the sake of simplicity. In the simplest setting, the normal convective
flux in (3.9) is approximated using a so called numerical flux function :

fnum
αβ

(
qα (t) , qβ (t)

)
≈ nαβ · f (q (x, t)) . (3.11)

The numerical flux function in (3.11) is required to be consistent, conservative, monotone
and Lipschitz continuous [3]. Insertion of (3.11) in (3.9) gives the system

dqα (t)
dt

= − 1
|Tα|

∑
β∈V1

α

ˆ
Aαβ

fnum
αβ

(
qα (t) , qβ (t)

)
ds . (3.12)

The dynamical system (3.12) represents an approximation to (3.9), which is at most first
order accurate [3]. It is widely accepted that this poor spatial accuracy makes it unsuitable
for most practical applications. The next section describes a classical remedy to this
problem.

6Strictly speaking qα(t) denotes the exact average over cell Tα, whereas the components of q (t) are
approximate values to be calculated.
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3.3 Increasing Accuracy by k-exact Reconstruction

This section recalls how the accuracy of the approximation (3.12) can be enhanced by the
well known method of k−exact reconstructions. For simplicity we will consider all functions
at fixed time t0 and we drop the dependency on t. The main idea for restoring accuracy
in (3.12) is to replace the crude approximations qα and qβ in the right-hand-side of (3.12)
with more accurate values at the face Aαβ. A simple way to do this is to use the cell
average data q = [q1, . . . , qN ]T to reconstruct in each cell Tα a polynomial approximant
wα of degree k. The reconstruction map q 7→ wα must be linear and local, i.e. wα should
only depend on data in some close neighborhood of Tα. This particular neighborhood is
called the reconstruction stencil of Tα. Two essential constraints which must be satisfied
by the reconstruction procedure are:

1. conservation: the average of the polynomial wα over the cell Tα should be the exact
cell average qα.

2. k-exactness: whenever the cell averages on a neighborhood of the cell Tα are those of
a polynomial p of degree k then the reconstruction should recover p, i.e. wα = p.

In the following we use the notation wα [q] (x) to mention that the coefficients of the
polynomial wα [q] (x) depend on the data q and that wα [q] (x) represents a function of
x ∈ Tα. The first order approximation (3.11) is now replaced by

fnum
αβ (wα [q (t)] (x) ,wβ [q (t)] (x)) ≈ nαβ · f (q (x, t)) . (3.13)

It can be shown that the two properties above imply the consistency identity

∑
β∈V1

α

ˆ
Aαβ

fnum
αβ (wα [q] (x) ,wβ [q] (x)) ds (x)

=
∑
β∈V1

α

ˆ
Aαβ

(nαβ · f (q (x))) ds (x) +O(hk+1) (3.14)

Suitable quadratures rules to calculate the integral terms over the interface Aαβ in the left-
hand side of (3.14) are required. These formulas are defined by appropriate weight/node
couples (ωq,xαβ;q). These rules must be at least of order k to ensure that the O(hk+1)
accuracy in (3.14) is preserved.

The notion of k-exact reconstruction on unstructured grids already appears in [4] where
it is implemented using a standard least square procedure. Its main advantage is its sim-
plicity. But an important drawback is a lack of compactness. Specifically in order to get
k-exact reconstruction for k = 3 on a three-dimensional grid, the reconstruction stencil of
each cell must contain at least 20 cells. In practice however, due to stability constraints, the
reconstruction stencil has to be much larger on, e.g., tetrahedral grids. We refer the reader
to [15] where a stability analysis is carried out in the case of piecewise linear reconstruction
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(k = 1 in the present notation). As a consequence, due to memory access, practically im-
plementing a k-exact reconstruction on a parallel computer can become severely inefficient
on a general grid. The next section describes a novel algorithm to overcome this problem.

4 k-Exact Compact Reconstruction on General Grids

As observed in the preceding section, the practical use of the notion of k-exactness requires
a precise algorithmic approach to the lack of stencil compactness of the reconstruction. In
this section we present a new reconstruction method to solve this problem.

4.1 Principle of k-Exact Reconstruction

We are specifically interested in 4th order accurate methods and so we need to consider
reconstructions of order k = 3 (cubic reconstructions).

Consider a smooth scalar function u : R3 → R. The problem is to calculate in cell Tα
a polynomial approximant wα7 to u depending on the cell averages u = [u1, . . . , uN ]T only
(see (3.10)). The approximant is denoted by x ∈ Tα 7→ wα [u] (x). It can be expressed in
terms of σα [u], θα [u] and ψα [u] which are the 1st, 2nd and 3rd derivative of wα [u] (x) at
xα, respectively, as

wα [u] (x) = wα [u] (xα)+σα [u]•(x− xα)+1
2θα [u]•(x− xα)2+1

6ψα [u]•(x− xα)3 . (4.1)

This representation of the approximate function wα [u] (x) has to be matched with the
Taylor expansion of the function u(x) at xα, which is :

u(x) = u(xα)+D(1)u
∣∣∣
xα
•(x− xα)+1

2 D(2)u
∣∣∣
xα
•(x− xα)2+1

6 D(3)u
∣∣∣
xα
•(x− xα)3+O(h4)

(4.2)
First, according to the conservation condition in Sec. 3.3, the approximant (4.1) must have
the same cell average over Tα as u, i.e. uα. For this to hold, the value of wα [u] (xα) in
(4.1) must be defined as (see (3.5) and (3.8)) :

wα [u] (xα) = uα −
1
2θα • x

(2)
α −

1
6ψα • x

(3)
α . (4.3)

Second, according to the k−exactness condition, whenever the cell averages on a neigh-
borhood of the cell Tα are those of a polynomial p of degree k = 3, the reconstruction must
recover the 1st, 2nd and 3rd derivatives of p:

σα = D(1)p
∣∣∣
xα

, θα = D(2)p
∣∣∣
xα

, ψα = D(3)p
∣∣∣
xα

. (4.4)

7The notation for wα is not bold here, as u is assumed to be scalar.
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Equations (4.4) and (4.3) together with the expansions (4.1) and (4.2) imply the following
consistency identities to hold:

wα [u] (xα) = u (xα) +O
(
h4
)
, θα = D(2)u

∣∣∣
xα

+O
(
h2
)

σα = D(1)u
∣∣∣
xα

+O
(
h3
)
, ψα = D(3)u

∣∣∣
xα

+O (h)

 (4.5)

Substituting (4.5) into (4.1) and again comparing (4.1) with (4.2) shows that wα [u] (x)
satisfies the uniform consistency equation (recall that x− xα = O

(
h4)):

sup
x∈Tα

∣∣∣wα [u] (x)− u (x)
∣∣∣ = O

(
h4
)
. (4.6)

In summary the cubic reconstruction problem is equivalent to the compu-
tation of three approximate values σα, θα and ψα with the accuracy specified
by (4.5).

4.2 Approximation Algorithm for the Derivatives

4.2.1 Introduction

In this section we present a general method to solve the approximation problem of Sec. 4.1.
For the clarity of the presentation, we limit here ourselves to a slightly simpler problem
than the cubic case (4.1): we seek a quadratic reconstruction of the form

wα [u] (x) = wα [u] (xα) + σα • (x− xα) + 1
2θα • (x− xα)2 . (4.7)

The calculation principle for (4.7) readily translates to (4.1) at the cost of an additional
step in Algorithm 4.5 hereafter. The accuracy requirement (4.5) now simply becomes

wα [u] (xα) = u (xα) +O
(
h3
)
, θα = D(2)u

∣∣∣
xα

+O (h)

σα = D(1)u
∣∣∣
xα

+O
(
h2
)
,

 . (4.8)

The new reconstruction algorithm proceeds iteratively along the following steps:

1. Calculate a predicted value σ(1)
α of the first derivative D(1)u

∣∣∣
xα

2. Calculate a predicted value θ(1)
α of the second derivative D(2)u

∣∣∣
xα

3. Calculate a corrected value θ(2)
α of the second derivative D(2)u

∣∣∣
xα

4. Calculate a corrected value σ(2)
α of the first derivative D(1)u

∣∣∣
xα

5. Evaluate the quadratic reconstruction by

wα [u] (x) = wα [u] (xα) + σ(2)
α • (x− xα) + 1

2θ
(2)

α • (x− xα)2 (4.9)
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4.2.2 Approximation Algorithm for the Derivatives

In this section we show how to implement the five steps mentioned in the preceding section.
It takes the form of an algorithm which calculates the approximate derivatives σ(2)

α and
θ(2)
α in equation (4.9). The principle remains the same whenever the additional term ψα

is present (see (4.1)).
As a preliminary observation, consider the piecewise linear reconstruction of a typical

second order Muscl method. Such a reconstruction is labeled 1−exact reconstruction
in the present framework. In this case, only the 1st derivative σα is required and, as
mentioned in Sec. 4.2 , this 1st derivative is easily calculated using data from the 1st

neighborhood V(1)
α only. For this reason, due to easy data access, a Muscl 2nd order

scheme can be efficiently implemented on parallel computers. However, when considering
a k exact reconstruction with k ≥ 2 this advantage disappears: stencils required for k-
exactness become prohibitively large regarding computing efficiency. We now show how to
solve this stencil problem. Specifically we show how to calculate a 2-exact reconstruction
of the 1st derivative based on data on the 1st neighborhood V(1)

α only. This is the key to
calculate approximate derivatives σα and θα satisfying consistency conditions (4.8).

As a starting point suppose given in each cell Tβ a 1-exact reconstruction σβ of the 1st

derivative. This calculation is typically performed by least squares on the neighborhood
V(1)
α , (see Sec.7). The 1st derivative σα is expressed as

σα =
∑

β∈V(1)
α

σαβuβ. (4.10)

with coefficients σαβ given in (7.4). Our main result is the following :

Proposition 4.1. Suppose that the function u is a polynomial of degree 2 on the 2nd neigh-
borhood V(2)

α of the cell Tα. Then the vector of the second order derivative ∂i∂ju|xαsatisfies
the linear identity

∂i∂ju|xα + 1
4
∑

β∈V(1)
α

∑
γ∈V(1)

β

(σαβ,iσβγ,j + σαβ,jσβγ,i)
3∑

k,l=1
z

(2)
βγ,kl ∂k∂lu|xα =

1
2
∑

β∈V(1)
α

(σαβ,iσβ,j [u] + σαβ,jσβ,i [u]) (4.11)

Let us comment this result:

• The vector with components D(2)u
∣∣∣
xα

= ∂i∂ju|xα is a symmetric tensor with 1 ≤ i ≤
j ≤ 3. It is therefore identified with a vector in R6. This vector is the solution of the
linear system (4.11).
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• The right hand side of (4.11) is obtained by applying twice the operator (4.10) to u =
[u1, . . . , uN ]T . This can be formally seen as a discrete counterpart of the differential
identity ∂2u = (∂ ◦ ∂)u.

Proposition 4.1 obviously suggests a way to calculate a consistent second derivative θα.
We omit the proof of the following

Corollary 4.2. Consider any smooth function u with average values u = [u1, . . . , uN ]T .
in the cells Tα. Then the linear system

θα,ij + 1
4
∑

β∈V(1)
α

∑
γ∈V(1)

β

(σαβ,iσβγ,j + σαβ,jσβγ,i)
3∑

k,l=1
z

(2)
βγ,klθα,kl =

1
2
∑

β∈V(1)
α

(σαβ,iσβ,j [u] + σαβ,jσβ,i [u]) (4.12)

obtained by substituting θα to D(2)u
∣∣∣
xα

in (4.11) is a first order approximation of the 2nd

derivative of u : θα = D(2)u
∣∣∣
xα

+O (h).

Let us now outline the proof of Prop. 4.1

Proof. Suppose that u is a second order polynomial. For all cells Tγ and Tβ, the cell
averages uγ of u can be expressed in terms of values in cell Tβ, as

uγ = uβ +
3∑
i=1

hβγ,i ∂iu|xβ + 1
2

3∑
k,l=1

z
(2)
βγ,kl ∂k∂lu|xβ , ∀γ (4.13)

In addition, u satisfies for all α and for all β ∈ V(2)
α

∂i∂ju|xβ = ∂i∂ju|xα and ∂ju|xβ = ∂ju|xα +
3∑

k=1
hαβ,k · ∂k∂ju|xα , 1 ≤ i, j, k ≤ 3. (4.14)

Unfortunately, the reconstructions σβ applied to (4.13) do not give in general a con-
sistent approximation to the 1st derivative ∂ju|xβ . This is due to the fact that σβ is only
1-exact and not 2-exact. However, (4.14) and (7.2) allow to express the reconstruction
error of σβ on each cell Tβ as

σβ,j [u] =
∑

γ∈V(1)
β

σβγ,juγ = ∂ju|xβ + 1
2
∑

γ∈V(1)
β

σβγ,j

3∑
k,l=1

z
(2)
βγ,kl ∂k∂lu|xβ

︸ ︷︷ ︸
Reconstruction Error

, β ∈ V(1)
α . (4.15)
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Identities (4.14) are now used to express the derivatives of u at xβ in (4.15) in terms of
the derivatives at xβ as:

σβ,j [u] = ∂ju|xα +
3∑

k=1
hαβ,k · ∂k∂ju|xα + 1

2
∑

γ∈V(1)
β

σβγ,j

3∑
k,l=1

z
(2)
βγ,kl ∂k∂lu|xα

︸ ︷︷ ︸
Reconstruction Error

, β ∈ V(1)
α .

(4.16)
Observe that the system of equations (4.16) contains only the derivatives of u at xα.
Consider now applying the operator σα to (4.16) . This is operated by multiplying (4.16)
with σαβ,i and summing over β ∈ V(1)

α . Taking the symmetric part in i and j of the result
and using the consistency properties (7.2) of σα yields

∑
β∈V(1)

α

σαβ,i ∂ju|xα = 0 and
3∑

k=1

∑
β∈V(1)

α

σαβ,ihαβ,k · ∂k∂ju|xα = ∂i∂ju|xα . (4.17)

Finally identity (4.11) is deduced after some algebraic calculation. �
An easy consequence is that the solution θα of (4.12) is a first order approximation to
second derivative D(2)u

∣∣∣
xα

. Equation (4.12) is typical to our approach: it expresses how
the discrete operator in the right-hand side of (4.12) has to be modified in order to restore
consistency.
Remark 4.3. It is assumed that the matrix in the left-hand-side of (4.12) is non singular. In
the case of an uniform grid, the sums

∑
γ∈V(1)

β

σβγ,jz
(2)
βγ,kl are identical for all cells, so that

the constraints for 1-exactness (7.2) show that the matrix becomes the identity matrix. On
a general grid we assume that this matrix is a perturbation of the identity matrix. This is
actually an assumption on the smoothness of the grid. Numerical results over a large series
of meshes have shown so far that it is non singular, as long as the 1-exact 1st derivatives
satisfy the stability conditions discussed in [15].
Remark 4.4. The calculation of the approximant (4.1) up to 3rd order requires also a 2-
exact 1st derivative denoted by σ(2)

α and satisfying σ
(2)
α,j [u] = ∂ju|xα . It can be obtained

by setting β = α and ∂k∂lu|xα = θα,kl in (4.15)

σ
(2)
α,j [u] = σα,j [u]− 1

2
∑

β∈V(1)
α

σαβ,j

3∑
k,l=1

z
(2)
αβ,klθα,kl = ∂ju|xα . (4.18)

The key equation (4.12) for θα is the foundation of the following reconstruction algo-
rithm, which applies to all smooth functions u with average data u = [u1, . . . , uN ]T

Algorithm 4.5. Perform the following steps
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1. Calculate in each cell Tβ an approximate 1-exact 1st derivative σβ satisfying σβ =
D(1)u

∣∣∣
xβ

+O (h). This is typically the 1st derivative calculated by least squares, (see
Sec. 7).

2. Calculate in each cell the 1-exact 1st derivative of the values σβ . This gives the right
hand side of (4.12).

3. Solve the 6× 6 linear system (4.12) to obtain θα, a consistent approximation of the
2nd derivative satisfying θα = D(2)u

∣∣∣
xα

+O (h).

4. Using (4.18), calculate a 2-exact 1st derivative satisfying σ(2)
α = D(1)u

∣∣∣
xα

+O
(
h2).

5. Calculate the quadratic approximation (4.9) to u. This is a third order approximation
of the form (4.7) .

Remark 4.6. To extend Algorithm 4.5 to the approximation of the 3rd derivative ψα =
D(3)u

∣∣∣
xα

+O (h), one needs to consider the reconstruction error of the 2-exact 2nd derivative
θα on a 3rd degree polynomial u to obtain a linear equation for ψα analogous to (4.11).

In conclusion, the Algorithm 4.5 combines both high order accuracy – the reconstruc-
tion is k-exact – and locality – only the first neighborhood is used.

5 Numerical Test Cases

In this section we show three numerical test cases showing the interest of the previously
introduced cubic reconstruction. As mentioned in Sec. 1, the main focus of the two
first test cases is on the accuracy evaluation of the fourth order approach, compared to
lower order variants of the same scheme. The third case shows the applicability of the
present approach to a complex test case in aerothermochemistry, involving multispecies
and chemical reactions.

5.1 Acoustic Wave in a 3D Channel

5.1.1 Context in aeroacoustics

Aeroacoustics computations are usually performed by associating two kinds of codes:

• an unsteady CFD computation code for LES (Large Eddy Simulation) . This code
calculates acoustic sources generated by the turbulent flow and performs the numer-
ical propagation in the acoustic near field region,

• an acoustic code to reconstruct the far field from unsteady CFD results recorded at
CFD-acoustic interfaces (e.g. [19]).
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It is thus very important to assert the efficiency of the CFD code for accurately convecting
acoustic waves in the near field up to the CFD-acoustic interface without excessive damping
or phase errors. In practical situations, complex geometries are often to be considered
and unstructured meshes are desirable when not mandatory. In general, when 2nd order
CFD schemes are used, fine meshes are required in the near field region to compensate
the limited frequency bandwidth of these schemes. The works presented in [10, 18] show
recent numerical results obtained with a 2nd order scheme for aeroacoustics problems. It
is believed that higher order accurate schemes will demonstrate higher bandwidth thus
allowing less refined meshes for a fixed precision. A popular measure of the bandwidth
of a scheme is simply expressed as the minimum number of grid points (or cells) per
wavelength (denoted by ppw). This is required to properly propagate a given wave pattern
over a significant length [6]. When using a 2nd order schemes, a ppw of the order of 20-25
is often mentioned while with recent high order schemes, the ppw parameter is likely of the
order 4-6 for ppw.

5.1.2 Acoustic wave in a channel: parametric data

To evaluate high order schemes for aeroacoustic computations, we have choosed a simple
benchmark case for acoustic wave propagation in a uniform flow. The advantage of this
simple configuration is that linear acoustic theory easily provides analytical solutions. Our
test case is as follows. The geometry consists of a square duct with axis Ox and uniform
cross section of 0.2×0.2m. The length is L=10 m. The duct is filled with a uniform flow of
air at V x =1 m.s−1 at ambient conditions: 101 325 Pa and 300 K. Under these conditions
the sound velocity is c = 347 m.s−1. Boundary conditions are set to:

• left end (x=0): subsonic inlet conditions set at V x =1 m.s−1, T =300 K.

• right end (x=L): subsonic outlet conditions set at P=101 325 Pa.

• lateral surfaces : symmetry conditions .

Since our code is compatible with a general grid, we selected a uniform mesh of isotropic
tetrahedra of size a =20 mm. Only at the right hand side four layers of prisms of uniform
height of 16 mm were added. This part of the grid was intended to allow for a planar
acoustic wave generation as described below. The mesh consists of 288876 cells and 600053
faces, see fig. 5.1.

The simulation is initiated by a sinusoidal perturbation at the right end of the duct:
a time harmonic, isothermal (300 K), distributed mass source enters the first layer of
prismatic cells on the right of the computational domain. It is expressed as:

ṁ = A sin (2πft) (5.1)
In (5.1 ) the amplitude A is set so as to generate a low amplitude acoustic wave (smaller

than 20 Pa of physical amplitude) such that non linear effects can be ignored. This source
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Figure 5.1: Duct overview and grid details at the right end

generates a plane acoustic wave propagating upstream, from the right to the left with a
phase velocity Vϕ = c− Vx346 1 m.s−1. The corresponding wave length is thus:

λ = Vϕ
f

(5.2)

The physical elapsed time of each run is 20 ms.This corresponds to a propagation length
of 6.9 m in the counter flow direction (x < 0).The inlet boundary is therefore not impacted,
thus alleviating any acoustic reflection issues at the left end boundary. A total of 7578 time
steps are performed at CFL = 0.4. By using a series of values for the source frequency
f , we estimate the resolution of the acoustic wave for a given grid, as represented by the
parameter ppw (number of grid points per wave length) defined by

ppw = λ

a
(5.3)

Runs were performed for a series of 4 values of the frequency f, which corresponds to a
ppw number varying from 6 (coarse mesh) to 59 (extra fine mesh). Table 5.1 summarizes
the results.

When 2nd order CFD schemes are used in aeroacoustic, a value of 20-25 ppw is typically
used. This corresponds to a specific grid step size, according to the expected frequency
range of the acoustic sources. This value was selected for the runs of the R2 series. Then
for each run conditions, computations were performed for schemes of various orders, as
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Run R1 R2 R3 R4
f (Hz) 300 700 1500 3000
λ (m) 1.1533 0.4943 0.2307 0.1153
ppw = λ/a 59 25 12 6

Table 5.1: Values of tested wave frequency

described in Table 5.2, and the wave quality was observed and compared at different
numerical transducers located along the duct axis.

Run R1 R2 R3 R4
O2 - RK2 x x x x
O3 - RK3 x x x
O4 - RK4 x x x
O4 - RK4, CFL = 0.8 x

Table 5.2: Computation matrix

5.1.3 Amplitude and phase error analysis

The analysis of the numerical results was performed using three numerical transducers
located on the duct axis at 7 m, 8 m and 9 m, respectively, see Fig. 5.2 top. For example
we show on Fig. 5.2 (bottom) the pressure time history for a specific run.

The quality of the schemes was estimated from the wave amplitude damping along
the propagation direction. The phase error was measured with respect to an ideal linear
acoustic wave propagation solution of the form

P (x, ti) = <
[
P0e

i(ωt−kr+ϕ0)
]

with ω = 2πf ∈ R and k = kr + iki ∈ C.
The calculated time series is assumed to have the form

F (x, ti) = A0 (x) sin (2πf (x) ti + ϕ (x)) e−α(x)ti . (5.4)

where the four parameter functions A0(x), f(x), ϕ(x) and α(x) have to be estimated.
Identifying these four functions is obtained by a fitting approximation technique using
exponential (in time) sums. This kind of fitting is thoroughly presented e.g. in [23]. Here
we assume that our numerical data have the form of series

F (x, ti) =
N∑
n=1

ane
iσnti with (an, σn) ∈ Z2 (5.5)
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Figure 5.2: Illustration of wave propagation and pressure time histories at numerical trans-
ducers case R3/O4-RK4

As F represents a real monochromatic wave, so that we limit the sum to two terms (N = 2
in (5.5)). By identification the functions A0(x), f(x), ϕ(x) and α(x) are constant and they
are expressed in terms the values a1, a2,σ1and σ2 as

A0 =
√

4a1a2 2πf = σ1 − σ2
2

ϕ = 1
2i log

(−a1
a2

)
α = σ1 + σ2

2i

(5.6)

An iterative least square procedure is then used to identify these four constants.
Turning back to our damping and dispersion evaluation, we use the now estimated functions
A0(x) and ϕ(x) as a basis of our measurement 8. The numerical wave damping for one

8Note that the two other functions f(x) and α(x) are used only to guarantee the accuracy of the
exponential fitting.
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single wavelength is given by

A0 (x2)
A0 (x1) = ek

i(x2−x1) = eλk
i
(
x2−x1
λ

)
eλk

i = e

(
λ

x2−x1

)
log
(
A0(x2)
A0(x1)

) (5.7)

where eλki represents the wave damping per wave length traveled. Similarly, the numerical
dispersion can be represented by the phase difference between two transducer locations as

∆ϕ21 = ϕ (x2)− ϕ (x1)
(∆ϕ21)th = −kr (x2 − x1)

(5.8)

where kr = 2πf
Vϕ

.
The relative error on the phase error can be finally expressed as

∂Vϕ
Vϕ

= ∂ (∆ϕ21)
2π (x2 − x1)

λ

. (5.9)

5.1.4 Numerical Results

The comparison analysis of Sec 5.1.3 was carried out with the results obtained from different
runs summarized in Table 5.2. These results are reported in Tables 5.3, 5.4 and in Fig 5.3
, 5.4.

Run (ppw) O2-RK2 O3-RK3 O4-RK4 O4-RK4(CFL=0.8)
R1 (59) 0.9995
R2 (25) 0.9961 0.9965 0.9990
R3 (12) 0.9843 0.9866 0.9942 0.9939
R4 (6) 0.9188 0.9276 0.9754

Table 5.3: Summary of results for wave damping pwl

Run (ppw) O2-RK2 O3-RK3 O4-RK4 O4-RK4(CFL=0.8)
R1 (59) -0.0119%
R2 (25) -0.0695% -0.0054% 0.0000%
R3 (12) -0.3046% -0.0183% -0.0256% -0.0287%
R4 (6) -1.0516% -0.0466% -0.0744%

Table 5.4: Summary of results for relative phase velocity error
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Figure 5.3: Wave damping per wavelength

Figure 5.4: Relative phase velocity error

Tables 5.3 , 5.4, and Fig. 5.3 , 5.4 show that the higher order scheme provides a drastic
improvement in the ability of the code to propagate acoustic waves. Even on a coarse
grid (up to 6 points per wavelength) a very small damping and phase error was observed.
Regarding a detailed comparison, Fig. 5.3 shows a similar damping between 2nd order and
the 3rd order scheme whereas Fig. 5.4 shows that the 3rd order and the 4th order schemes
have a similar phase error. This is easily interpreted in terms of the modified equation
associated with the linear transport equation. A 2nd and a 3rd order scheme have a first
dissipative error h3∂(4)

x u, whereas a 3rd and 4th order schemes have a first dispersive error
of the form h4∂(5)

x u. Overall the 4thscheme outperforms the two other schemes.
Table 5.5reports numerical values regarding computational cost. The computational

complexity of the 3rd and 4th schemes was numerically measured against the 2nd order
scheme. Two values are reported. First the intrinsic CPU ratio, which is a numerical
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a O2-RK2 O3-RK3 O4-RK4 O4-RK4(CFL=0.8)
Intrinsic CPU ratio 1 4.7 12.0 12.0
Run CPU ratio 1 4.7 12.0 6.0

Table 5.5: Relative CPU cost

evaluation of the cost of one single time iteration. Second the CPU ratio for the full
simulation. The latter also depends on the stability properties of each scheme. As an
example, the RK4 (explicit) time stepping scheme allows a stability limit of CFL = 0.8
with the 4th order scheme instead of CFL = 0.4with the second order scheme.The overall
CPU ratio is therefore reduced to a factor , as reported in Table 5.5. The change from
CFL = 0.4 to CFL = 0.8 did not bear any loss in terms of scheme accuracy, as shown in
Tables 5.3 and 5.4 and in Fig. 5.3 and 5.4.

5.2 Periodic Advection of an Isothermal Two-dimensional Vortex

5.2.1 Inviscid vortices

This test case is based on the advection of a inviscid vortex in a periodic box. This is a
popular non linear test case based on an analytical solution to the Euler equations, which is
used by many authors to assess the accuracy of numerical schemes. As in the acoustic test
case of Sec. 5.1 the behaviour of the scheme under investigation is mostly the numerical
dissipation and the dispersion of the vortex for large physical time. This is known to be a
severe challenge impacting many simulations related to turbulence.

The Euler equations for one single species and with no source term corresponds with
the notation for conservation laws in Section (2.2) to the parameters:

nsp = 1 nsc = 1, ϕ = 0, ς = 0

The vector of physical variables is u = [p, T,v] and the only parameter is the state equation
ρ = ρ(p, T ). Let us briefly recall how the vortex is defined: as a first step a time-independent
solution with radial symmetry is defined as follows. A polar reference frame is introduced
in the x, y plane with basis vectors

er = cos θex + sin θey, eθ = − sin θex + cos θey

In this basis the velocity is v = vrer + vθeθ and we seek time independent solutions
u = us(x) to (2.1) with no radial velocity vr,s = 0 . Rotational invariance around the Oz
axis translates to vθ = vθ,s(r), p = ps(r), T = Ts(r). With these assumptions, the mass and
energy equation are automatically satisfied, and the momentum equation reduces to the
radial equilibrium, which is expressed as

v2
θ,s = r

ρs(ps, Ts)
dps
dr

. (5.10)
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Then the pressure ps(r) and the temperature Ts(r) are free parameter functions and the
radial velocity is deduced from Equation (5.10). Finally, Galilean invariance of (2.1) implies
that for any constant velocity vector v0 the time dependent vortex

u(x, t) = us(x− v0t) (5.11)

is also a solution of the Euler system.

5.2.2 Test Case: Inviscid Isothermal Vortex

Assume now a constant temperature and a Gaussian pressure field

T (r) = T0, p(r) = p0 (1− a0 exp(
r2

σ2 ))

A constant temperature is a suitable choice as possible temperature oscillations are a sug-
gestive marker of numerical defects. Note that instead of selecting a constant temperature,
another popular choice is the constant entropy assumption [24] . The specific parame-
ters of our test are as follows. The fluid is supposed to be a perfect gas of molar mass
M =0.029 kg.mol−1,with constant heat capacities cp, cv with ratio γ = cp/cv = 1.4 If R =
8.314 472 Jmol−1K−1,is the perfect gas constant, the density field is then given by

ρ(r) = p(r)
R
MT (r)

,

and the velocity field follows from (5.10) and (5.11).
The domain Ω is a square of edge length L = 1 m. Periodic boundary conditions are

applied on the boundary. The temperature is T ′ = T ′0 and the pressure function is selected
as

p′ (r) = p0

(
1− a0 exp

(
r2

σ2

))
, (5.12)

where T ′0 = 300 K, p0 = 105 Pa, a0 = 10−2 . The value σ = 0, 075 m is selected so that
the pressure is constant up to machine accuracy on ∂Ω. The advection velocity is selected
as ṽ = (50.25) m.s−1, and the physical final time is tend = 0.2 s, so that the vortex travels
across Ω 10 times in the x-direction and 5 times in the y-direction.

Numerical simulations were performed using three kinds of grids: triangular, quadran-
gular and uniform Cartesian. In each case, the convergence analysis was observed with 14
grids ordered from the coarser to the finest. The time stepping scheme was the classical
4-stage explicit Runge Kutta method with time step ∆t = 81 0− 6 s and maximum CFL
number of 0.5. An identical time step ∆t was used for all grids but on the finer unstruc-
tured grids the CFL constraint leads to the use of smaller time steps. Fig. 5.5 on the left
displays the pressure contours at initial time.

The computation is done for k-exact reconstruction from k = 1 to k = 3. Note that
for k = 1 the reconstruction is the standard least squares gradient for classical 2nd finite
volume schemes that does not make use of Alg. 4.5.
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(a) Initial condition (t = 0 s) (b) 4th order at t = 0, 0188 s

Figure 5.5: Pressure contours of the vortex on the 3rd triangular grid.

Mesh Type Reconstruction
k = 1 k = 2 k = 3

Triangles 1.4350 1.9734 4.4311
Quadrilaterals 1.1119 1.7450 4.5408

Cartesian 1.0453 1.6754 4.3642
(a) Convergence in L2 (Ω)

Mesh Type Reconstruction
k = 1 k = 2 k = 3

Triangles 1.3755 1.7675 4.3200
Quadrilaterals 1.0233 1.5637 4.3390

Cartesian 0.94045 1.4865 4.2684
(b) Convergence in L∞ (Ω)

Table 5.6: Order of grid convergence estimated by a linear fit

5.2.3 Numerical results

At time tend = 0.2 s, the error ε on the pressure field was measured in the discrete L2 (Ω)
and L∞ (Ω) norms. Let ε0 and h0 denote the error and the approximate grid size for the
coarsest mesh, respectively. Fig. 5.6 shows the plot of log (ε/ε0) against log (h/h0) for the
different kinds of grid. Tab. 5.6 displays the slope of the linear fit of log (ε/ε0) against
log (h/h0). The results show that the k-exact reconstruction by Alg. 4.5 actually achieves
4th order grid convergence for k = 3 (cubic reconstruction). For k = 1 and k = 2, the order
of convergence does not reach the expected values. This is explained by the fact that the
grids used are too coarse for these lower order schemes. The grid size h is simply not in the
range where the error of order k+ 1 decreases with hk+1. This can be observed in Fig. 5.6
where the slopes for the 2nd and 3rd order schemes are not constant but tend to steepen as
the grids become finer. Additional numerical results, not shown here, clearly support this
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Figure 5.6: Grid convergence for the isothermal vortex.
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claim. The 4th order scheme, by contrast, presents a nearly uniform rate of convergence
over all grids. It is worth to mention that the 4thorder accuracy can be observed even on
very coarse grids. As can be observed on the fight of Fig. 5.5 , the distortion of the vortex
is minimal on a quite coarse triangular grid.

5.3 Computation of a Laminar Flame with a Positivity Preserving Scheme

This section presents the computation of a reactive flow in a two-dimensional geometry.
The goal is to show that the 4th order finite-volume scheme is working in this configuration
that is derived from the Pagode test rig of 9[11] and [2].

5.3.1 Two-dimensional Reactive Flow of a Fluid Mixture

The geometry representing the model of a Bunsen burner is displayed in Fig. 5.7. The
mesh consists of about 150 000 triangular cells. A near stoechiometric methane/air mixture
with an equivalence ratio of 1.05 is injected through the inlet boundary at the bottom. The
chemical reaction produces a laminar flame that is anchored to the lips of the channel. Due
to a constant mass flow rate, the flame has the shape of a triangle and is asymptotically
time-independent.
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Figure 5.7: Computational domain and boundary conditions.

The propagation of the kind of premixed flame considered here is essentially determined
by the diffusive fluxes ϕ in (2.1). However, in the implementation used for the computation,
only the approximation of the convective fluxes f in (2.1) is 4th order accurate whereas
the diffusive fluxes ϕ and the source terms ς are modeled by 2nd order approximations.

9
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To obtain a test case that is more responsive to the accuracy of the convective fluxes, a
periodically time-dependent inflow velocity is imposed as

vinflow (t) = 0.97 +
√

2× 0.19 cos (2π × 62.5t) .

The flame is laminar, so there is no need to take into account turbulence modeling or
complex interactions between turbulence and chemical reactions. Molecular diffusion and
heat conduction are modeled by Fick’s laws and Fourier’s law, respectively. In order to keep
the computation time at a reasonable cost, a quasi-global kinetics scheme [12] involving
six species and two reactions is used for the methane/air combustion:

CH4 +
3

2
O2 → CO+ 2H2O (5.13)

CO+
1

2
O2 ↔ CO2 . (5.14)

5.3.2 Positivity Preserving of densities

The faithful physical modeling of multi-species flow requires numerical schemes that keep
the densities ρi and the mass fractions yi inside their respective physical bounds: 0 ≤ ρi
and 0 ≤ yi ≤ 1. These bounds are compulsory for reactive flows because the source terms ς
in (2.1) commonly used to model the chemical reactions are only defined for non-negative
yi. A recently described mechanism [25, 26] to enforce global bounds on the numerical
solution has been successfully adapted to the present finite volume scheme.

5.3.3 Results and Discussion

Results are shown on figure 5.8. It is worth noting that the 4th order accurate scheme is
sufficiently robust to handle this combustion problem with several species and stiff chemical
reaction rates. However, there is no significant difference concerning the quality of the
solution obtained. This can be explained by the fact that the mesh must be fine enough
to obtain a good accuracy for the 2nd order diffusive fluxes. In particular, it is difficult to
coarsen the mesh while keeping the flame attached to the lips of the channel.

6 Conclusion

This paper presents a new k-exact reconstruction strategy for finite volume schemes with
high order spatial accuracy. The central idea of Algorithm 4.5 is to iterate over adjacent
cell neighbors which proceeds as follows. First the 1st derivative is calculated from the
cell averages in the adjacent cells. Second, the 2cdderivative is calculated from the 1st

derivatives in adjacent cells. Then a 3rd derivative is deduced from the 2nd derivatives in
the adjacent cells and so on. Each step involves the application of a 1-exact 1st derivative
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(a) t = 0 (b) t = T
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2 (d) t = 3T
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Figure 5.8: Heat release (J.s−1) iso-values (300 K and 2000 K) for t = 0, T/4, T/2, T . Solid
lines: O4 scheme, dashed lines: O2 scheme.
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to the mth derivative calculated in the previous step, which results in a non-consistent ap-
proximation of the (m+ 1)th derivative. This non consistent approximation is transformed
into a consistent one at the cost of a multiplication by an non singular local matrix in each
cell [13, 14]. This generalizes the simple case of 1-exact 1st derivative operators which are
available in standard 2nd order finite volume solvers. In this case they are often referred
to as gradient interpolation or gradient reconstruction.

Convergence analysis on unstructured grids is presented in Sec. 5.1 and Sec. 5.2. The
first case evaluates the influence of the spatial accuracy on the propagation of acoustic waves
in a three-dimensional channel. This is of great importance for practical computations in
aeroacoustics where an unsteady CFD computation must be able to transport acoustic
waves in the near field without excessive damping. This analysis was performed on a
sequence of tetrahedral grids: this is required for complex geometries modeling such as
nozzle flows. The second test case is the advection of an isothermal inviscid vortex, an
exact solution of the two-dimensional Euler equations. Whereas the first case is more or
less a linear problem, the second case evaluates the capabilities of the scheme to capture
genuinely non-linear solutions of the Euler equations. The two first test cases show that
the 4th order reconstruction achieves a significant reduction in numerical dissipation and a
substantial improvement of the solution. Finally Sec 5.3 shows the capability of the scheme
in a case where complex terms are involved.

To conclude let us mention that the present approach can be implemented in any finite
volume scheme without huge efforts. Of course some additional upgrades are required to
conform to the global accuracy of the scheme, such as high order quadratures rule (for
the fluxes) or high order time stepping methods. An important advantage of this high
order spatial discretization of a conservation law is that it involves the same number of
semi-discrete equations as in 2nd order scheme. This simplifies the use of implicit time
stepping methods and complex physical models.

7 Appendix: Least Squares Slope

We briefly recall in this section how the slope σα is calculated on the first neighborhood V(1)
α

defined by (3.2). This calculation will serves as the initial step of the recursive algorithm
presented in the next section. In the language of the preceding section, we are interested in
a linear interpolant (k = 1) based on some 1-exact first derivative called σα. By linearity,
σα can be written as

σα =
∑

β∈V(1)
α

σαβuβ (7.1)

and we need to determine the coefficients σαβ. Suppose that u is a polynomial of degree
1 with first derivative s ∈ R3. Then the cell averages of u satisfy uβ = uα + hαβ · s for
β ∈ V(1)

α . For 1-exactness to hold, it is necessary and sufficient that the values σαβ satisfy
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the identities
σαα,i = −

∑
β∈V(1)

α \{α}

σαβ,i , 1 ≤ i ≤ 3

δij =
3∑
j=1

∑
β∈V(1)

α

σαβ,ihαβ,j , 1 ≤ i, j ≤ 3


. (7.2)

The solution to the linear system (7.2) is in general not unique. Refer to [15] for a detailed
discussion. Several choices for the values σαβ satisfying (7.2) are available in practice. Here
we retain the popular least squares solution where the values σαβ are taken as the solution
of the problem

min
σαβ∈R3,β∈V(1)

α

∑
β∈V(1)

α

(
uβ − uα − σαβ · hαβ

)2

. (7.3)

In this case, the values σαβ of (7.3) are explicitly specified in terms of the matrix Hα (3.4)
as

σαβ =
(
HT
αHα

)−1
hαβ , β 6= α , σαα = −

∑
β∈V(1)

α \{α}

σαβ (7.4)

For simplicity we will use (7.4) throughout the rest of this paper.
Acknowledgement. The first author warmfully acknowledges P. Brenner 10 for the numerous
discussions on high order finite volume approximations.
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