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The analysis of physical measurements often copes with highly correlated noises and interruptions
caused by outliers, saturation events or transmission losses. We assess the impact of missing data
on the performance of linear regression analysis involving the fit of modeled or measured time series.
We show that data gaps can significantly alter the precision of the regression parameter estimation
in the presence of colored noise, due to the frequency leakage of the noise power. We present a
regression method which cancels this effect and estimates the parameters of interest with a precision
comparable to the complete data case, even if the noise power spectral density (PSD) is not known
a priori. The method is based on an autoregressive (AR) fit of the noise, which allows us to build
an approximate generalized least squares estimator approaching the minimal variance bound. The
method, which can be applied to any similar data processing, is tested on simulated measurements
of the MICROSCOPE space mission, whose goal is to test the Weak Equivalence Principle (WEP)
with a precision of 10−15. In this particular context the signal of interest is the WEP violation
signal expected to be found around a well defined frequency. We test our method with different gap
patterns and noise of known PSD and find that the results agree with the mission requirements,
decreasing the uncertainty by a factor 60 with respect to ordinary least squares methods. We show
that it also provides a test of significance to assess the uncertainty of the measurement.

PACS numbers: 04.80.Cc, 04.80.Nn,07.87.+v,95.55.-n,07.05.Kf
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I. INTRODUCTION

Situations where series of measurements, ideally reg-
ularly sampled, suffer from short interruptions are com-
mon in a wide range of applications and experimental
set-ups. It is also usual to perform linear regression anal-
ysis of data samples, in order to estimate parameters of
interest by fitting other data series to the measured sig-
nals. In particular, this is a typical scenario for space
missions in fundamental physics such as MICROSCOPE
[1, 2] and LISA Pathfinder [3]. Long time integrations are
needed by these experiments to reach the required signal-
to-noise ratios (SNR) or the required levels of free-fall at
the frequencies of interest. The duration of such mea-
surements increases the probability to have invalid data
in the integration period. It has been found that gaps
could arise in the time series measured by the accelerom-
eters carried on-board the MICROSCOPE satellite, and
that those gaps could have substantial impact on the out-
come of the regression when data is noisy.

Here “gaps” refers to either lack of data or unusable
information such as saturations and outliers during short
or long time spans, which are eventually discarded. In the
case of the MICROSCOPE space mission, discontinuities
in the data availability could be due to data losses in the
telemetry transmission, while data alteration could be
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the consequence of three main identified causes: crack-
les in the cold gas tanks triggered by decreasing pres-
sure as they empty, crackles in the multi-layer insulation
(MLI) coating due to temperature variations in flight, or
micro-meteorites impacts. All saturated data are clearly
identified by a flagging system in the telemetry.

The objective of the MICROSCOPE signal processing
can be regarded as rather general. It consists in detecting
and estimating the amplitude of a periodic signal present
in some measured time series. In the studied case the sig-
nal is the signature of a possible violation of the Weak
Equivalence Principle (WEP), as detailed later, and is ex-
pected to arise around a certain frequency that we denote
fEP. The amplitude to be estimated is the “EP param-
eter”, denoted δ. In previous works [4] the data analysis
had been optimized in order to minimize the projection of
possible unknown harmonic perturbations onto the sig-
nal of interest by an appropriate tuning of its frequency
fEP and/or the integration duration, in particular in the
case of missing data. At the time, instrumental noise
had been disregarded in order to exclusively deal with
projection effects. Here we rather focus on the impact of
missing data on the noise affecting the estimation.

While the proposed approach is applied to MICRO-
SCOPE simulated data, it leads to provide a robust
method to estimate one or several deterministic compo-
nents in the general context of time series with missing
data affected by unknown colored noise. Although we
have physical models of the expected noise spectrum, we
assume in this study that it is not known a priori, allow-
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ing us to cope with the most general situation.

We show that noise distortions due to missing data
points may dramatically increase the uncertainty of the
estimation. This is due to the convolution effect between
the observation window and the original noise spectrum,
which leads to a leakage of the frequencies where the
power is high to the frequencies where the power is low.

Methods such as Ordinary Least Squares (OLS) or
equivalently Lomb-Scargle periodogram [5, 6], as well as
CLEAN-like algorithms [7], may fail in retrieving the re-
quired precision [8, 9], mainly because these approaches
rely on a white noise assumption. In order to increase the
precision of the fit, the noise correlation matrix must also
be estimated. A general approach is to maximize the like-
lihood function with respect to both regression parame-
ters (δ in our problem) and the noise correlation matrix.
Such an approach can use the Expectation-Minimization
(EM) procedure like MAPES algorithms [10]. However,
their convergence may be very slow, especially for large
data samples like in the MICROSCOPE case (about 106

points). More recent works also use least squares iter-
ative adaptive approaches (IAA) to estimate harmonic
and noise parameters iteratively [11], but require to store
and invert correlation matrices, which is computationally
expensive with an observation vector of 106 entries. Like-
wise, the authors of the last two techniques do not present
applications with colored noise. Some methods are al-
ready implemented to extract unknown colored spectral
densities, especially in the domain of gravitational waves
detection (see for example [3, 12–14]), but they do not
tackle the problem of gapped time series. A suitable
method is thus developed to estimate the EP parameter
in case of missing data.

Another type of algorithms referred to as “inpainting”
techniques is based on a sparsity-prior to fill the gaps
[15, 16]. Their adaptation to general noise spectra is
currently studied in the MICROSCOPE team (Bergé et
al., in prep.). We rather focus here on an approach that
avoids filling the gaps.

We develop a method with two successive objectives.
The first one is to reach the order of magnitude of the
original (i.e. complete data) uncertainty in the estima-
tion of the amplitudes of the deterministic components
we are looking for. The second objective is to theoret-
ically quantify the improvement on the variance of the
estimator, using an approach that does not require to fill
in the data gaps.

Our technique is based on the estimation of the noise
spectrum by using a high-order autoregressive (AR)
model. The result is used to weight the data through an
orthogonalization of the covariance matrix. This leads
to an approximation of the best estimator in the sense of
the variance, also referred to as the Best Linear Unbiased
Estimator (BLUE) which is also the Generalized Least
Squares (GLS) estimator in a linear regression context.
The main idea in the proposed approach is to separately
estimate the noise coefficients and the regression parame-
ters instead of jointly estimating all the parameters. This

is done in an iterative procedure that avoids the use of
non-linear optimization algorithms.

The proposed approach, that we dub “Kalman-AR
Model Analysis” or “KARMA” for short, is divided in
three steps. The first step consists in estimating the AR
parameters describing the noise. This is done by using
Burg’s algorithm adapted to discontinuous data [17]. The
second step is carried out via a Kalman filter algorithm
based on the AR model that allows us to compute the
weights, as shown by Jones [18]. In the third step we fi-
nally compute an approximation of the Generalized Least
Squares (GLS) estimator of the regression parameters, in
a way similar to maximum likelihood computation meth-
ods applied to regression models [19, 20]. These steps
can be reproduced to converge to the maximum likeli-
hood estimator (MLE) of the parameters.

In this paper, we first analyze the effect of the missing
data pattern on the estimation uncertainty (section II).
We then describe the KARMA method (section III) and
we present a way of evaluating its performance, allow-
ing us to give a criteria for the detection of the searched
signal (section IV). Finally, after a brief description of
the mission context, we apply this technique to MICRO-
SCOPE simulated time series, in particular to data sam-
ples generated with the mission and instrument simulator
(section V). In section VI we discuss the results.

II. IMPACT OF MISSING DATA

Although we apply our study to the MICROSCOPE
data analysis, it can be viewed as a general regression
problem. The measurement equation can be summarized
as follows:

γ = δsEP +
∑
i

αisp,i + z, (1)

where γ is the N -points complete measurement vector

defined as γ =
(
γ0 . . . γN−1

)T
, and δ and sEP are re-

spectively the parameter and the signal of interest (the
EP parameter and the EP violation signal for our pur-
pose).

The second term accounts for possible perturbations,
whose amplitudes αi should also be estimated to reject
any bias.

The third term is the residual noise vector z assumed
to be a zero-mean Gaussian random vector. The main
objective is the estimation of δ, for which the square root
of the one-sided noise power spectral density (PSD) at

EP frequency must be 1.4× 10−12 ms-2/
√

Hz [1].

The presence of missing or corrupted data in the time
series is identified by a mask vector w which is equal to
1 when the data is available and 0 otherwise, regardless
of the nature of the gap. The observed signal is thus the
vector y with entries yn = wnγn. We assume that the
loss of data arises before any possible filtering.
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A. Impact on the PSD

We briefly derive the impact of the observation window
w on the PSD of a pure stationary random signal. Thus
in this section we assume γ = z. The real signal γ is
regularly sampled at a frequency fs so that γn = γ(n/fs).

For a stationary discrete parameter process, the auto-
covariance function is defined as:

Ry(k) ≡ E[ynyn+k]− E[yn]E[yn+k]. (2)

Then the PSD is the Discrete-Time Fourier Transform
(DTFT) of the autocovariance [21]:

Sy(f) =
1

fs

+∞∑
k=−∞

Ry(k)e−2jπkf/fs . (3)

In the case of the masked noise yn = wnzn, Eq. (2) gives:

Ry(k) = E[wnznwn+kzn+k]− E[wnzn]E[wn+kzn+k].

We assume that the underlying process in z is indepen-
dent of the window w, and that w is a stationary process,
so that one can write:

Ry(k) = E[znzn+k]E[wnwn+k]− µ2
zµ

2
w

=
(
Rz(k) + µ2

z

) (
Rw(k) + µ2

w

)
− µ2

zµ
2
w, (4)

where for any random variables x we note µx its expec-
tation.

Assuming that zn is a zero-mean process (µz = 0), the
PSD of the windowed signal is obtained by taking the
DFT of Eq. (4):

Sy(f) = µ2
wSz(f) + [Sw ∗ Sz] (f), (5)

where ∗ is the convolution operator.
The first term can be viewed as a loss of power due to

the missing data and the second term accounts for the
frequency leakage. In the case of uniform random gaps,
one shows (see appendix A) that µw is equal to the proba-
bility to have a gap at a given time. Then Sw(f) is a con-
stant, and the leakage term is proportional to the mean
power. Therefore, the noise will increase significantly at
frequencies where the leakage term is dominant.

As an illustration, a simulation of the MICROSCOPE
instrumental noise alone is presented in Fig. 1. The noise
is generated using an approximate PSD model, taking
into account thermal sensitivities at lower frequencies,
position sensor noise at higher frequencies, random noise
of the pick-up circuitry and the frequency response of the
control loop:

2Sz(f) = σ2
z

(
1 +

(
f

f1

)−1
+

(
f

f2

)4
)
· |Hcl(f)|2 (6)

with σz = 1.4 × 10−13 ms-2/
√

Hz, f1 = 8.1 × 10−2 Hz
and f2 = 1.3 × 10−2 Hz. Hcl is the transfer function

of the closed control loop of the accelerometer. It has
almost a unit gain for all frequencies under 1 Hz, and
induces a slight inflection in higher frequencies. The fac-
tor of 2 accounts for the fact that Sz(f) is the two-sided
PSD. The data is sampled at a frequency fs = 4 Hz
on a duration T = 1.4 days corresponding to 20 satel-
lite orbits with Ng = 5200 gaps of the same length
(0.5 seconds), randomly distributed over the time series.
We observe a transfer of power from high frequencies
to low frequencies, increasing the apparent noise around
fEP = 9.4× 10−4 Hz by two orders of magnitude.
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FIG. 1. Periodogram of original (black) and incomplete (grey)
time series with 0.5 second data gaps randomly distributed in
a 20 orbits session. The simulation is done for 260 random
gaps per orbit.

B. Impact on the least squares estimate

We now demonstrate that the observed increase of the
noise is not a simple artifact of the Fourier representa-
tion but directly impacts the estimation uncertainty in a
least squares fitting approach. We assume that the ana-
lyzed signal is the sum of a harmonic component sEP at
frequency fEP and a correlated Gaussian random noise
z. For the sake of simplicity, we ignore the presence of
possible deterministic perturbations, therefore the signals
sp,i’s in Eq. (1) are all zero. The signal is still sampled
at frequency fs on N data points. Thus the signal reads:

γ = δsEP + z. (7)

We define the window matrix as the diago-
nal matrix formed by the window vector: W =
diag

(
w0 . . . wN−1

)
. We aim at calculating the variance

of the OLS estimate that only uses the available data (at
times for which wn = 1). In the least squares formal-
ism, this is equivalent to studying the windowed vector
y = Wγ. We also define the model matrix A. Although
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it can take a general form including various signals, we
assume here that it contains the EP signal model only
such that A = sEP. We also define the masked model
matrix Aw = WA. The usual OLS formulas give the
following parameter estimate:

δ̂ = (Aw
†Aw)−1 ·Aw†y, (8)

as well as its variance:

Var(δ̂) = K−1Aw
†ΣyAwK

−1, (9)

where we defined K = Aw
†Aw and Σy = WΣzW

† with
Σz = E[zz†], the covariance matrix of the noise vector.
Here † denotes the hermitian adjoint. As a result, the
noise correlation seen by the estimator is Σy instead of
Σz in the complete case.

In the case of a stationary Gaussian random noise the
estimator covariance can be diagonalized in the Fourier
space:

Σy =
fs
N
M†DM, (10)

where D is the diagonal matrix formed by the two-sided

discrete PSD: D = diag
(
Ŝ0 . . . ŜN−1

)T
and M is the

Discrete Fourier Transform (DFT) matrix with coeffi-
cients: Mkl = exp

(
− 2iπkl

N

)
. The discrete spectrum is

defined as the expectation of the periodogram. It can be
seen as an approximation of the real PSD [21]:

Ŝk ≡
1

fs

N−1∑
n=−(N−1)

(
1− |n|

N

)
Ry(n)e−2jπ

nk
N . (11)

This diagonalization thus links the estimator vari-
ance and the PSD of the windowed noise. By devel-
oping Eq. (9) we show (see appendix B for more de-
tails) that in the case of a harmonic model such as
sEP,n = γEP sin(2πnfEP/fs), for sufficiently large N , the
estimator variance is approximately equal to:

Var(δ̂) ≈ 2fsNSy(fEP)

N2
o γ

2
EP

, (12)

where Sy is given by equation (5), No = N − Ng is the
number of observed data and γEP is the amplitude of
the model, which is the gravitational acceleration in our
case. As a result, in presence of missing data, the esti-
mation variance increases proportionally to the leakage
term in Eq. (5). To quantify the increase of the uncer-
tainty, we plot the standard deviation of the estimator as
a function of the number of data gaps per orbit in Fig.
2, in the case of short random gaps of fixed length (0.5
second) uniformly distributed over the time series (the
effect of the size and the number of gaps is discussed in
Bergé et al., in prep.). The theoretical standard devia-
tion (black curve) is obtained using Eq. (9). In order to
check the correctness of the distribution, we also plot the
sample standard deviation of 400 estimates (red curve)

corresponding to different realizations of the noise vec-
tor z. This shows that the uncertainty grows by one
order of magnitude from 10 gaps per orbit only, which
represents a data loss of 0.04 %. This is not acceptable
with respect to the performance objectives of the mis-
sion. Therefore an alternative estimation method needs
to be implemented.
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FIG. 2. Theoretical (black) and sample (red) standard de-
viations of the original least squares estimate of the EP pa-
rameter as a function of the number of gaps per orbits. All
gaps have the same duration of 0.5 second and are randomly
distributed over a 20 orbits session.

III. KALMAN-AR MODEL ANALYSIS
(KARMA)

The poor performance of the OLS estimator is due to
the fact that its variance is not minimal. To minimize the
variance, the Best Linear Unbiased Estimator (BLUE)
is needed, which takes the form of a Generalized Least
Squares (GLS) estimator in linear regression problems.
In case of missing data, it reads:

β̂ = (Ao
†Σo
−1Ao)

−1 ·Ao†Σo−1yo, (13)

where β is the q×1 vector of parameters to be estimated.

The observation vector yo ≡
(
γn0

. . . γnNo−1

)T
gathers

the available data only, that is, n0, . . . , nNo−1 are the
time indexes corresponding to the observed data. Sim-
ilarly, Ao is the model matrix where we have kept only
rows corresponding to observed data. Here Ao is assumed
to be general, of size N × q. Σo is the covariance matrix
of the observed noise vector zo and admits a Cholesky
decomposition such that Σo = LoLo

† where Lo is a lower
triangular matrix.

The difficulty here is to estimate the noise covariance
matrix Σo in spite of the missing data. The method
that we propose consists in calculating an approximation
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of the GLS estimator by postulating an autoregressive
(AR) model for the noise. This is done in three steps
which are detailed below: estimation of AR parameters
(step 1), calculation of the whitened vectors Lo

−1yo and

Lo
−1Ao (step 2), calculation of the estimate β̂ (step 3).

The process may be iterated if necessary.

A. Step 1: AR parameters estimation

The first step is to estimate the noise characteristics
encapsulated in the covariance matrix Σz. To do so, we
assume that the noise process can be described by an
autoregressive model of some order p to be determined,
verifying the following relation at all times n:

zn + a1zn−1 + ...+ apzn−p = εn, (14)

where a1, . . . , ap are the AR coefficients and ε is a zero-
mean white Gaussian random field of variance σ2. Note
that this is equivalent to approximating the noise PSD
with a rational function, the numerator being a polyno-
mial of degree p in exp(−2iπf/fs) such as:

Ŝz(f) =
σ2/fs∣∣1 + a1e−2iπf/fs + ...+ ape−2iπpf/fs

∣∣2 . (15)

The choice of this model is motivated by the follow-
ing arguments. Firstly the use of a parametric model
consistently reduces the number of noise parameters to
estimate (p instead of N), and therefrom the computa-
tional cost. Secondly choosing an AR model rather than
a more general class such as autoregressive-moving av-
erage models (ARMA) allows us to easily estimate the
parameters from the discontinuous data, while ARMA
models usually involve computationally expensive opti-
mization procedures, or direct estimation of the autoco-
variance function which is not accurate when data are
missing. Furthermore any moving-average model can be
approximated by a high order AR model as discussed by
Durbin [22].

The AR parameters θ = (ai, σ
2) are estimated thanks

to Burg’s algorithm adapted to the missing data case [17].
This technique relies on the minimization of forward and
backward residuals of the model (14) through a recursive
procedure that increases the order k of the AR model
at each step, until k reaches p. This algorithm takes
advantage of all segments of available data. For a given
order k, only the segments of size Ns > k can be used for
the estimation. Note that the proper AR order must be
previously determined according to some criteria such as
Akaike’s, as discussed later.

For the first iteration, the AR estimation is performed

on the residuals of the OLS estimation ẑo = yo−Aoβ̂OLS

instead of yo, where β̂OLS is the result of the simple
estimate given by Eq. (8). This reduces the disturbance
of deterministic components onto the estimation of the
noise parameters.

B. Step 2: computation of the weighted vectors
with the Kalman filter

The determination of the AR parameters gives access
to the noise autocovariance function. The aim of this
step is to use this result to calculate the weighted obser-
vation vector L−1o yo and weighted model matrix L−1o Ao
involved in the expression of the estimator (13). The ma-
trix Lo indirectly depends on the AR parameters via the
autocovariance function, since:

Σo(m, l) = Rz (|nm − nl|) ∀(m, l) ∈ J0, No − 1K2, (16)

where the autocovariance function Rz is estimated by
taking the inverse Fourier transform of Eq. (15).

Unlike the case of complete stationary random series,
the observed data in a missing pattern do not have a cir-
culant nor Toeplitz correlation matrix, because the ni’s
are not regularly arranged. Therefore the matrix Σo can-
not be inverted by efficient techniques such as Levinson
or FFT algorithms. If the data sample is large (like in
the MICROSCOPE case where typically N ∼ 106), this
creates memory difficulties to store such a matrix. That
is why we present a way of avoiding the direct inversion
using a Kalman algorithm to compute the weighted data.

The relationship between GLS and Kalman filtering is
explained as follows. Following the notation of Gómez
and Maravall [20], an AR process can be described by
the state-space representation:

x(n) = Fx(n− 1) +Gε(n), (17)

zn = HTx(n). (18)

The above equations are the state equation and the ob-
servation equation of the Kalman Filter. x(n) is the state
vector at time n, defined by:

x(n) ≡
(
zn zn+1|n . . . zn+p−1|n

)T
,

where zn+k|n is the conditional expectation of zn+k given
the observations before time n. H is the matrix linking
the state vector to the observations, and simply reads

H =
(
1 0 . . . 0

)T
. The model matrix F and the model

noise vector G are calculated from the AR parameters
and are defined in appendix C.

The Kalman filter aims at calculating the a priori es-
timate of the state vector along with its variance at each
time n given all the observations until time n − 1, that
is:

zn|n−1 ≡ E[zn|z0, z1, . . . , zn−1], (19)

σ2
n|n−1 ≡ Var[zn|z0, z1, . . . , zn−1]. (20)

We define the normalized innovation vector e whose
elements are calculated with the Kalman residuals and
their standard errors:

en ≡
(
zn − zn|n−1

)
/σn|n−1. (21)

Since zn|n−1 is actually the projection of zn onto the sub-

space generated by
(
z0 . . . zn−1

)
, Eq. (21) is equivalent
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to a Gram-Schmidt orthogonalization procedure. As a
result, the en’s are uncorrelated. In addition, zn|n−1 is
a linear combination of zi, i < n, thus the normalized
innovation vector can be expressed as:

e = Tz, (22)

where T is a lower triangular matrix with diagonal ele-
ments equal to one. If we calculate the autocovariance of
Eq. (22) we find that

Cov[e] = TΣzT
† ⇒ Σz = (TT †)−1, (23)

where the implication is based on the fact that Cov[e] is
equal to the identity matrix. This last equation shows
that the matrix T is equal or proportional to the inverse
of the Cholesky decomposition L−1 of the covariance ma-
trix Σz. However, in our problem this is not exactly true.
The derived equalities are only valid if the random data
truly follows the AR process, which is not the case in our
approach since the AR model is just an approximation
of the real underlying random process. We thus assume
that the Kalman output e is only approximately equal
to L−1z.

If data are missing, the classic Kalman procedure must
be slightly modified to properly deal with missing data,
as explained by Jones [18], but the components of the
normalized innovation vector e corresponding to missing
data are ignored in the estimation at step 3.

C. Step 3: computation of the GLS estimate

In the previous paragraph we showed how to perform a
quasi orthogonalization of the observation vector, which
is exactly what is needed to compute an approximate
version of the Generalized Least Squares (GLS) estimate.

The estimator in Eq. (13) can be rewritten:

β̂ = (Eo
†Eo)

−1 · Eo†eo, (24)

where, with obvious notation, we denote the normalized
innovation vectors eo = Toyo and Eo = ToAo, calcu-
lated with the outputs of the Kalman filter algorithm,
respectively applied to the observed signal and to each
columns of the model matrix. Both vectors are obtained
by keeping elements corresponding to observed data only.
The Kalman algorithm is thus used here as a device to
compute the weighted vectors involved in the GLS.

IV. THEORETICAL UNCERTAINTY AND
DETECTION ISSUES

This is of key interest to be able to assess the statis-
tical uncertainty of a given estimation, especially in a
context where the experiment cannot be reproduced a
large number of times. In this section we present a tool
to quantify the uncertainty of the regression result and to

give a confidence threshold for the detection of the signal
of interest. To achieve this goal, the estimator variance
matrix must be estimated.

The correlation matrix can be approximated under the
assumption that the AR model is a good approximation
of the real noise correlations. This hypothesis is equiva-
lent to assuming that the estimator has minimal variance
(i.e. that the estimator is the BLUE). Let C be the co-

variance matrix of the estimator β̂. Then Eq. (9) gives,
by replacing W by To and A by Ao:

Ĉ ≈ σ2
0

(
Eo
†Eo

)−1
, (25)

where σ0 accounts for the fact that the covariance is
known up to a proportionality constant. For an unbi-
ased estimator (i.e. the model matrix Ao describes all
the deterministic components of the signal) this can be
estimated by:

σ̂2
0 =

ê†zêz
No − q

, (26)

where êz is the vector of weighted residuals defined by

êz ≡ eo − Eoβ̂. The statistic to be considered is:

Zk ≡
β̂k√
Ĉk,k

, (27)

where k is the index corresponding to the parameter of
interest in the vector β. For our application βk is the
EP parameter δ. Here we assume that the underlying
process is Gaussian, which is reasonable in the case of
the MICROSCOPE instrumental noise. Then under the
assumption that there is no violation signal (hypothesis
H0), Z approximately follows a Normal law with mean
zero and unit variance. A detection threshold with a
(1 − α)-confidence level is given by imposing that the
probability to observe a value above the threshold, un-
der H0, must be lower than α. This gives the threshold
z = Φ−1

(
1− α

2

)
, where Φ is the Normal Cumulative Dis-

tribution Function (CDF). Therefore if |Z| is above the
threshold, then a signal is detected with a confidence of
100(1−α)%. Conversely, for a given estimation of the EP
signal, the violation can be claimed at a 100(2Φ(Z)−1)%
confidence level. Typically, a 99% confidence test re-
quires z = 2.56.

V. APPLICATION TO SIMULATED DATA OF
THE MICROSCOPE MISSION

A. The MICROSCOPE experiment

The Weak Equivalence Principle (WEP) is at the basis
of General Relativity. Its concrete manifestation is the
Universality of Free Fall, stating that a body in a gravita-
tional potential is accelerated independently of its mass
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and internal composition. Current efforts to build new
unification theories may call this principle into question
[23], postulating the existence of additional fundamental
interactions. To provide an experimental discrimination
of these theories, the goal of the MICROSCOPE space
mission is to test the WEP within a precision of about
10−15 never reached by previous ground-based experi-
ments [24, 25]. This space-borne test takes advantage
of the duration of the fall by integrating the data over
several orbits.

The mission payload is an ensemble of two electrostatic
differential accelerometers composed by a cage contain-
ing two cylindrical and co-axial test-masses (TM). One
accelerometer is devoted to the EP test, while the other
serves as a reference. In the first accelerometer, the two
TM have different compositions: one is made of Platinum
Rhodium alloy (PtRh) and the other of Titanium alloy
(TA6V) [26]. In the second accelerometer the TM are
both made with PtRh. The masses, whose potential is
kept constant via a thin gold wire, are servo-controlled by
a set of electrodes to follow the same trajectory. The MI-
CROSCOPE science signal is the difference between the
accelerations applied to the two TM, which are deduced
from the applied electrostatic forces needed to maintain
them relatively motionless at the center of the cage. A
drag-free system ensures that the measured common ac-
celeration, i.e. the mean acceleration of the two TM,
is nullified. A violation of the WEP would result in a
difference between the two measured accelerations.

The violation signal is expected to be periodic with
a frequency fEP because of the projection of the gravi-
tational acceleration onto the science axis of the instru-
ment during the orbital trajectory. For a satellite inertial
pointing session, fEP is equal to the orbital frequency.
For a slowly rotating satellite in the orbital plane, this is
equal to the sum of the orbital frequency and the satellite
spin frequency. The duration of each session is chosen in
order to reach a standard deviation error of about 10−15

on the EP parameter δ, which is almost equal to the
Eötvös parameter. The inertial and spin sessions last re-
spectively 120 and 20 orbits. The specificity of the data
samples to be analyzed in the MICROSCOPE mission is
that the signal of interest has a low signal-to-noise ratio
(SNR) that lies at low frequencies (10−4 - 10−3 Hz) in a
time series with a broad frequency range (10−5 - 2 Hz),
blurred by a colored noise containing most of its power
in higher frequencies (above 10−1 Hz). In addition, long
time series must be analyzed to achieve a sufficient SNR,
including about 5× 105 data points for a spin session.

B. Considered data sets

We apply the KARMA method to a time series sim-
ulated with a mission simulator. The simulation output
is the differential acceleration vector γ equal to the ac-
celeration difference between the two masses. This time
series is sampled at fs = 4 Hz and lasts 20 orbits. This

corresponds to a spin session, for which the orbital fre-
quency is equal to 1.7× 10−4 Hz and the spin frequency
is 7.7× 10−4 Hz. The EP frequency is then equal to the
sum fEP = 9.4× 10−4 Hz.

In addition to the signal of interest, other perturba-
tions are present in the measurement as indicated in Eq.
(1). They are mainly due to gradient terms between the
center of mass of the two TM, the relative motion of the
TM, and coupling with the common mode because of
instrument defects. During the experiment, the instru-
ment or the satellite undergoes excitations that favor the
SNR to measure their amplitudes αi. The corresponding
accelerations sp,i are either modeled or measured, such
that the perturbations can be subtracted from Eq. (1).

Nevertheless, in this simulation we allow for the pres-
ence of gradient perturbations. They come from the
slight off-centering of the test-masses, leading to gravity
and inertia gradient terms. In the simulation we assume
that the TM are off-centered by 20 microns along the x
and z-axis which are in the orbital plane. Note that al-
though an off-centering along the y-axis can also exist,
it is estimated by means of dedicated calibration sessions
and corrected numerically before the EP estimation. The
EP parameter is simulated at a level of 3× 10−15. Thus
the regression model A contains the true acceleration sig-
nal gx(t), to which we add the two perturbations modeled
with our knowledge of gravity and inertia gradients. The
noise added to the data is generated from the PSD model
given by Eq. (6). The signal model reads:

γ(t) = δgx(t) + ∆xTxx(t) + ∆zTxz(t) + z(t), (28)

where we have noted gx the gravitational acceleration
projected onto the x-axis, Tij the components of the gra-
dient tensor, and ∆i the off-centerings. Thus in this case
there are three regression parameters: δ, ∆x and ∆z.

We consider two types of gap pattern. The first one
is a “tank crackle type” window wa that is generated so
that all gaps are of equal duration (0.5 second) and their
positions are randomly distributed on the sample (uni-
form distribution with 260 gaps per orbit). The second
one is a “telemetry losses type” window wb where the
gaps durations are drawn from a distribution similar to
the telemetry thread of the PICARD mission [27], with
a standard duration of one minute. Their positions are
distributed in the same way as for the first window. Each
window represents the same fraction of missing data, of
about 2%. Thus window wa comprises more gaps than
window wb (larger Ng) but gaps are shorter in average.
To illustrate this, we plot in Fig. 3 an extract of the
time series where the data interruptions of each window
are identified by vertical grey bars.

We apply the KARMA method and compare the result
to the Ordinary Least Squares estimate with missing data
to assess the improvement. We also compare the result
to the reference given by the OLS estimator in the case
without gaps.
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Signal Interruptions

FIG. 3. Fraction of the temporal series (black) with the in-
terruption times represented by the grey vertical lines for the
two windows wa (top) and wb (bottom).

C. PSD estimate from the AR fit

Before starting the whole process, the order of the
AR model must be chosen at step 1. The choice of
the order depends on the PSD of the noise affecting
the measurement, and on the observation window. A
way to properly choose the order p is to minimize the
Akaike’s Information Criterion [28] defined as AIC(p) =
2p − 2 log (Lmax(p)), where Lmax is the maximized log-
likelihood. In the case of an AR model, this can be ex-
pressed in terms of the estimate of the AR residual vari-
ance σ̂2 which is directly computable from the residuals
of the Burg’s algorithm:

AIC(p) = 2p + No log(σ̂2). (29)

Applying Burg’s algorithm to the residual series ẑ defined
in section III A with increasing order k allows us to find
the order that minimizes the AIC.

In the MICROSCOPE case, AIC(p) is an asymptoti-
cally monotonic decreasing function. In this configura-
tion one possibility is to choose the order p from which
there is no significant improvement in the AIC, i.e. the
minimum order where the AIC is close enough to the
asymptote. For the studied noise, the AIC typically
reaches a plateau from p = 200.

Nevertheless, in case of very frequent missing data (e.g.
tank crackles), the variance of the AR coefficients esti-
mates increases with the order, and so does the variance
of the AIC. This is due to the decrease of the number of
usable data segments (with length larger than p). This

can lead to overestimating the optimal order p. To over-
come this difficulty we can modify the AIC criterion as
suggested by Bos et al. [29] by introducing a penalty
accounting for the increasing estimation variance. We

choose to replace No by p
(∑p

i=1
1
Ni

)−1
where Ni is the

number of usable segments to estimate the coefficient ai.
When applying this criterion to our simulation with win-
dow wa, we find an optimal order of p = 60.

The process converges after 2 iterations, because the
first estimate of the PSD is influenced by the high ampli-
tude perturbations of the gradient terms: the main peak
has an amplitude of 2.4× 10−11 ms-2 at 2fEP, and other
peaks are present at forb and 2forb. In comparison, the
EP violation corresponds to an amplitude of 1.2× 10−14

ms-2.
We plot in Fig. 4 the estimate of the PSD (red curve)

obtained with the AR coefficients calculated by Burg’s
algorithm with the tank crackles (a) and telemetry (b)
windows, along with the real PSD (black curve). The
level of noise of the masked data is shown by the black
dotted line. In addition to the selected order p = 60, we
also show the AR spectrum estimate made with a larger
order (p = 200 with window wa, and p = 2000 with
window wb) to illustrate the effect of p. In both cases,
we see that the overall shape of the PSD is well described
by the AR model, especially the f4 slope. However, there
is a bias which increases as the frequency decreases. The
reasons why the AR model cannot accurately describe
the low frequency PSD are two-fold:

1. The order of the AR model is finite, and limited by
the longest segment of consecutive available data
(this is typically 700 for the window wa, and 50000
for wb). Given that AR models cannot describe
1/f spectra with a finite number of parameters, a
larger order is necessary to reduce the bias (and the
bias is zero when p tends to infinity).

2. In the Burg estimation procedure, the larger the
AR order, the larger the variance of the AR coeffi-
cients estimates, because there are fewer segments
of corresponding lengths. This is why we do not
choose the highest possible order, for which seg-
ments of corresponding length are rare.

Since window wb has more spaced and longer gaps than
window wa, it allows for a higher possible AR order lead-
ing to a better restitution of the low frequency shape of
the PSD, with a reasonable variance (see Fig. 4). How-
ever we choose p = 60 even in the case of window wb
for computational reasons, given that this is the high fre-
quency restitution that matters for a parameter regres-
sion purpose, as we shall see in the next paragraph.

D. Regression results

The results of the linear regression are summarized in
Table I, with p = 60. In order to test the precision of our
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FIG. 4. PSD estimates of the noise in presence of missing data. The black dashed curve is an estimate of the masked data PSD
[obtained using Eq. (5)], the black solid curve is the actual noise PSD, and the red and blue curves are the PSD estimates of
the AR model obtained with Burg’s algorithm. The periodograms of the regression residuals are also plotted for the complete
(dark grey) and masked (light grey) cases.

method, we have drawn 400 realizations of the noise and
run our estimation algorithm for each of them, as well as
the OLS estimator. The number of draws is chosen such
that the error on the true value of the standard deviation
of the EP parameter does not exceed 10−16 with a 99%
confidence.

The third column of the table indicates the true value
of the parameters. Columns 4 to 6 show the performance
of the OLS estimator: the sample average µ̂, the theoret-
ical standard deviation σth given by Eq. (9) and calcu-
lated with the real PSD, and the sample standard devi-
ation of the 400 estimates. The last three columns show
the results obtained with the KARMA method, and are
detailed below.

The sample mean µ̂ of the estimates obtained with
the KARMA method converges to the true value of the
parameters (seventh column of table I), showing that the
constructed estimator is unbiased.

We also calculate the sample standard deviation of the
EP parameter. For short and numerous gaps (tank crack-
les window) we find σ̂ = 1.1 × 10−15 with our method
instead of 6.5 × 10−14 with the OLS estimator. Thus
our method enables us to divide the stochastic error by
a factor 60 with respect to the OLS.

For fewer and longer gaps (telemetry window), we find
σ̂ = 9.8 × 10−16 instead of 5.1 × 10−15 with the OLS.
We notice that such a gap pattern has less impact on
the estimation performance, because it leads to a lower
frequency leakage as confirmed by Eqs. (A3) and (A4)
of appendix A (also see Bergé et al., in prep.).

These are satisfying results since the theoretical uncer-
tainty of the OLS without any missing data is equal to
9.6 × 10−16. The detection test is positive with a confi-
dence greater than 99% in both cases.

The improvement is also significant for the other pa-
rameters. Even if they are already well estimated by the
OLS, their uncertainty is reduced by almost two orders
of magnitude for the tank crackles window.

For each draw, we estimate the uncertainty σ̂AR us-
ing the approximate formula (25). We then calculate
the sample average of this estimate over the 400 draws,
and record the results in the table. We find 1.2 × 10−15

for window wa and 9.3 × 10−16 for window wb. This is
close to the calculated sample standard deviation, mean-
ing that when having only one realization at hand, one
can estimate the error with an acceptable accuracy. The
estimated error does not vary much from one estimation
to another, and stays within an interval of±10−16 around
the mean.

The estimate σ̂AR of the real regression error may be
biased, depending on the frequency of the estimated sig-
nal. This can be explained by Fig. 4, where we observe
that the PSD of the AR model is biased at low frequency.
As a result, the lower the signal frequency, the larger the
bias on the estimated variance. This is particularly true
around zero, where the AR PSD is below the real one.
However, the overall shape of the real PSD is well cap-
tured by the AR model, which is enough to cancel the
leakage due to the window and get a precision of 1×10−15

for the EP estimation, in agreement with the mission re-
quirement.

VI. CONCLUSION AND DISCUSSION

We have shown that the presence of gaps in time se-
ries affected by correlated noise has a strong impact on
the classical Fourier analysis and on the precision of the



10

TABLE I. Mean and standard deviations on the estimation of the parameters of interest using OLS and the KARMA method.
In both cases we present (from left to right) the estimation average calculated on a sample of 400 estimates, the analytical
standard deviation, and the sample standard deviation. For OLS, the analytical uncertainty σth is given by Eq. (9), which is
exact. For the KARMA method, σ̂AR is the average of the uncertainties estimated for each draw with Eq. (25).

Ordinary Least Squares Kalman-AR Model Analysis
Window Param. True µ̂ σth σ̂ µ̂ σ̂AR σ̂

Complete data
δ [10−15] 3 3.01 0.96 1.02 2.98 0.92 0.96
∆x [µm] 20 20.0 0.003 0.005 20.0 0.004 0.003
∆z [µm] 20 20.0 0.003 0.005 20.0 0.004 0.003

Tank crackles
δ [10−15] 3 8.82 62.3 65.2 2.98 1.19 1.14
∆x [µm] 20 20.0 0.290 0.296 20.0 0.006 0.004
∆z [µm] 20 20.0 0.292 0.314 20.0 0.006 0.005

Telemetry
δ [10−15] 3 3.15 5.20 5.07 2.98 0.93 0.98
∆x [µm] 20 20.0 0.021 0.021 20.0 0.004 0.003
∆z [µm] 20 20.0 0.024 0.024 20.0 0.004 0.003

ordinary least squares fits of harmonic signals. This is
due to the frequency leakage of the noise power, which
can increase the uncertainty of the fit by several orders
of magnitude, even if the percentage of missing data is
small.

We proposed a method that we dubbed “KARMA”,
which provides a general way to perform precise linear
regressions with large and incomplete data sets affected
by unknown colored noise, and that we applied to mock
MICROSCOPE data. The estimation variance is de-
creased down to the same order of magnitude as the least
squares estimator with full data, altered by the natural
loss of signal due to the 1/

√
N dependence. The method

tends to approach the minimum variance estimator of
the available data, by approximating the noise autoco-
variance with a high order AR model.

Our method uses a weighting of the data relying on the
estimation of the shape of the PSD. As a result, the per-
formance of the regression mainly depends on the ability
of the autoregressive PSD estimate to recover the part of
the spectrum that is responsible for the leakage, which
is the high frequency part increasing as f4 in the MI-
CROSCOPE case. Although this is not shown here, the
method has also been successfully tested in a case where
the leaking power comes from a thermal 1/f2 noise pro-
jected onto high frequencies. The AR PSD then accu-
rately fits the low frequency slope and allows us to im-
prove the possible regression of high frequency compo-
nents.

In addition, the outputs allow us to evaluate the vari-
ance of the estimator from a single estimation. We re-
cover the magnitude of the true precision, equal to 10−15

in our MICROSCOPE illustration. The variance is not
estimated with a better accuracy because of the low fre-
quency bias of the AR PSD estimator. This bias depends
on the missing data pattern, and more particularly on the
length of the longest uninterrupted data segment, as well
as the number of long segments. This determines the AR
order to be chosen, resulting in a trade-off between the

bias and the variance of the PSD estimate.

Concerning the scientific objective of the MICRO-
SCOPE mission, the above discussion demonstrates that
based on the current noise model of the accelerometers,
we will be able to get a 99% (resp. 68%)-confidence level
detection of a 3 × 10−15 (resp. 1 × 10−15) EP violation
signal, even in the presence of missing data, for a 20
orbit-measurement session (completed in 1.4 days). The
mission should include more than 70 sessions of this type,
allowing for a detection at the 99% level even for an am-
plitude of 1 × 10−15. This has been done for short and
very frequent gaps to represent acceleration peaks or sat-
urations due to MLI or tank crackles, as well as for longer
and fewer gaps to simulate telemetry interruptions.

Further developments will concentrate on how to in-
crease the accuracy of the noise PSD estimate, for exam-
ple by using the AR model to perform missing data im-
putation. Indeed, although this is computationally more
expensive, the AR model can be exploited in a Gaussian
process regression approach [30] to estimate the missing
values.

Finally, there are two potential limitations to the pre-
sented method that can be addressed in further exten-
sions. On the one hand, although the AR model can
be a good approximation to any PSD and can be fitted
very efficiently, it is still a parametric an thus restrictive
model. On the other hand, noise and signal parame-
ters are estimated iteratively but separately, so that each
step is done conditionally to the previous one. This may
result in a loss of accuracy. As a result, a possible gen-
eralization is to use the proposed method as an efficient
initialization procedure for a more general regression al-
gorithm that would maximize the full likelihood without
any prior noise model.
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Appendix A: PSD deformation in the case of
random missing data patterns

We derive here the PSD of the masked data in the case
where the gaps positions in the time series are drawn
from a uniform distribution. Let N be the length of
the time series, Ng the number of gaps, and nb,i the in-
dices indicating the location of the beginning of each gap
(such that wnb,i

= 0). Each gap ends at the location
nb,i + dni (we adopt the convention wnb,i+dni

= 1). By
uniformly distributed, we mean that nb is a random vari-
able following a discrete uniform distribution on the in-
terval J0, N − 1K. We also allow the gap duration dn
to be randomly distributed. The window vector is then
generated by drawing Ng realizations of nb and dn.

The probability P to observe a data at a time n is
calculated as follows:

P = P(wn = 1)

=

Ng−1∏
i=0

P(n < nb,i or n ≥ nb,i + dni)

= [1− P(nb ≤ n) + P(nb + dn ≤ n)]
Ng . (A1)

The cumulative probability function of nb is given by:

P(nb ≤ n) =
n+ 1

N
. (A2)

In the case where the duration of the gaps is fixed (i.e.
dni = dn0 ∀i), Eq. (A1) gives:

P(wn = 1) =

[
1− n+ 1

N
+
n− dn0 + 1

N

]Ng

=

[
N − dn0

N

]Ng

. (A3)

Therefore the probability law of wn is a Bernoulli’s law of
parameter P . Its expectation is µw = P and its variance
is σ2

w = P (1 − P ). We notice that P is independent
of time, and the autocovariance function of w is simply
Rw(n) = σ2

wδ(n) where δ(n) is the delta Dirac function.
Then we use Eq. (5) to calculate the PSD of the masked
data:

Sy(f) = P 2 · Sz(f) + P (1− P )

∫ fs
2

− fs
2

Sz(f
′)df ′. (A4)

Appendix B: Derivation of a simplified equation for
the OLS variance in the harmonic case

We derive here the approximate expression of the vari-
ance of the ordinary least squares estimator used in Sec-
tion II.

We start from Eq. (9). In the case of a simple har-
monic model, the matrix Aw is a column matrix and the

covariance formula can be written as:

Var(δ̂) =
A†wΣwAw(
A†wAw

)2 .
As reminded in Eq. (10), the covariance matrix is di-
agonalizable in the Fourier space. We keep the same
notations in the following. In addition, we use the fact
that the Discrete Fourier Transform (DFT) operator is
a Vandermonde matrix (since M†M = NI with I the
identity matrix), therefore the variance can be rewritten
in terms of the DFT of the windowed model Aw, noted
Ãw = MAw:

Var(δ̂) = Nfs
Ã†wDÃw(
Ã†wÃw

)2 .
By developing this expression we get:

Var(δ̂) =

∑N−1
k=0 |Ãwk|2NfsŜyk(∑N−1

k=0 |Ãwk|2
)2 .

For the windowed harmonic model Awn =
wnγEP sin(2πnfEP/fs + φEP), Ãw is the convolu-
tion of the DFT of the window and the DFT of the
EP signal. In the case of a random window, |Ãw|
usually peaks at the EP frequency with a value of
γEPNo/2 where No is the number of observed data
(where wn = 1). To simplify the calculations, we neglect
the terms at all other frequencies. This amounts to
ignoring the leakage of the harmonic signal (but note
that the leakage of the noise component is present in
Sy through equation 5). Furthermore, if we assume
that the integration period is an integer multiple of the
EP period (i.e. there exist an integer kEP such that
fEP = kEPfs/N), then we have:

Var(δ̂) ≈
γ2EP

N2
o

4 Nfs (Sy(fEP) + Sy(−fEP))(
2× γ2EP

N2
o

4

)2 ,

where we have made the approximation, valid for large
N , that the DFT of the autocovariance function in Eq.
(11) is equal to the real PSD. By simplifying we get equa-
tion 12:

Var(δ̂) ≈ 2fsNSy(fEP)

N2
o γ

2
EP

.

Note that in the case of a complete data set (wn = 1 ∀n)
we have No = N and this formula is more accurate be-
cause the model |Ãw| exactly peaks at γEPN/2.

Appendix C: State space equation of an AR model

We detail here the Kalman equations presented in Sec-
tion III B.
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The observation matrix, the model matrix and the
model noise matrix are defined respectively by:

H ≡ (1, 0, . . . , 0)
T

F ≡


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
−ap −ap−1 −ap−2 . . . −a1


G ≡ (1, g1, . . . , gp−1)

T
.

The vector G whose elements are defined by εngj ≡
zn+j−1|n − zn+j−1|n−1 can be calculated from the AR
parameters (see Jones [18]).

The Kalman filter equations in presence of missing
data are briefly reviewed here:

Prediction equation

x(n|n− 1) = Fx(n− 1|n− 1),

Σ(n|n− 1) = FΣ(n− 1|n− 1)FT +Q,

where Q ≡ GGT .

Update equation
The update equation adapted to the missing data case

can be formulated as follows:

Σ(n|n) = wn
{

Σ(n|n− 1)−K(n)HTΣ(n|n− 1)
}

+(1− wn) {Σ(n|n− 1)} ,
x(n|n) = wn

{
x(n|n− 1) +K(n)

(
z(n)−HTx(n|n− 1)

)}
+(1− wn) {x(n|n− 1)} ,

where we defined

K(n) ≡ Σ(n|n− 1)H
(
HTΣ(n|n− 1)H

)−1
.

Note that if the data is not observed at time n, the state
variance and the state vector are not updated and set
equal to the predicted values at previous time.
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[12] C. Röver, R. Meyer, and N. Christensen, Classical and
Quantum Gravity, 28, 015010 (2011).

[13] T. B. Littenberg and N. J. Cornish, Phys. Rev. D, 80,
063007 (2009).

[14] T. B. Littenberg and N. J. Cornish, ArXiv e-prints
(2014), 0902.0368.

[15] D. L. Donoho and X. Huo, Information Theory, IEEE
Transactions on, 47, 2845 (2001).

[16] M. Elad, J.-L. Starck, P. Querre, and D. Donoho, Ap-
plied and Computational Harmonic Analysis, 19, 340
(2005).

[17] S. De Waele and P. M. Broersen, Signal Processing, IEEE
Transactions on, 48, 2876 (2000).

[18] R. H. Jones, Technometrics, 22, 389 (1980).
[19] R. Kohn and C. F. Ansley, Biometrika, 72, 694 (1985).
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