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Introduction

This paper deals with the segmentation and the quantication of retinal blood vessels in Adaptive Optics (AO) images. This recent and non-invasive technique provides a new insight on retinal vessels and their diseases. In comparison to classical eye fundus images, AO images have a better lateral resolution [RBC + 11] and allow us to visualize microstructures such as photoreceptors [START_REF] Liang | Supernormal vision and high-resolution retinal imaging through adaptive optics[END_REF], capillaries [MR05, PRL + 14] and vascular walls [START_REF] Chan | The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope[END_REF]. This technique oers a new diagnosis and prognosis investigation tool to study the diseases aecting the retinal blood vessels of small diameter (≤ 150µm) which are major causes of morbidity and mortality such as Hypertensive Retinopathy (HR) and Diabetic Retinopathy (DR). Early treatment of these diseases is crucial to avoid visual loss. This requires objective and accurate quantication of vessels features, such as wall morphometry, which can be derived from an automated segmentation of AO images. This is the topic of this paper.

Data and challenges

The images used in the present study were acquired thanks to a rtx1 camera [VNL + 11] with ood illumination at 10Hz using a 850nm LED light source with a pixel resolution of 1.33µm. Floodillumination systems usually produce noisy images making walls hardly visible. A common solution is to register these images and average them to increase the signal-to-noise ratio [START_REF] Kulcsár | Robust processing of images sequences produced by an adaptive optics retinal camera[END_REF]. In these images, blood vessels appear as dark elongated structures with a bright linear axial reection, over a textured background. These characteristics will be exploited in the proposed method. Parietal structures (arterial walls) appear as gray lines along both sides of the lumen (blood column), with a typical thickness of about 15% of the latter [KRB + 14] (see Figure 1). Segmenting arterial walls in these images is however very challenging for multiple reasons: (i) the background is highly textured, (ii) the lumens are globally dark but with signicant intensity variation along them, (iii) the axial reections may locally show discontinuities or poor contrast, (iv) the outer borders of walls are low-contrasted, (v) the vessel segments can be locally blurred due to the geometry of the retina, and (vi) morphological deformations can occur in case of pathologies.

Method overview In this paper, we propose a fully automatic method for segmenting arterial walls in a selected region of interest1 in the averaged images produced by [START_REF] Kulcsár | Robust processing of images sequences produced by an adaptive optics retinal camera[END_REF]. To the best of our knowledge, this is the rst method addressing this problem in such images.

To overcome the diculties previously outlined, we propose a strategy exploiting both geometric, radiometric and topological prior information regarding vessels. More precisely, we model arterial walls as four curves approximately parallel to a common reference line located near the vessel center (axial reection). Once this line is detected, the curves are simultaneously initialized as close as possible to the borders of walls using a tracking procedure to cope with morphological deformations along vessels (pre-segmentation). Then, these curves are more accurately positioned using a parallel active contour model where each curve evolves independently of the others towards large image gradients under a parallelism constraint [START_REF] Ghorbel | Modeling a parallelism constraint in active contours. Application to the segmentation of eye vessels and retinal layers[END_REF]. This approach allows us to control the distance of the curves to their reference line, without knowing it accurately as prerequisite. This work has also permitted the physicians to establish relationships between morphometric measurements and clinical parameters [KRB + 14].

This paper is an extension of our previous publication [LRB + 14b], considering still healthy subjects but with pathological ones in the same framework. Additionally, we provide more details on the method. Some steps have been improved and the method is now completely automatic, keeping in mind its use in clinical routine. The experiments and the evaluation have also been substantially expanded with the analysis of the robustness for detecting axial reections, the inuence of the tracking parameters as well as the performance of the tracking and the active contour model. This work is complementary of our previous publication [LRB + 14a] where curves are linked to each others to improve the robustness of the model.

The rest of this paper is organized as follows. In Section 2, we detail the steps for detecting axial reections inside vessels. Next, we introduce in Section 3 the pre-segmentation and the active contour model for segmenting arterial walls. Finally, we evaluate the performance of the method against manual segmentations in Section 4 and discuss perspectives in Section 5.

Axial reection detection

All along this section, we consider 2D images as functions mapping pixels from Ω ⊂ Z 2 into the interval [0, 1]. Final axial segments (i) and lumens (j) are labeled from (d), (l) and the pruned skeleton of (m).

Pre-processing

The original image (see Figure 2(a)) is rst pre-processed by applying a median lter with a square structuring element of size 5 followed by a morphological closing with a circular structuring element of radius 3, in order to enhance the axial reection. We denote the resulting image by

I P 1 (see Figure 2(b)).
The source image is also denoised by a non-linear diusion lter [START_REF] Weickert | Ecient and reliable schemes for nonlinear diusion ltering[END_REF] with the contrast parameter and the space regularization parameter respectively set to 0.2 and 2.0. We denote by I P 2 the resulting image (see Figure 2(c)). This lter allows us smooth the vessel lumen while preserving the contrast along its edges.

Detection of bright elongated structures

Two lters are sequentially applied on the pre-processed image I P 1 in order to further enhance the bright elongated structures. The rst one is a white top-hat with a binary mask whose radius is about 1/3 of the axial reection diameter. We denote by I T 1 the top-hat image (see Figure 2(d)). The second one is a series of adapted linear lters designed to estimate the local direction of white linear structures. The mean grey-level is calculated at every pixel (i, j) ∈ Ω along segments of xed length but with dierent orientations, centered on it. The segment length is about 55 pixels ( 73µm) and the orientation step is equal to ∆θ = 5 • (N = 36 lters). Let us denote by

I (k)
LF the image output by the lter with orientation k∆θ, k ∈ {0, . . . , N -1}, and by I D the image storing the estimated direction:

k opt (i, j) = argmax k I (k) LF (i, j), I D (i, j) = k opt (i, j) if 0.75I (kopt(i,j))(i,j) LF > I ((kopt(i,j)+ N 2 ) mod N ) LF (i, j) -1 otherwise,
where x mod y is the remainder of x divided by y. In the latter equation, the threshold 0.75 enables us to distinguish the pixels within linear bright features with well-dened local direction from all the others. From the top-hat image I T 1 , we compute a second image I T 2 , dened for any pixel (i, j) ∈ Ω as follows:

I T 2 (i, j) = (I T 1 • Sl I D (i,j) )(i, j) if I D (i, j) ∈ {0, . . . , N -1} I T 1 (i, j) otherwise,
where • denotes the morphological closing operator and Sl k is a binary linear structuring element whose length and orientation are respectively set to 21 pixels ( 28µm) and k∆θ degrees. Compared to the image I T 1 , axial reections show better properties in terms of continuity in the image I T 2 (see Figure 2(e)) but the lumens are more noisy. Afterwards, we binarize the image I T 1 using hysteresis thresholding (lower and upper thresholds are set to 0.2 and 0.6, respectively) and denote the resulting image by I (0) ES (see Figure 2(f)). Parts of the axial reection of vessels are thus extracted, but also other bright areas of the textured background. Further processing steps are therefore needed to discard the undesired areas. For doing so, we propose to keep the 10 largest connected components and denote the resulting binary image by I

(1) ES (see Figure 2(g)). To retrieve the connectivity, a geodesic reconstruction by dilation of the resulting components contained in I

(1) ES is performed in a binary mask I M that is dynamically built from the image I T 2 as follows:

I M (i, j) = 1 {I T 2 (i,j)>S M } ∨ I (1) ES (i, j), ∀(i, j) ∈ Ω, with S M =      1 I (1) ES (i,j)∈Ω I (1) ES =1 I T 2 (i, j)      -0.4,
where 1, and ∨ resp. denote the indicator function, the cardinality of a set and the logical OR operator.

The threshold S M is computed from the mean grey-level of the selected bright features in I T 2 , which is then lowered (-0.4) in order to surely get the whole components. We denote by I ES the nal binary image of the axial reection components (see Figure 2(h)).

Detection of the darkest areas

k-means classication (k = 3) is performed on the pre-processed images I P 2 (see Figure 2(i)) and the cluster of lowest mean intensity value provides a rst binary image of the darkest regions. It is then post-processed with morphological operations to get the main connected components corresponding to the dark areas of lumens. In particular, we retain the components whose area is more than 1/5 of the largest one, do a morphological closing with a circular structuring element of radius 15 and ll holes that are smaller than 10% of the area of the component having the largest surface. We denote by I DA the resulting image (see Figure 2(j)).

Extraction of vascular segments by information fusion

A rst selection of vascular segments is performed based on a simple measure of the tortuosity. Let us denote by I L ES the binary image of a tested connected component of the image I ES . This component is retained if

I L ES (I L ES • S) > 0.8, (1) 
where S is a binary disk whose radius is 15 pixels. Moreover, a segment of axial reection must lie inside a dark area, and conversely, a dark region of the lumen must contain at least one axial reection segment. We denote by I ES the binary image made of the components satisfying (1) (see Figure 2(k)) and I L ES a tested component of it. The component I L ES is kept as part of an axial reection segment if

(I DA ∩ (I L ES ⊕ S )) > I L ES 5 , (2) 
where ⊕ denotes the morphological dilation operator and S is a binary disk whose radius is 15 pixels. Notice that the radius of S and S are determined according to the minimum size of the vessels that are studied. We denote by I ES the binary image made of the components satisfying (1) and (2) (see Figure 2(l)). Morphological operations are applied to I DA , including reconstruction by dilation with the marker I ES , in order to get the nal lumen mask I LM (see Figure 2(m)).

Segment labeling and reconnection of branches

We rst compute the skeleton of the image I ES to get the end-points of the retained segments (see Section 2.4). These end-points are then reconnected using minimal path techniques [START_REF] Cohen | Global minimum for active contour models: A minimal path approach[END_REF][START_REF] Sethian | Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry[END_REF]. These techniques aim at extracting curves of minimal length, according to a Riemannian metric computed from the image and depending on the targeted application. A minimal path C connecting two end-points p and q is obtained by minimizing the following functional:

L[C] = q p P(C(s)) ds,
where s denotes the curvilinear abscissa and P is a potential inducing the metric dened as

P(x) = w 1 (1 -I T M (x)) 2 + w 2 (1 -I SM (x)) 2 + w 3 , ∀x ∈ Ω,
where I SM is the pruned skeleton of the lumen mask I LM ltered by a Gaussian of standard deviation σ and w 1 , w 2 , w 3 ∈ R + * are free parameters. These parameters are empirically set to σ = 10, w 1 = 0.5, w 2 = 0.45 and w 3 = 0.05. In the latter expression, the rst term is derived from the mean image image I T M between I T 1 and I T 2 (considering that the values should ideally be close to one along the axial reection) while the second one encourages the path C to pass near the middle of the lumen mask I LM . The last term is a regularization constant. The combination of the above criteria allows for a good robustness against the variety of the encountered images.

Two end-points form a candidate pair for reconnection if they belong to the same connected component in the lumen mask I LM and if they do not belong to the same connected component in the image I ES . The candidate pairs are then processed by decreasing order of the Euclidean distance (to start with points that are close to each other) and reconnected using the above procedure. A new skeleton is then calculated, providing the axial reection of the vessels, and the vessel branches are then labeled (see Figure 2(n)). The vessel branches are individually regularized using a classical parametric active contour [START_REF] Kass | Snakes: Active contour models[END_REF] with Gradient Vector Flow [START_REF] Xu | Snakes, shapes and gradient vector ow[END_REF]. The lumen mask I LM is also labeled such that every non-null pixel receives the label of the closest branch (see Figure 2(o)).

Although the above described steps rely on a number of parameters, we empirically found that they are all stable for the images studied (including those presented in Section 4).

Segmentation of arterial walls

In what follows, we detail the procedure for segmenting arterial walls of a single regularized vessel branch obtained at the end of the axial reection detection step (see Section 2). We denote this regularized branch as the reference line V (s) = (x(s), y(s)) T ∈ R 2 of the vessel, parameterized by s. Once obtained, this line is considered to be xed and will therefore no longer evolve in the subsequent steps. Additionally, we choose to model the artery wall by four curves {V k } 4 k=1 approximately parallel to the reference line V where V 1 , V 2 and V 3 , V 4 represent the inner and the outer borders of this wall, respectively. These curves are dened as follows:

       V 1 (s) = V (s) + b 1 (s) n(s) V 2 (s) = V (s) -b 2 (s) n(s) V 3 (s) = V (s) + b 3 (s) n(s) V 4 (s) = V (s) -b 4 (s) n(s),
where n(s) ∈ R 2 is the normal vector to the curve V and b k (s) ∈ R + is the local distance (or half-diameter) of any curve V k to the reference line V (see Figure 3). This model establishes a direct correspondence between the points of any curve V k and those of the reference line V . The segmentation aims at computing the half-diameters {b k } 4 k=1 that are the most suitable for the delineation of the artery wall. By making strong (but realistic) assumptions, we rst detail how these curves can be simultaneously initialized using a tracking procedure to cope with morphological deformations. Next, we relax these assumptions and present the parallel active contour model used to position these curves closer to artery walls.

Pre-segmentation

For convenience, we rst sample the reference line V into equally spaced points and denote by V i = (x(s = ih), y(s = ih)) T ∈ R 2 the coordinates of the i th point along the reference line V , and by n i ∈ R 2 the associated normal vector (h > 0 denotes the sampling step, set to 1 here). We also sample the curves representing the artery walls with, for every i ∈ {1, . . . , V } ). Additionally, we assume on both sides of V that the walls thickness is constant along the vessels (i.e. b ext -b int = cst). Although these assumptions could appear to be somewhat strong, they are veried for a large number of images. More generally, the goal is to obtain a robust initialization of the active contour algorithm, which in turn, will rene the curves positioning so as to reach a better accuracy. The pre-segmentation aims at simultaneously computing the half-diameters b int and b ext . In this way, the robustness of the pre-segmentation against noise and poor contrast is substantially improved. For instance, this is typically useful when some of the borders of the artery walls are low contrasted since we can rely on those which are well contrasted.

       V 1 i (b int i ) = V i + b int i n i V 2 i (b int i ) = V i -b int i n i V 3 i (b ext i ) = V i + b ext i n i V 4 i (b ext i ) = V i -b ext i n i , such that b int i < b ext i , (3) 
Before presenting the pre-segmentation, we need to introduce some notations. First, we denote by I : Ω ⊂ Z 2 → [0, 1] a grayscale image and D u I(p) the derivative of I in the direction u at a pixel p ∈ Ω. For a half-diameter b ∈ R + , a point V i on the reference line V and a window of size (2r + 1), we also dene the mean local gradient along the curves V 1 and V 2 by

Dint (b, i, r) = 1 2(2r + 1) r j=-r D n i+j I(V 1 i+j (b)) + D -n i+j I(V 2 i+j (b)) , (4) 
and the mean local gradient along the curves V 3 and V 4 by

Dext (b, i, r) = 1 2(2r + 1) r j=-r |D n i+j I(V 3 i+j (b))| + |D -n i+j I(V 4 i+j (b))| . (5) 
Using (4) and ( 5), the pre-segmentation is based on a criterion to be maximized, dened for every i ∈ {1, . . . , V } by:

G(b i , b e , i, r) = Dint (b i , i, r) + Dext (b e , i, r). (6) 
This criterion encourages inner and outer curves to be located near large gradients in the image. Notice that (4) does not use absolute values on directional derivatives unlike (5). Increasing the window radius r makes gradient measures more robust to noise but less reliable when strong deformations occur along vessels. This parameter therefore requires a trade-o. In what follows, we detail the steps necessary to estimate the half-diameters b int and b ext in (3).

Step 1 Instead of jointly estimating constant half-diameters b int 0 and b ext 0 as in [LRB + 14b], we propose to estimate them as piecewise constant. In this way, the estimated half-diameters are less prone to morphological deformations while keeping a good robustness against intensity changes along the artery walls. The robustness of the tracking (see Step 3 below) is therefore improved, especially for pathological cases. Let us denote a vessel segment k whose starting and ending indices in the reference line are k start and k end , respectively. For each vessel segment k, the half-diameters are estimated using the criterion (6) as follows:

(b int k 0 , b ext k 0 ) = argmax b i ,b e ∈R + b i <b e 1 2(k end -k start + 1) k end i=kstart G(b i , b e , i, r). We then set b int 0 i = b int k 0 and b ext 0 i = b ext k 0 , ∀i ∈ {k start , . . . , k end }.
To speed up this step, the intervals for b i and b e are restricted to typical values [KRB + 14]. In accordance to morphometric features, the piecewise constant estimation of the half-diameters is performed on vessels segments whose length is 50 pixels ( 66.5µm). Such an approach can however fail to accurately segment the walls when deformations occur inside the same vessel segment. Estimating varying half-diameters is therefore essential to take into account these deformations.

Step 2 We determine the position along the curves having the largest contrast by maximizing the criterion (6), without regards to the vessel segments

i * = argmax i∈{1,..., V } G(b int 0 , b ext 0 , i, r).
Step 3 Finally, we jointly estimate varying half-diameters b int and b ext whose dierence (the wall thickness) is constant along vessels. Again, this is achieved by using the criterion (6). These half-diameters are constructed iteratively under a regularity constraint from each side of the position i * found at Step 2 and using the estimates b int 0 and b ext 0 found at Step 1. Let us denote by ē = (b ext 0 i * -b int 0 i * ) the wall thickness at the position i * . For a xed error e, the half-diameters are constructed as follows:

b int i =    b int 0 i * if i = i * argmax b E(b, b int i-1 , i, e, r) if i > i * , argmax b E(b, b int i+1 , i, e, r) if i < i * b ext i = b int i + ē + e, (7) 
with

E(b, b , i, e, r) = αG(b, b + ē + e, i, r) -(1 -α)(b -b ) 2 , (8) 
and where α ∈ [0, 1] is a regularization parameter. The closer the parameter α is to zero, the more the right term of (8) penalizes large deviations of b int , and conversely. To get a more robust estimate of the wall thickness ē + e, we propose to slightly vary e around ē and select the error e * achieving the maximum energy (8) summed along the vessel:

e * = argmax e i>0 E(b int i , b int i-1 , i, e, r).
In the latter equation, b int and b ext are constructed using (7) and (8). The resulting half-diameters b int * and b ext * are those found for e * . It is not dicult to see that the assumptions made at the beginning of this section hold for these half-diameters.

Rened segmentation

The model proposed by [START_REF] Ghorbel | Modeling a parallelism constraint in active contours. Application to the segmentation of eye vessels and retinal layers[END_REF] simultaneously evolves two curves under a parallelism constraint. In what follows, we describe an extension of this model for extracting four curves V 1 , V 2 , V 3 and V 4 almost parallel to a reference line V . Since this line is xed, the energy becomes

E(V 1 , . . . , V 4 , b 1 , . . . , b 4 ) = 4 k=1 E Image (V k ) + R(V k , b k ) , (9) 
where the term

E Image (V k ) = 1 0 P (V k (s)) ds,
is designed to attract the curve V k towards large intensity gradients (see [START_REF] Kass | Snakes: Active contour models[END_REF]). In this context, the term E Image is based on the Gradient Vector Flow [START_REF] Xu | Snakes, shapes and gradient vector ow[END_REF]. The role of the term R in ( 9) is to control the variation of the distance b k , thus imposing a local parallelism. [START_REF] Ghorbel | Modeling a parallelism constraint in active contours. Application to the segmentation of eye vessels and retinal layers[END_REF] proposed a function of the derivative of b k with

R(V k , b k ) = 1 0 Q(s, b k ) ds = 1 0 ϕ k (s)(b k (s)) 2 ds,
where {ϕ k } 4 k=1 are application-dependent parameters that locally control the strength of the parallelism of the curve V k with respect to the reference line V . More precisely, the larger these parameters are, the more strict the parallelism to the reference line V is. Unlike previous active contour methods embedding a parallelism constraint, it is important to note that the distance between any curve V k and the reference line V has not to be provided in the model. It is adjusted during the evolution process and can vary along boundaries. It is worth noting that the assumptions made for the pre-segmentation (see Section 3.1) are relaxed, i.e. the curves can now evolve independently of each others (instead of [LRB + 14a] where curves are linked to others). Also, we want to mention that the energy (9) does not ensure that b 1 (s) < b 3 (s) and b 2 (s) < b 4 (s), ∀s. However, we never encountered such a behavior in our experiments (including for those presented in Section 4).

Since the energy (9) does not have crossing terms involving dierent curves, the minimization can be independently done for each curve V k . For any k ∈ {1, . . . , 4}, the Euler-Lagrange equation expresses the minimization of (9) with respect to b k (s)

∂P (V k (s)) ∂b k - d ds ∂Q(s, b k ) ∂b k = 0,
and the evolution of the distance b k to the reference line V is driven by

n, -∇P (V k (s)) -2 ϕ k (s)b k (s) + ϕ k (s)b k (s) = 0.
The latter equation is solved by discretizing it and introducing the time variable using standard numerical approximations of derivatives (central dierence in space, backward dierence in time). The resolution of the above equations stops when

max s |b n k (s) -b n-1 k (s)| ≤ ε, ∀k ∈ {1, . . . , 4},
where b n k (s) is the distance of the curve V k to the reference line V at iteration n and ε 0 is an accuracy parameter.

Experimental results and discussion

Axial reections

Twenty images from healthy and pathological subjects were selected to ensure the representativeness of the situations encountered by physicians during clinical routine, in terms of noise levels, contrast, morphological deformations and number of vessel branches. The selected images were validated by medical experts. In each image, the axial reections of the most arteries (i.e. whose lumen is visible and larger than 60µm) were then identied by a physician by rst interactively input a few points along them and then applying a classical parametric active contour algorithm [START_REF] Kass | Snakes: Active contour models[END_REF] with Gradient Vector Flow [START_REF] Xu | Snakes, shapes and gradient vector ow[END_REF].

When no bifurcations occur, the automatic detection of axial reections (see Section 2) can result in fragmented reference lines due to intensity changes along them. To not overpenalize the automatic procedure, we propose to put in correspondence these lines with those obtained semi-interactively by the physician. Let us denote by V A and V M a sampled reference line obtained from the automatic procedure and from the physician, respectively. Then, we consider that these reference lines match with each other if V A overlaps V M by at least 50% of its length, or more formally, if

L(P roj(V A , V M )) L(V A ) > 0.5, (10) 
where P roj(V A , V M ) is a subset of points of V A such that each of them has its nearest point in V M that lies at a distance less than or equal to 2 pixels and L(x) denotes the piecewise linear approximation of the length of the line x, dened by

L(x) = x i=2 x i -x i-1 2 .
Notice that the points of P roj(V A , V M ) in ( 10) can be unequally spaced due to the distance threshold. The latter permits us to tolerate an imperfect positioning between the reference lines V A and V M . Once the matching is done between these reference lines and to give an idea of the performance of the axial reection detection, we propose to compare an automatic segmentation and a manual one by relying on measurements based on (i) the number of reference lines detected and (ii) their overlap. For the number of reference lines, we use:

• True Positives (TP): number of correctly matched reference lines between automatic and manual segmentations.

• False Positives (FP): number of reference lines in automatic segmentation that do not match a manual one.

• False Negatives (FN): number of reference lines in manual segmentation that do not match an automatic one.

(11)

Given a set of automatically detected reference lines {V A k } n k=1 that match with a manual reference line V M using (10), we also propose to use the relative overlap dened in percentage:

RO({V A k } n k=1 , V M ) = 1 - |L(V M ) -n k=1 L(V A k )| L(V M ) × 100. (12) 
The performance of the automatic axial reection detection against manual segmentations using the above measures is detailed in Table 1 and illustrated in Figure 4. In Table 1, we can observe that the automatic procedure oers an overall good robustness on the selected images with a mean RO of 92% and a standard deviation of 8.8%, meaning that most of the detected reference lines overlap well with the ideal ones. In particular, the automatic procedure demonstrates its capacity to properly manage single or multiple artery branches (see Subjects 8 and 10). However, we can notice that some images contain falsely detected axial reections (see Subject 15). While undesired, these false detections remain minor in practice and can be easily removed by medical experts in our software. Also, we can notice that one axial reection is missing (see Subject 11). All these particular cases are depicted in Figure 4. In particular, we observe that the detection of axial reections is very challenging for the Subjects 11 and 15 due to the large amount of blur on some vessel segments. However, such vessels are not relevant for physicians since the parietal structures are not visible.

Artery walls

A sample of fourteen and seventeen images was extracted from distinct healthy and pathological subjects, respectively. These images were carefully selected by three physicians having several years of experience in the eld of AO image interpretation to ensure the representativeness of the cases encountered during clinical Figure 4: Good (half-left) and poor (half-right) results from Table 1 for the automatic detection of axial reections for four distinct subjects. Top and bottom rows depict respectively automatic and manual segmentations, superimposed on the original image. White and cyan dashed lines correspond to missed and falsely detected reference lines, respectively. Dashed lines that are neither white or cyan correspond to correctly matched reference lines.

Table 2: Intra-physician variability for the inner diameter (ID), the outer diameter (OD) and the wall thickness (WT) (see (13), ( 14) and ( 15)). All measures are expressed in percentages and averaged over vessel and images. The numbers between parentheses correspond to a unit displacement all along a curve. Table 3: Interest of the proposed pre-segmentation (α * ) compared to a naive one (α = 0) in terms of convergence speed and accuracy when coupled to parallel snakes (PS). The accuracy is estimated using the absolute relative error on the inner diameter (ID), outer diameter (OD) and the walls thickness (WT) (see ( 13), ( 14) and ( 15)) while the convergence speed is estimated by the required number of iterations in the PS model. The inter-physicians error is also provided for comparison. Pre 13), ( 14) and ( 15)). The inter-physicians error is also given for comparison.

The numbers between parentheses denote a unit displacement all along the curve.

Pre-segmentation (α routine, i.e. in terms of noise, contrast and morphological deformations for the pathological subjects. For each image, a single artery branch was manually segmented two times by these physicians, with an interval of several weeks between the inputs to attenuate the memory eect. To measure the accuracy of a segmentation A obtained with our approach against a segmentation M realized by a physician, we use the absolute relative error on the inner diameter, the outer diameter and the wall thickness, resp. dened for any i ∈ {1, . . . , V } by

δ id (M, A, i) = |d id (M, i) -d id (A, i)| d id (M, i) × 100, (13) 
δ od (M, A, i) = |d od (M, i) -d od (A, i)| d od (M, i) × 100, (14) 
δ wt 1,2 (M, A, i) = |d wt 1,2 (M, i) -d wt 1,2 (A, i)| d wt 1,2 (M, i) × 100, (15) 
where d id and d od denote resp. the local inner and outer diameter while d wt 1 and d wt 2 denote the local wall thickness on each side of V . For each image, the above measures are taken where no vessel bifurcation occur and on the intersection between automatic and manual segmentations. Considering the wall thickness separately instead as a whole (as previously done in [LRB + 14b]) is more sensitive but also more realistic. Notice that δ wt 1,2 is of great importance for physicians. First, we estimate the intra-physician variability by computing the mean and the standard deviation of the measures (13), ( 14) and (15) for all images. To put in perspective the results and since arterial walls are very dicult to delineate up to a pixel, we also provide the mean and the standard deviation of (13) and ( 14) for a unit displacement along one of the four curves representing the artery walls (see Section 3.2). On each side of the reference line, (15) is for a unit displacement along one of the two curves. The resulting statistics are summarized in Table 2. As expected, the mean error on the walls thickness appears to be much larger than for the inner and outer diameter due to its high sensitivity. Also, we can also notice that the physician P hys 1 has the smallest variability on both healthy and pathological subjects for two measures out of three. Because this physician produced the most stable segmentations, we decided to choose him as a reference for the remaining of this evaluation and denote him by P hys Ref . In what follows, the inuence of the parameter α involved in the pre-segmentation step (see Section 3.1) is studied. In particular, the window radius r is not considered here since our experiments reveal that this parameter has a limited inuence on the results. We therefore choose to set r = 1. We believe that this behavior is due to the dominant role of (8) in the tracking. To study the inuence of the parameter α, we constitute a test set and a training set using all the images from and pathological subjects. The training set is composed of one third of images from healthy subjects and one third of images from pathological subjects, all randomly selected. The test set is composed of the remaining images.

Then, we search for the value of the parameter α giving the best accuracy against manual segmentations from the physician P hys Ref on the training set. More precisely, we choose the optimized value α * as the one that minimizes the mean of ( 13), ( 14) and (15) along arteries and over images. We pre-segment the images from the test set using α * and apply the parallel active contour model (PS) (see Section 3.2) on the training and test sets using the following parameter values: ε = 0.1 and ϕ k = 100, ∀k ∈ {1, . . . , 4}. To estimate the accuracy of our approach on the two sets of images, we again compute the mean and the standard deviation of the measures (13), ( 14) and (15) between the resulting segmentations and those performed by the physician P hys Ref . The inter-physicians variability is also computed for the same images and measures by comparing the segmentations performed by all the physicians, except P hys Ref , with respect to those realized by P hys Ref . All these statistics are summarized in Table 4. In this table, we can see that the resulting measures appear to be approximately in the same range, meaning good generalization properties of the parameter α. The pre-segmentation oers a good accuracy when compared to the inter-physicians error. When parallel snakes are applied from these pre-segmentations, the accuracy is improved for all measures on both sets of images. For two measures out of three, this accuracy is for instance better for the test set compared to the inter-physicians error. A subset of the results is given in Figure 6 for two healthy subjects (rst and third rows) and two pathological subjects (second and fourth rows). On the rst two rows, we see that the pre-segmentation is robust to morphological deformations and is able to delineate thin walls. However, the last row depicts an extreme situation where the pre-segmentation fails due to the poor contrast on the inner borders of walls and a fake line in the textured background that mislead the tracking procedure. Also, we believe that the least performance of our approach is due to a lack of accuracy in the manual segmentations because artery walls are dicult to delineate. This issue is shown in the two last rows of Figure 6.

Figure 5 shows how the parameter α aects the accuracy of the pre-segmentations compared to those performed by the physician P hys Ref for both healthy and pathological subjects. Clearly, the segmentation error is not aected for α ∈ [0, 0.65] and reaches a minimum for α 0.95. Between 0.9 and 1, the inuence of the parameter α remains however moderate.

Finally, Table 3 demonstrates, on both healthy and pathological subjects, the interest of using a presegmentation that follows morphological deformations along vessels compared to a naive pre-segmentation that does not. For the rst one, we use the optimized value α * (see above). For the second one, we use α = 0 that leads to constant half-diameters along arteries. We then apply the PS model on all these presegmentations and compare the required number of iterations as well as the accuracy with respect to the manual segmentations from the physicians P hys Ref . In words, the pre-segmentation using α * both leads in average to a better accuracy for all measures and diminishes the number of iterations by about 35%. 

Conclusion

In this paper, we have proposed an automatic method for delineating the walls of retina arteries that apply on healthy and pathological cases. Noticeably, the results showed a good robustness for detecting axial reections and an overall error on arterial walls measurements smaller or very the inter-physicians error. For future work, we plan to evaluate the benet of the coupled parallel snakes model introduced in [LRB + 14a] for dierent pathologies. Finally, notice that this work is not limited to ophtalmology applications (e.g. arterial hypertension in cardiology).

  Figure 1: Examples of images acquired by the rtx1 camera and a detailed view of them for an healthy subject (a,b) and a pathological one (c,d).

  Figure 2: Steps for axial reection detection: The source image (a) is pre-processed in two dierent ways (b,c). Bright elongated structures are detected from (b) by top-hat (d) and adapted linear lters (e). From(d), these structures are extracted by hysteresis thresholding (f), ltered (g) and nally combined with those detected in (e) to give (h). Darkest areas are detected from (c) by k-means (i) followed by post-processing (j). From (h) and (j), the most relevant axial segments are kept (k,l) and combined with (j) to give (m). Final axial segments (i) and lumens (j) are labeled from (d), (l) and the pruned skeleton of (m).

Figure 3 :

 3 Figure 3: Parametric representation of the proposed model.

  where b int , b ext ∈ R + respectively denote the half-diameters of the inner and outer curves. Notice that the model (3) assumes that the inner (resp. outer) curves lie at the same distance from the reference line V (i.e. b 1 = b 2 = b int and b 3 = b 4 = b ext

Figure 5 :

 5 Figure5: Sensitivity of the parameter α on both healthy and pathological subjects. The y-axis is the mean error of the measures (13), (14) and (15) with respect to the segmentations performed by the reference physician P hys Ref .

Figure 6 :

 6 Figure 6: From top to bottom: good (upper-half) and poor (lower-half) segmentation results against the physician Phys Ref . First and third rows correspond to healthy subjects while second and fourth rows correspond pathological ones. The left column shows pre-segmentations (α * ) while the right column shows segmentations obtained by applying parallel snakes from them. Manual and automatic segmentations are drawn in purple and cyan, respectively, superimposed on the original images. The black dashed line is the reference line V while the black circle denotes the position along it from which the tracking operates in the pre-segmentation. The absolute relative error on inner diameter (ID), outer diameter (OD) and walls thickness (WT) (see (13), (14) and (15)) is indicated below each image.

Table 1 :

 1 Performance of the axial reection for twenty healthy and pathological subjects. False positives (FP), false negatives (FN), true positives (TP) and the relative overlap (%) are provided (see (11) and (12)) for each image. The stars denote the images where vessel bifurcations occur.

	Subject FP FN TP RO per vessel branch (%)
	1	0	0	2	94.9, 96.5
	2	0	0	1	98.3
	3(*)	0	0	3	95.6, 98.4, 99.8
	4(*)	0	0	3	89.7, 95.2, 96.2
	5	0	0	1	99.6
	6	0	0	1	98.7
	7(*)	0	0	3	95.2, 93.9, 92.1
	8(*)	0	0	5	84.3, 59.8, 99.1, 96.2, 95.0
	9	0	0	1	95.9
	10(*)	0	0	3	95.7, 90.7, 98.1
	11(*)	0	1	2	97.4, 92.4
	12(*)	1	0	3	91.1, 83.7, 83.9
	13(*)	0	0	3	98.2, 90.7, 97.2
	14	0	0	1	85.9
	15(*)	1	0	3	63.4, 96.3, 91.7
	16(*)	1	0	3	97.4, 90.2, 71.0
	17	0	0	1	99.6
	18	0	0	1	96.6
	19(*)	1	0	3	95.8, 98.5, 86.0
	20(*)	0	0	3	86.9, 80.6, 97.2
	Overall 4	1	46	92.0 ± 8.8

  WT 20.33 ± 20.43 (6.01 ± 2.09) 27.52 ± 31.95 (6.76 ± 3.08) 22.01 ± 22.33 (6.03 ± 2.37)

		P hys 1 / P hys 1	P hys 2 / P hys 2	P hys 3 / P hys 3
	ID	3.74 ± 3.38 (1.03 ± 0.32)	4.09 ± 3.49 (1.02 ± 0.31)	3.44 ± 2.84 (1.01 ± 0.31)
	OD	2.56 ± 2.04 (0.75 ± 0.21)	3.52 ± 2.99 (0.76 ± 0.21)	3.03 ± 2.58 (0.74 ± 0.21)

Table 4 :

 4 Robustness of the pre-segmentation on healthy and pathological subjects when coupled to parallel snakes (PS) by measuring the absolute relative error on the inner diameter (ID), the outer diameter (OD) and the wall thickness (WT) (see (

		-	Pre-	Pre-	Pre-	
		segmentation (α = 0)	segmentation (α = 0) + PS	segmentation (α * )	segmentation (α * ) + PS	error
	ID	9.48 ± 9.01	7.78 ± 9.94	5.86 ± 5.70	5.21 ± 5.36	4.08 ± 3.48
	OD	6.34 ± 5.02	5.40 ± 5.68	3.49 ± 3.00	3.24 ± 2.84	3.31 ± 2.80
	WT	27.16 ± 14.90	30.15 ± 28.27	18.32 ± 14.80	17.59 ± 15.75	22.91 ± 21.64
	Iterations	/	90.74 ± 50.23	/	59.03 ± 31.68	/

  WT 19.14 ± 15.55 (5.60 ± 1.65) 18.11 ± 16.81 (5.60 ± 1.65) 23.42 ± 23.36 (5.65 ± 1.63)

			* )	Pre-segmentation (α * ) + PS	Inter-physicians error
		ID	5.62 ± 7.31 (1.13 ± 0.49)	5.33 ± 7.11 (1.13 ± 0.49)	4.09 ± 3.71 (1.13 ± 0.49)
	Training set	OD	3.46 ± 3.45 (0.83 ± 0.31)	3.35 ± 3.51 (0.83 ± 0.31)	3.24 ± 2.79 (0.83 ± 0.31)
		WT 16.60 ± 12.93 (6.74 ± 2.65) 16.49 ± 13.17 (6.74 ± 2.65) 21.84 ± 17.44 (6.75 ± 2.68)
		ID	5.97 ± 4.74 (0.98 ± 0.17)	5.15 ± 4.28 (0.98 ± 0.17)	4.07 ± 3.37 (0.98 ± 0.17)
	Test set	OD	3.51 ± 2.77 (0.71 ± 0.11)	3.19 ± 2.46 (0.71 ± 0.11)	3.34 ± 2.81 (0.71 ± 0.11)

In particular, we do not aim at segmenting the whole vascular tree.
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