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Introduction
The properties of transport in plasmas and/or in gases at high tempera-
ture (> 4000K) play a key role in several applications, like the area of
electric arc, plasma welding, plasma cutting and the field of aerospace
problems for example atmospheric entry flights [1] in which we need
an accurate computation of the transport properties. The estimation
of transport coefficients is very difficult to do experimentally at high
temperature, thus the theoretical/numerical calculation is the adequate
method.

Two approaches solutions of the Boltzmann integro-differential equa-
tion have been proposed by Grad [2] and Chapman-Enskog [3] using
the analysis of rigorous kinetic theory. The first method is called the
Grad’s moment method and second method Chapman-Enskog is the
most used in the calculation of transport coefficients and we have opted
for this method.

Transport Coefficients
Gradients in concentration, velocity and temperature, cause a net dis-
placement or a net transport of mass, momentum, and energy, respec-
tively [4]. We can formulate mathematically this notion of transport as
general form of a flux:

~J = −α~∇ϕ (1)

where ~J is the flux vector appropriate to quantity ϕ, and α is a propor-
tionality constant known as the transport coefficient.

Chapman-Enskog [3] have formulated all transport coefficients in
term of collision integrals [2] and we can show these coefficients in
their first approximation as follows:

•Coefficient of Self-diffusion (m2s−1):

D(T ) = 2.628× 10−7
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•Viscosity (kg m−1s−1):

η(T ) = 2.669× 10−6 (TM)
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• Thermal Conductivity (J m−1 s−1 K−1):

κ(T ) = 8.3227× 10−5
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where M , p, and T are the molecular weight of the particle, the pres-
sure in atmosphere, and Temperature in Kelvin, respectively. Ω2,2

and Ω1,1 (Å2) are the collision integrals which are formulated by
Hirschfelder [2] as:

Ω`,s(T ) =

√
KT

2πm

∫ ∞
0

e−γ
2
γ2s+3Q`(E)dγ (5)

`, s are the orders of approximation, K is the Boltzmann constant and
m is the mass of species. γ2 = E/KT is the reduced energy of the
colliding particles and Q(E) is the integral cross section defined as:

Q`(E) = 2π

∫ π

0
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)
σ (χ,E) sin (χ) dχ (6)
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where b is the impact parameter, σ (χ,E) is the differential scattering
cross section:

σ (χ,E) =
b

sin (χ)

∣∣∣∣dbdχ
∣∣∣∣ (8)

χ is the deflection angle given by the equation:

χ(E, b) = π − 2b

∫ ∞
rm

dr/r2(
1− b2/r2 − V (r)/E

) (9)

where rm is the distance of closest approach and V (r) is the interac-
tion potential between colliding particles and it is the most interested
parameter for the study of the collision problem [2].

Singularity Problems
We distinguish three main singularities when we evaluate numerically
the collision cross section.
1. Rainbow Scattering: One can remark in equation (8) that if

(dχ/db = 0) then the differential cross section will be infinite
(σ (χ,E)→∞).

2. Glory Scattering: This singularity occurs when the angle of deflec-
tion is a multiple of π (χ = nπ), consequently sin(χ) = 0 and the
differential cross section will be infinite (σ (χ,E)→∞).

3. Orbiting: This singularity [5] is the most important anomalous that
appears when calculating the total cross section equation (7). It
means that when a particle collides with another one it can be that
the two particles orbit each other, therefore the total cross section
Q(E) may have many oscillations and the computing of Q(E) be-
comes very hard to do.

Numerical Calculation
The transport coefficients formulated in equation (2), (3) and (4) are
expressed in function of collision integrals equation (5), and the colli-
sion integral is function of collision cross section equation (7) which is
itself function of angle of deflection equation (9). In summary, to com-
pute the transport coefficients returns to evaluate efficiently the three
integrals which are included one into the other one. We have developed
a numerical program which compute the three integrals in same time
using the Clenshaw-Curtis quadrature [6], and we have also succeeded
to eliminate the singularities that occur principally in cross section in-
tegrals by introducing an adequate analytical expression in the regions
where occur these singularities. Our program has been used to cal-
culate the transport coefficients of the Helium plasma, the results in
table 1 are compared with those of literature [7] and they are in good
agreement.

T(K) η (µ.Pa.s) κ (mW.m−1.K−1) D (cm2.s−1)

100 9.410 73.307 0.262
200 15.061 117.326 0.853
300 19.885 154.904 1.705
400 24.276 189.109 2.793
500 28.385 221.117 4.101
1000 46.613 363.106 13.661
2000 77.922 606.996 46.349
3000 106.248 827.645 95.665
4000 133.049 1036.421 160.755
5000 158.822 1237.182 241.290
7000 208.795 1626.459 447.861
9000 257.533 2006.116 711.852
10000 280.895 2188.097 865.839

Table 1: Transport coefficients of Helium versus temperature

For temperatures below 10000K we have taken account only neutral
particles because at such temperature the presence of ions and elec-
trons is negligible. At high temperature (T > 10000) we have to take
account all interactions which may occur between neutrals, ions and
electrons and the results are shown in Figures 1,2,3 and 4.
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Figure 1: Viscosity of equilibrium helium plasma
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Figure 2: Thermal conductivity of equilibrium helium plasma
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Figure 3: Multicomponenent diffusion coefficient between He and He+
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Figure 4: Multicomponenent diffusion coefficient between He and e−

Conclusion
We have performed a new efficient method to calculate numerically the transport
coefficients at high temperature. Viscosity, diffusion coefficient and thermal conduc-
tivity were computed successfully for the equilibrium helium plasma which are in
good agreement whith those in the litterature.
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