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Sideband holography can be used to get fields images (E0 and E1) of a vibrating object for both the carrier (E0) and the sideband (E1) frequency with respect to vibration. We propose here to record E0 and E1 sequentially, and to image the correlation E1E * 0 . We show that this correlation is insensitive the phase related to the object roughness and directly reflect the phase of the mechanical motion. The signal to noise can be improved by averaging the correlation over neighbor pixel. Experimental validation is made with vibrating cube of wood and with a clarinet reed. At 2 kHz, vibrations of amplitude down to 0.01 nm are detected.

There is a big demand for full field vibration measurements, in particular in industry. Different holographic techniques are able to image and analyze such vibrations. Double pulse [START_REF] Pedrini | Digital doublepulsed holographic interferometry for vibration analysis[END_REF][START_REF] Pedrini | Digital double pulse-TV-holography[END_REF] or multi pulse holography [START_REF] Pedrini | Transient vibration measurements using multi-pulse digital holography[END_REF] records several holograms with time separation in the 1...1000 µs range, getting the instantaneous velocity from the phase difference. If the vibration frequency is not too high, one can also directly track the vibration of the object with fast CMOS cameras [START_REF] Pedrini | High-speed digital holographic interferometry for vibration measurement[END_REF][START_REF] Fu | Vibration measure-ment by temporal Fourier analyses of a digital hologram sequence[END_REF]. The analysis of the motion can be done by phase difference or by Fourier analysis in the time domain. For periodic vibration motions, measurements can be done with slow camera. Indeed, an harmonically vibrating object illuminated by a laser yields alternate dark and bright fringes [START_REF] Powell | Interferometric vibration analysis by wavefront reconstruction[END_REF], that can be analyzed by time averaged holography [START_REF] Picart | Timeaveraged digital holography[END_REF]. Although the time averaged method gives a way to determine the amplitude of vibration [START_REF] Picart | Some opportunities for vibration analysis with time averaging in digital Fresnel holography[END_REF] quantitative measurement remains quite difficult for low and high vibration amplitudes.

We have developed heterodyne holography [START_REF] Le Clerc | Numerical heterodyne holography with two-dimensional photodetector arrays[END_REF][START_REF] Le Clerc | Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography[END_REF], which is a variant of phase shifting holography, in which the frequency, phase and amplitude of both reference and signal beam are controlled by acousto optic modulators (AOM). Heterodyne holography is thus extremely versatile. By shifting the frequency of the local oscillator ω LO with respect to illumination ω 0 , it is for example possible to detect the holographic signal at a frequency ω different than illumination ω 0 . This ability is extremely useful to analyze vibration, since heterodyne holography can detect selectively the signal that is scattered by object on vibration sideband of frequency ω m = ω 0 + mω A , where ω A is the vibration frequency and m and integer index.

As was reported by Ueda et al, [START_REF] Ueda | Signal-to-noise ratio and smallest detectable vibration amplitude in frequency-translated holography: an analysis[END_REF] the detection of the sideband m=1 is advantageous when the vibration amplitude is small. Nanometric vibration amplitude measurements were achieved with sideband digital holography on the m = 1 sideband [START_REF] Psota | Measurement of piezoelectric transformer vibrations by digital holography[END_REF], and comparison with single point laser interferometry has been made [START_REF] Psota | Comparison of digital holographic method for very small amplitudes measurement with single point laser interferometer and laser Doppler vibrometer[END_REF]. Verrier et al. [START_REF] Verrier | Absolute measurement of small-amplitude vibrations by time-averaged heterodyne holography with a dual local oscillator[END_REF] have shown that one can simultaneously measure E 0 and E 1 by using a local oscillator with two frequency components. One can thus infer the mechanical phase of the vibration [START_REF] Bruno | Phase-sensitive narrowband heterodyne holography[END_REF]. However, Bruno et al [START_REF] Bruno | Holographic imaging of surface acoustic waves[END_REF] shows that this simultaneous detection of E 0 and E 1 can lead to cross talk, and to a loss of detection sensitivity, which becomes annoying when the vibration amplitude is small.

In this letter, we show that simultaneous detection of E 0 and E 1 is not necessary, and that equivalent or superior performances can be obtained by detecting E 0 and E 1 sequentially. Indeed, the cross talk effects seen by Bruno et al. [START_REF] Bruno | Holographic imaging of surface acoustic waves[END_REF] disappear in that case. We also show that the random phase variations caused by the roughness of the object can be eliminated by calculating the correlation E 1 E * 0 . It is then possible to increase the signal to noise ratio (SNR) by averaging correlation over neighboring pixels. The sequential measurement of E 0 and E 1 , and the calculation of the correlation E 1 E * 0 , make possible to image the vibration "full field", and to measure quantitatively its amplitude and phase. Maximum sensitivity is achieved by focusing the illumination in the studied point and by averaging the correlation in that region. Finally, we prove that the sensitivity is limited by a sideband signal of one photo-electron per demodulated image sequence. The device and method were validated experimentally by studying a cube of wood vibrating at ≃ 20 kHz, and a clarinet reed at ≃ 2 kHz. Measurement sensitivity of 0.01 nm for a vibration at 2 kHz, comparable to the sensitivity obtained by Bruno et al. [START_REF] Bruno | Holographic imaging of surface acoustic waves[END_REF] at 40 kHz, is demonstrated.

Consider an object illuminated by a laser at frequency ω 0 that vibrate at frequency ω A with an out of plane vibration amplitude z max . The out of plane coordinate is z(t) = z max sin(ω A t). The field scattered by the object is E = E(t)e iω0t + c.c., where c.c. is the complex conjugate and E(t) the field complex amplitude. In reflection geometry, we have

E(t) = E wo e |Φ|sin(ωAt+arg Φ)
where E wo is the complex field without movement, 

E 0 (Φ) = E wo J 0 (|Φ|) (1) E 1 (Φ) = E wo J 1 (|Φ|) e j arg Φ
Note that time averaged holography [START_REF] Picart | Timeaveraged digital holography[END_REF] that detects the carrier field E 0 is not efficient in detecting small amplitude vibration |Φ|, because E 0 varies quadratically with |Φ|. On the other hand, sideband holography that is able to detect selectively the sideband field E 1 is much more sensitive, because E 1 varies with linearly with |Φ|.

One must notice that the field scattered by the sample without vibration E wo depends strongly on the x, y position. In a typical experiment, the sample rugosity is such that this field is a fully developed speckle. The reconstructed fields E 0 and E 1 are thus random in phase, from one pixel (x, y) to the next (x + 1, y). One cannot thus simply extract the phase of the vibration from a measurement made on a single sideband. To remove the pixel to pixel random phase of E wo , we propose to record the hologram successively on the carrier m = 0 and the sideband m = 1, to reconstruct the corresponding field image of the object E 0 (x, y) and E 1 (x, y), and to calculate and image the correlation E 1 E * 0 , since this correlation do not involves E wo , but |E wo | 2 , which is real and has no phase. Indeed, we have: For small vibration amplitude (|Φ| ≪ 1), correlation simplifies to

E 1 E * 0 = |E wo | 2 J 1 (|Φ|) J 0 (|Φ|) e j arg Φ (2) 
E 1 E * 0 ≃ |E wo | 2 Φ/2. Correlation E 1 E *
0 is a powerful tool since gives directly the phase of mechanical motion arg Φ. Nevertheless, problems can be encountered when the signal |E wo | 2 scattered without vibration vanish.

Figure 1 shows the holographic experimental setup used to measure successively E 0 and E 1 in order to get 

E 1 E * 0 .
H(x, y) = n=nmax-1 n=0 j n I n (x, y) (3) 
The fields images of the object E 0 (x, y) and E 1 (x, y) are then reconstructed from H by the Schnars et. al [START_REF] Schnars | Direct recording of holograms by a CCD target and numerical reconstruction[END_REF] method that involves 1 Fourier transformation. The correlation E 1 E * 0 is then calculated. Figure 2 (a) shows the reconstructed correlation images of a cube of wood (2 cm×2 cm) vibrating at its resonance frequency ω A /2π= 21.43 kHz. Brightness is the correlation amplitude (i.e. |E 1 E * 0 |) and color the correlation phase (i.e. arg E 1 E * 0 ). As seen, neighbor point have the same phase (same color). In order to get better SNR for the phase, the complex correlation signal E 1 E * 0 is averaged over neighbor x, y points by using a 2D Gaussian blur filter of radius 4 pixels. Figure 2 (b) displays the phase of the averaged correlation E 1 E * 0 in 3D. As seen, the opposite corners (upper left and bottom right for example) vibrate in phase, while the neighbor corners (upper left and upper right for example) vibrate in phase opposition. Note that the cube is excited in one of its corner by a needle. This may explain why the opposite corners are not perfectly in phase in Fig. 2 (c).

We can go further and use E 0 and E 1 to calculate the vibration complex amplitude Φ. To increase the SNR let us average, over neighbor reconstructed pixels, the correlation E 1 E * 0 and the carrier intensity

|E 0 | 2 : |E 0 | 2 = |E wo | 2 J 2 (Φ) ≃ |E wo | 2 Φ/2 (4) 
By averaging we get:

E 1 E * 0 x,y = (1/N pix ) x ′ ,y ′ E 1 (x ′ , y ′ )E * 0 (x ′ , y ′ ) (5) ≃ (Φ(x, y)/2) (1/N pix ) x ′ ,y ′ |E wo (x ′ , y ′ )| 2 |E 0 | 2 x,y ≃ (1/N pix ) x ′ ,y ′ |E wo (x ′ , y ′ )| 2
where x ′ ,y ′ is the summation over the N pix pixels of the averaging zone located around the point of coordinate x, y. The vibration amplitude Φ is then

Φ(x, y) = 2 E 1 E * 0 x,y / |E 0 | 2 x,y (6) 
We get here Φ that gives both the amplitude z max = λ|Φ|/4π and the phase arg Φ of the mechanical motion. Note that it is also possible to get Φ by calculating the ratio E 1 /E 0 ≃ Φ as done by Verrier et. al [START_REF] Verrier | Absolute measurement of small-amplitude vibrations by time-averaged heterodyne holography with a dual local oscillator[END_REF], but the ratio calculation is unstable for the points x, y of the object where E wo is close to zero.

To evaluate the limits of sensibility of the correlation + averaging method, we have calculated by Monte Carlo the detection limit of |Φ|, for an ideal holographic detection that is only limited by shot noise. The calculation is similar to one made by Lesaffre et al. [START_REF] Lesaffre | Noise and signal scaling factors in digital holography in weak illumination: relationship with shot noise[END_REF]. For each pixel (x, y), each frame (n) and each sequence (m=0 or m=1), we have calculated the ideal camera signal I ′ n in the absence of shot noise. We have

I ′ n = |E LO +j n E ′ 0/1 | 2
, where the factor j n accounts for the phase shift of the local oscillator field E LO with respect to object field E 0/1 for frame n. To account for the roughness of the sample, E ′ 0 and E ′ 1 are taken proportional to a Gaussian speckle E ′ wo (x, y) that is uncorrelated from one pixel to the next, but remains the same for all frames n and all sequences m=0 or 1. To account for shot noise, we have added to I ′ n a Gaussian random noise s of variance of I ′ n , where I ′ n is expressed in electron photo electron Units. The noise s is uncorrelated from one pixels x, y to another, from We have tested the ability of the correlation + averaging method to measure low vibration amplitude in an experiment made with a vibrating clarinet reed excited at ω A =2 kHz with a loudspeaker. In order to in-crease the sensitivity, the vibration amplitude is measured on a single point (x 0 , y 0 ) (see Fig. 4 (a)). The illumination has been focused on that point, and the calculations have been made with an averaging region centered on that point, whose size (radius 50 pixels for example) has been chosen to include the whole illumination zone. We have reconstructed the field image of the reed at the carrier frequency (i.e. E 0 (x, y)) (see Fig. 4 (b)), and verified on the holographic data that most of the energy |E 0 | 2 is within the averaging zone x 0 , y 0 . Sequences of n max = 128 frames I n have been recorded for both carrier (E 0 ) and sideband (E 1 ), while the peak to peak voltage V pp of the loudspeaker sinusoidal signal has been decreased. We have then calculated H by Eq. ( 3), reconstructed the fields images of the reed E 0 and E 1 , and calculated the correlation E 1 E * 0 , the intensity|E 0 | 2 , and the means E 1 E * 0 and |E 0 | 2 . We have then calculated the ratio | E 1 E * 0 |/ |E 0 | 2 . The latter is plotted on Fig. 5 as a function of the loudspeaker voltage V pp that is proportional to vibration amplitude Φ. The measured points follow | E 1 E * 0 |/ |E 0 | 2 ≃ |Φ|/2 ∝ V pp down to a vibration amplitude noise floor of |Φ| ≃ 7 10 -5 that corresponds to z max ≃ 10 -2 nm i.e λ/78000. Note that the noise floor measure here is about ×20 lower than in previous holographic experiments [START_REF] Psota | Measurement of piezoelectric transformer vibrations by digital holography[END_REF][START_REF] Verrier | Absolute measurement of small-amplitude vibrations by time-averaged heterodyne holography with a dual local oscillator[END_REF] and lower than the limit λ/3500 predicted by Ueda [START_REF] Ueda | Signal-to-noise ratio and smallest detectable vibration amplitude in frequency-translated holography: an analysis[END_REF]. Similar noise floor has been detected by holography by Bruno et al. [START_REF] Bruno | Holographic imaging of surface acoustic waves[END_REF], but at much higher vibration frequency (40 kHz).

In future work, it would be interesting to explore the limits of sensitivity of the correlation technique for low vibration amplitude. This can be done by using a laser with lower noise, by increasing the vibration frequency ω A (and in all case by measuring the laser noise at ω A ).

could also increase the illumination power, and the number of frame of the coherent detection (n max > 128). A better control of the vibration ω A versus camera ω CCD frequencies, and or a proper choice of the demodulation equation could be also important, in order to avoid leak detection of E 0 , when detection is tuned on E 1 .
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 1 FIG. 1. Heterodyne holography setup applied to analyse vibration. L: main laser; AOM1, AOM2: acousto-optic modulators; M: mirror; BS: beam splitter; CCD: camera.

FIG. 2 .

 2 FIG. 2. (a,b) Reconstructed images of a cube of wood vibrating at ωA/2π= 21.43 kHz. (a) E1E * 0 correlation image: brightness is amplitude (i.e. |E1E * 0 |), color is phase (i.e. arg E1E * 0 ). (b) 3D display of the phase arg E1E * 0 .

  The main laser L is a Sanyo DL-7140-201 diode laser (λ=785 nm, 50 mW ). It is split into an illumination beam (frequency ω I , complex field E I ), and in a LO beam (ω LO , E LO ). The illumination light scattered by the object interferes with the reference beam on the camera (Lumenera 2-2: 1616 × 1216 pixels of 4.4 × 4.4µm) whose frame rate is ω CCD =10 Hz. To simplify further Fourier transform calculations, the 1616 × 1216 measured matrix is truncated to 1024 × 1024. The illumination and LO beam frequencies ω LO and ω I are tuned by using two acousto-optic modulators AOM1 and AOM2 (Bragg cells), and we have ω = ω L + ω AOM1 and ω I = ω L +ω AOM2 , where ω AOM1/2 ≃80 MHz are the frequencies of RF signals that drive the AOMs. The RF signals are tuned to have ω LO -ω I = ω CCD /4 to get E 0 , and to have ω LO -ω I = ω A + ω CCD /4 to get E 1 . Successive sequences of n max = 128 camera frames (i.e. I 0 , I 1 ...I 127 ) are recorded by tuning the RF signals first on the carrier (E 0 ), then on the sideband (E 1 ). The carrier and sideband complex hologram H are obtained from these sequences by 4 phase demodulation with n max frames:
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 3 FIG. 3. Ratio | E1E * 0 |/ |E0| 2 calculated by Monte Carlo by decreasing the sideband signal |E1| 2 . Horizontal axis is the total sideband energy: nmaxNpix |E1| 2 in photo electron Units. Simulation is made with nmax=400, Npix = 50 2 , |ELO| 2 = 10 4 and |E0| 2 = 10 2 photo electrons.

Figure 3

 3 gives the result of the Monte Carlo simulation for the ratio | E 1 E * 0 |/ |E 0 | 2 . Each point correspond to simulation made with a double sequence m=0 and 1. The simulation is performed by decreasing the sideband averaged signal field intensity |E 1 | 2 =1, 0.5, 0.25 ... photo electron per pixel and per frame. The other parameters of the simulation are n = 400, N pix =50 2 , |E LO | 2 =10 4 and |E 0 | 2 =10 2 photo electrons. For each value of |E 1 | 2 , 10 simulations are performed. As can be seen in Fig. 3 the ratio | E 1 E * 0 |/ |E 0 | 2 decreases with the sideband signal E 1 proportionally with |E 1 | 2 . When E 1 becomes very small, the ratio reaches a noise floor related to shot noise. To simplify the present discussion, the results are displayed as a function of the total number of photos electrons on the sideband m =1. The x-axis is thus n max N pix |E 1 | 2 . As seen of Fig.3 the noise floor is reached for n max N pix |E 1 | 2 = 1. We have verified by making simulation not displayed on Fig.3 that this result do not depend on |E LO | 2 and |E 0 | 2 , provided that |E LO | 2 ≫ |E 0 | 2 ≫ |E 1 | 2 . The noise floor corresponds thus to a minimal ratio | E 1 E * 0 |/ |E 0 | 2 = 1/ n max N pix |E 0 | 2 (i.e. to 10 -4 ), and to a minimal detectable vibration amplitude Φ = 2/ n max N pix |E 0 | 2 (i.e. to 2 10 -4 ).
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 5 FIG. 5. Ratio | E1E * 0 |/ |E0| 2 as function of the reed excitation voltage converted in vibration amplitude zmax in nm Units. Measurements: dark grey points, and theory J1(|Φ|)/J0(|Φ|) ≃ |Φ|/2 : light grey curve.