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Sideband holography can be used to get fields images (E0 and E1) of a vibrating object for both
the carrier (E0) and the sideband (E1) frequency with respect to vibration. We propose here to
record E0 and E1 sequentially, and to image the correlation E1E

∗

0 . We show that this correlation is
insensitive the phase related to the object roughness and directly reflect the phase of the mechanical
motion. The signal to noise can be improved by averaging the correlation over neighbor pixel.
Experimental validation is made with vibrating cube of wood and with a clarinet reed. At 2 kHz,
vibrations of amplitude down to 0.01 nm are detected.
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There is a big demand for full field vibration measure-
ments, in particular in industry. Different holographic
techniques are able to image and analyze such vibrations.
Double pulse [1, 2] or multi pulse holography [3] records
several holograms with time separation in the 1...1000 µs
range, getting the instantaneous velocity from the phase
difference. If the vibration frequency is not too high, one
can also directly track the vibration of the object with
fast CMOS cameras [4, 5]. The analysis of the motion
can be done by phase difference or by Fourier analysis in
the time domain. For periodic vibration motions, mea-
surements can be done with slow camera. Indeed, an har-
monically vibrating object illuminated by a laser yields
alternate dark and bright fringes [6], that can be analyzed
by time averaged holography [7]. Although the time av-
eraged method gives a way to determine the amplitude
of vibration [8] quantitative measurement remains quite
difficult for low and high vibration amplitudes.
We have developed heterodyne holography [9, 10],

which is a variant of phase shifting holography, in which
the frequency, phase and amplitude of both reference and
signal beam are controlled by acousto optic modulators
(AOM). Heterodyne holography is thus extremely versa-
tile. By shifting the frequency of the local oscillator ωLO

with respect to illumination ω0, it is for example possible
to detect the holographic signal at a frequency ω different
than illumination ω0. This ability is extremely useful to
analyze vibration, since heterodyne holography can de-
tect selectively the signal that is scattered by object on
vibration sideband of frequency ωm = ω0 +mωA, where
ωA is the vibration frequency and m and integer index.
As was reported by Ueda et al, [11] the detection of the

sidebandm=1 is advantageous when the vibration ampli-
tude is small. Nanometric vibration amplitude measure-
ments were achieved with sideband digital holography
on the m = 1 sideband [12], and comparison with single
point laser interferometry has been made [13]. Verrier et

al. [14] have shown that one can simultaneously measure
E0 and E1 by using a local oscillator with two frequency
components. One can thus infer the mechanical phase
of the vibration [15]. However, Bruno et al [16] shows
that this simultaneous detection of E0 and E1 can lead
to cross talk, and to a loss of detection sensitivity, which
becomes annoying when the vibration amplitude is small.
In this letter, we show that simultaneous detection of

E0 and E1 is not necessary, and that equivalent or supe-
rior performances can be obtained by detecting E0 and
E1 sequentially. Indeed, the cross talk effects seen by
Bruno et al. [16] disappear in that case. We also show
that the random phase variations caused by the rough-
ness of the object can be eliminated by calculating the
correlation E1E

∗
0 . It is then possible to increase the sig-

nal to noise ratio (SNR) by averaging correlation over
neighboring pixels. The sequential measurement of E0

and E1, and the calculation of the correlation E1E
∗
0 ,

make possible to image the vibration “full field”, and to
measure quantitatively its amplitude and phase. Maxi-
mum sensitivity is achieved by focusing the illumination
in the studied point and by averaging the correlation in
that region. Finally, we prove that the sensitivity is lim-
ited by a sideband signal of one photo-electron per de-
modulated image sequence. The device and method were
validated experimentally by studying a cube of wood vi-
brating at ≃ 20 kHz, and a clarinet reed at ≃ 2 kHz.
Measurement sensitivity of 0.01 nm for a vibration at 2
kHz, comparable to the sensitivity obtained by Bruno et
al. [16] at 40 kHz, is demonstrated.
Consider an object illuminated by a laser at frequency

ω0 that vibrate at frequency ωA with an out of plane vi-
bration amplitude zmax. The out of plane coordinate is
z(t) = zmaxsin(ωAt). The field scattered by the object
is E = E(t)eiω0t + c.c., where c.c. is the complex conju-
gate and E(t) the field complex amplitude. In reflection
geometry, we have

E(t) = Ewoe
|Φ|sin(ωAt+argΦ)

where Ewo is the complex field without movement,
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FIG. 1. Heterodyne holography setup applied to analyse vi-
bration. L: main laser; AOM1, AOM2: acousto-optic modu-
lators; M: mirror; BS: beam splitter; CCD: camera.

and Φ is a complex quantity that describes the
phase modulation. The phase of this modulation is
argΦ, while the amplitude is |Φ| = 4πzmax/λ. Be-
cause of the Jacobi-Anger expansion, we have E(t) =
Ewo

∑

m Jm(|Φ|) ejm(ωAt+arg Φ) where Jm is the mth-
order Bessel function of the first kind. The scattered
field E is then the sum of fields components Em =
Emeiωmt + c.c. of frequency ωm = ω0 + mωA, where
m is the sideband index (m = 0 for the carrier) with
Em = Ewo Jm(|Φ|) ejm arg Φ. When the vibration am-
plitude Φ becomes small, the energy within sidebands
decrease very rapidly with the sideband indexes m, and
one has only to consider the carrier m = 0, and the first
sideband m = ±1. We have thus:

E0(Φ) = Ewo J0(|Φ|) (1)

E1(Φ) = Ewo J1(|Φ|) e
j arg Φ

Note that time averaged holography [7] that detects the
carrier field E0 is not efficient in detecting small ampli-
tude vibration |Φ|, because E0 varies quadratically with
|Φ|. On the other hand, sideband holography that is able
to detect selectively the sideband field E1 is much more
sensitive, because E1 varies with linearly with |Φ|.
One must notice that the field scattered by the sam-

ple without vibration Ewo depends strongly on the x, y
position. In a typical experiment, the sample rugosity is
such that this field is a fully developed speckle. The re-
constructed fields E0 and E1 are thus random in phase,
from one pixel (x, y) to the next (x + 1, y). One can-
not thus simply extract the phase of the vibration from
a measurement made on a single sideband. To remove
the pixel to pixel random phase of Ewo, we propose to
record the hologram successively on the carrier m = 0
and the sideband m = 1, to reconstruct the correspond-
ing field image of the object E0(x, y) and E1(x, y), and
to calculate and image the correlation E1E

∗
0 , since this

correlation do not involves Ewo, but |Ewo|
2, which is real

and has no phase. Indeed, we have:

E1 E∗
0 = |Ewo|

2 J1(|Φ|) J0(|Φ|) e
j arg Φ (2)

FIG. 2. (a,b) Reconstructed images of a cube of wood vi-
brating at ωA/2π= 21.43 kHz. (a) E1E

∗

0 correlation im-
age: brightness is amplitude (i.e. |E1E

∗

0 |), color is phase (i.e.
argE1E

∗

0). (b) 3D display of the phase argE1E
∗

0 .

For small vibration amplitude (|Φ| ≪ 1), correlation sim-
plifies to E1 E∗

0 ≃ |Ewo|
2Φ/2. Correlation E1 E∗

0 is a
powerful tool since gives directly the phase of mechani-
cal motion argΦ. Nevertheless, problems can be encoun-
tered when the signal |Ewo|

2 scattered without vibration
vanish.
Figure 1 shows the holographic experimental setup

used to measure successively E0 and E1 in order to get
E1E

∗
0 . The main laser L is a Sanyo DL-7140-201 diode

laser (λ=785 nm, 50 mW ). It is split into an illumination
beam (frequency ωI , complex field EI), and in a LO beam
(ωLO, ELO). The illumination light scattered by the ob-
ject interferes with the reference beam on the camera
(Lumenera 2-2: 1616×1216 pixels of 4.4×4.4µm) whose
frame rate is ωCCD=10 Hz. To simplify further Fourier
transform calculations, the 1616×1216 measured matrix
is truncated to 1024× 1024.
The illumination and LO beam frequencies ωLO and ωI

are tuned by using two acousto-optic modulators AOM1
and AOM2 (Bragg cells), and we have ωLO = ωL +
ωAOM1 and ωI = ωL+ωAOM2, where ωAOM1/2 ≃80 MHz
are the frequencies of RF signals that drive the AOMs.
The RF signals are tuned to have ωLO − ωI = ωCCD/4
to get E0, and to have ωLO − ωI = ωA + ωCCD/4 to get
E1. Successive sequences of nmax = 128 camera frames
(i.e. I0, I1...I127) are recorded by tuning the RF signals
first on the carrier (E0), then on the sideband (E1). The
carrier and sideband complex hologram H are obtained
from these sequences by 4 phase demodulation with nmax

frames:

H(x, y) =

n=nmax−1
∑

n=0

jnIn(x, y) (3)

The fields images of the object E0(x, y) and E1(x, y) are
then reconstructed from H by the Schnars et. al [17]
method that involves 1 Fourier transformation. The cor-
relation E1E

∗
0 is then calculated.

Figure 2 (a) shows the reconstructed correlation im-
ages of a cube of wood (2 cm×2 cm) vibrating at its res-
onance frequency ωA/2π= 21.43 kHz. Brightness is the
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correlation amplitude (i.e. |E1E
∗
0 |) and color the corre-

lation phase (i.e. argE1E
∗
0 ). As seen, neighbor point

have the same phase (same color). In order to get better
SNR for the phase, the complex correlation signal E1E

∗
0

is averaged over neighbor x, y points by using a 2D Gaus-
sian blur filter of radius 4 pixels. Figure 2 (b) displays
the phase of the averaged correlation E1E

∗
0 in 3D. As

seen, the opposite corners (upper left and bottom right
for example) vibrate in phase, while the neighbor cor-
ners (upper left and upper right for example) vibrate in
phase opposition. Note that the cube is excited in one of
its corner by a needle. This may explain why the opposite
corners are not perfectly in phase in Fig. 2 (c).
We can go further and use E0 and E1 to calculate the

vibration complex amplitude Φ. To increase the SNR
let us average, over neighbor reconstructed pixels, the
correlation E1E

∗
0 and the carrier intensity |E0|

2:

|E0|
2 = |Ewo|

2 J2
0 (Φ) ≃ |Ewo|

2Φ/2 (4)

By averaging we get:

〈E1E
∗
0 〉x,y = (1/Npix)

∑

x′,y′

E1(x
′, y′)E∗

0 (x
′, y′) (5)

≃ (Φ(x, y)/2) (1/Npix)
∑

x′,y′

|Ewo(x
′, y′)|2

〈|E0|
2〉x,y ≃ (1/Npix)

∑

x′,y′

|Ewo(x
′, y′)|2

where
∑

x′,y′ is the summation over the Npix pixels of the
averaging zone located around the point of coordinate
x, y. The vibration amplitude Φ is then

Φ(x, y) = 2〈E1E
∗
0 〉x,y/〈|E0|

2〉x,y (6)

We get here Φ that gives both the amplitude zmax =
λ|Φ|/4π and the phase argΦ of the mechanical motion.
Note that it is also possible to get Φ by calculating the
ratio E1/E0 ≃ Φ as done by Verrier et. al [14], but
the ratio calculation is unstable for the points x, y of the
object where Ewo is close to zero.
To evaluate the limits of sensibility of the correlation

+ averaging method, we have calculated by Monte Carlo
the detection limit of |Φ|, for an ideal holographic detec-
tion that is only limited by shot noise. The calculation
is similar to one made by Lesaffre et al. [18]. For each
pixel (x, y), each frame (n) and each sequence (m=0 or
m=1), we have calculated the ideal camera signal I ′n in
the absence of shot noise. We have I ′n = |ELO+jnE′

0/1|
2,

where the factor jn accounts for the phase shift of the lo-
cal oscillator field ELO with respect to object field E0/1

for frame n. To account for the roughness of the sample,
E′

0 and E′
1 are taken proportional to a Gaussian speckle

E′
wo(x, y) that is uncorrelated from one pixel to the next,

but remains the same for all frames n and all sequences
m=0 or 1. To account for shot noise, we have added to I ′n
a Gaussian random noise s of variance of

√

I ′n, where I ′n
is expressed in electron photo electron Units. The noise
s is uncorrelated from one pixels x, y to another, from

FIG. 3. Ratio |〈E1E
∗

0 〉|/〈|E0|
2〉 calculated by Monte Carlo

by decreasing the sideband signal |E1|
2. Horizontal axis is

the total sideband energy: nmaxNpix〈|E1|
2〉 in photo elec-

tron Units. Simulation is made with nmax=400, Npix = 502,
|ELO|

2 = 104 and |E0|
2 = 102 photo electrons.

FIG. 4. (a) Clarinet reed with illumination beam focused
in x0, y0. (b) Sideband m = 1 reconstructed image of the
vibrating reed. The display is made in arbitrary log scale for
the field intensity |E1(x, y)|

2.

one frame n to another, and from one sequence m to an-
other. By this way, we have obtained the Monte Carlo
frame signals In = I ′n + s with whom we have performed
the 4 phase demodulation with nmax frames of Eq. (3).
We have then calculated the reconstructed signal E0 and
E1, the correlations and intensities E1E

∗
0 and |E0|

2, and
the means 〈E1E

∗
0 〉 and 〈|E0|

2〉. We have then calculated
the ratio 〈E1E

∗
0 〉/〈|E0|

2〉 that gives Φ using Eq. (6).

Figure 3 gives the result of the Monte Carlo simulation
for the ratio |〈E1E

∗
0 〉|/〈|E0|

2〉. Each point correspond
to simulation made with a double sequence m=0 and
1. The simulation is performed by decreasing the side-
band averaged signal field intensity 〈|E1|

2〉=1, 0.5, 0.25
... photo electron per pixel and per frame. The other
parameters of the simulation are nmax= 400, Npix=502,
|ELO|

2=104 and 〈|E0|
2〉=102 photo electrons. For each

value of 〈|E1|
2〉, 10 simulations are performed. As can be

seen in Fig. 3 the ratio |〈E1E
∗
0 〉|/〈|E0|

2〉 decreases with
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the sideband signal E1 proportionally with
√

〈|E1|2〉.
When E1 becomes very small, the ratio reaches a noise
floor related to shot noise. To simplify the present discus-
sion, the results are displayed as a function of the total
number of photos electrons on the sideband m =1. The
x-axis is thus nmaxNpix〈|E1|

2〉. As seen of Fig.3 the noise
floor is reached for nmaxNpix〈|E1|

2〉 = 1. We have ver-
ified by making simulation not displayed on Fig.3 that
this result do not depend on |ELO|

2 and 〈|E0|
2〉, pro-

vided that |ELO|
2 ≫ 〈|E0|

2〉 ≫ 〈|E1|
2〉. The noise floor

corresponds thus to a minimal ratio |〈E1E
∗
0 〉|/〈|E0|

2〉 =

1/
√

nmaxNpix〈|E0|2〉 (i.e. to 10−4), and to a minimal de-

tectable vibration amplitude Φ = 2/
√

nmaxNpix〈|E0|2〉
(i.e. to 2 10−4).

FIG. 5. Ratio |〈E1E
∗

0 〉|/〈|E0|
2〉 as function of the reed ex-

citation voltage converted in vibration amplitude zmax in
nm Units. Measurements: dark grey points, and theory
J1(|Φ|)/J0(|Φ|) ≃ |Φ|/2 : light grey curve.

We have tested the ability of the correlation + av-
eraging method to measure low vibration amplitude in
an experiment made with a vibrating clarinet reed ex-
cited at ωA=2 kHz with a loudspeaker. In order to in-

crease the sensitivity, the vibration amplitude is mea-
sured on a single point (x0, y0) (see Fig.4 (a)). The
illumination has been focused on that point, and the
calculations have been made with an averaging region
centered on that point, whose size (radius 50 pixels for
example) has been chosen to include the whole illumina-
tion zone. We have reconstructed the field image of the
reed at the carrier frequency (i.e. E0(x, y)) (see Fig.4
(b)), and verified on the holographic data that most of
the energy |E0|

2 is within the averaging zone x0, y0. Se-
quences of nmax = 128 frames In have been recorded for
both carrier (E0) and sideband (E1), while the peak to
peak voltage Vpp of the loudspeaker sinusoidal signal has
been decreased. We have then calculated H by Eq. (3),
reconstructed the fields images of the reed E0 and E1,
and calculated the correlation E1E

∗
0 , the intensity|E0|

2,
and the means 〈E1E

∗
0 〉 and 〈|E0|

2〉. We have then calcu-
lated the ratio |〈E1E

∗
0 〉|/〈|E0|

2〉. The latter is plotted on
Fig.5 as a function of the loudspeaker voltage Vpp that
is proportional to vibration amplitude Φ. The measured
points follow |〈E1E

∗
0 〉|/〈|E0|

2〉 ≃ |Φ|/2 ∝ Vpp down to
a vibration amplitude noise floor of |Φ| ≃ 7 10−5 that
corresponds to zmax ≃ 10−2 nm i.e λ/78000. Note that
the noise floor measure here is about ×20 lower than in
previous holographic experiments [12, 14] and lower than
the limit λ/3500 predicted by Ueda [11]. Similar noise
floor has been detected by holography by Bruno et al.
[16], but at much higher vibration frequency (40 kHz).
In future work, it would be interesting to explore the

limits of sensitivity of the correlation technique for low
vibration amplitude. This can be done by using a laser
with lower noise, by increasing the vibration frequency
ωA (and in all case by measuring the laser noise at ωA).
One could also increase the illumination power, and the
number of frame of the coherent detection (nmax > 128).
A better control of the vibration ωA versus camera ωCCD

frequencies, and or a proper choice of the demodulation
equation could be also important, in order to avoid leak
detection of E0, when detection is tuned on E1.
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