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Abstract—For concurrent and large systems, specification step
is a crucial point. Combinatory explosion is a limit that can be
encountered when a state space exploration is driven on large
specification modeled with Petri nets. Considering bounded Petri
nets, technics like unfolding can be a way to cope with this
problem. This paper is a first attempt to present an axiomatic
model to produce the set of processes of unfoldings into a canonic
form. This canonic form allows to define a conflict equivalence.

Index Terms—Petri Nets; Unfolding; Branching process; Alge-
bra.

I. INTRODUCTION

The complexity and the criticity of some real-time system
(transportation systems, robotics), but also the fact that we
can no longer tolerate failures in less critical realtime systems
(smartphones, warning radar devices) enforces the use of
verification and validation methods. Petri nets are a widely
used tool used to model critical real-time systems. The formal
validation of properties is then based on the computation of
state space. But, this computation faces generally, for highly
concurrent and large systems, to combinatory explosion.

The specification of parallel components is generally mod-
eled by the interleavings of the behavior of each components.
This semantics of interleaving is exponentially costly in the
computing of the state space. Partial order semantics have
been introduced to shunt those interleavings. This semantics
prevents combinatory explosion by keeping parallelism in the
model.

The objective of this approach is to pursue a theoretical as-
pect: to speed up the identification of the branching processes
of an unfolding. The notion of equivalence can be used to
make a new type of reduction of unfoldings.

Finite prefixes of net unfoldings constitute a first trans-
formation of the initial Petri Net (PN), where cycles have
been flattened. This computation produces a process set where
conflicts act as a discriminating factor. A conflict partitions
a process in branching processes. An unfolding can be
transformed into a set of finite branching processes. These

processes constitute a set of acyclic graphs - several graphs
can be produced when the PN contains parallelism - built
with events and conditions, and structured with two operators:
causality and true parallelism. An interesting particularity of
an unfolding is that, in spite of the loss of global marking,
these processes contain enough information to reconstitute the
reachable markings of the original Petri nets. In most of the
cases, unfoldings are larger than the original Petri net. This
is provoked essentially when values of precondition places
exceed the precondition of non simple conflicts. This produces
a lot of alternative conditions. In spite of that, a step has been
taken forward: cycles have been broken and the conflicts have
structured the nets in branching processes.

This paper proposes proposes an algebraic model for the
definition and the reduction of the branching process of an
unfolding. This paper extends [1] to reset Petri nets. Reset
arcs are particularly useful, they bring expressiveness and
compactness. In the example presented in the Section VI, reset
arcs allow to clear the states particularly when the user has
several attempts to enter its code.

A lot of works have been proposed to improve unfolding
algorithms [2][3][4][5]. Is there another way to draw on recent
works about unfolding? In spite of the eventual increase of
the size of the net unfoldings, the suppression of conflicts
and loops has decreased its structural complexity, allowing
to compute the state space and to the extract of semantic
information.

From a developer’s point of view an unfolding can be
efficiently coded by a boolean table of events. This table
describes every pair to pair relation between events. This table
has been the starting point of our reflection: it stresses the point
that a new connector can be defined to express that a set of
events belong to the same process. This connector allows to
aggregate all the events of a branching process. For example,
a theorem is proposed to compute all the branching processes,
in canonic form, for chains of conflicts of the kind illustrated
in Figure 1.

The work presented in this paper takes place in the context
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Figure 1. Chain of conflicts.

TABLE I. Process syntax.

Capacity α := x̄ | x | τ
Proces p ::= α.p | p||q | p+ q | D(x̃) | p\x | 0

of combining process algebra [6][7] and Petri nets [8].

The axiomatic model of Milner’s process with Calculus
of Communicating Systems (CCS) is compared with the
branching processes and related to other works in Section II.
Then, after a brief presentation of Petri nets and unfoldings
in Section III, Section IV presents our contribution with the
definition of an axiomatic framework and the description of
properties. The last section presents examples, in particular,
illustrating a conflict equivalence.

II. RELATED WORK

Process algebra appeared with Milner [7] on the Calculus
of Communicating Systems (CCS) and the Communicating
Sequential Processes (CSP) of Hoare [6]. These approaches
are not equivalent but share similar objectives. The algebra
of branching process proposed in this paper is inspired by the
process algebra of Milner. CCS is based on two central ideas:
The notion of observability and the concept of synchronized
communication; CCS is as an abstract code that corresponds
to a real program whose primitives are reduced to simple send
and receive on channels. The terms (or agents) are called
processes with interaction capabilities that match requests
communication channels. The elements of the alphabet are
observable events and concurrent systems (processes). They
can be specified with the use of three operators: sequence,
choice, and parallelism. A main axiom of CCS is the rejection
of distributivity of the sequence upon the choice. Let p and q
be two processes, the complete syntax of process is described
in the Table I.

a b

c

a b

c
a

Figure 2. Milner: rejection of distributivity of sequence on choice.

Consider an observer. In the left automaton of Figure 2,
after the occurrence of the action a, he can observe either b or
c. In right automaton, the observation of a does not imply that
b and c stay observable. The behavior of the two automata are
not equivalent.

In CCS, Milner defines the observational equivalence. Two
automata are observational equivalent if there are bisimular.

On a algebraic point of view, the distributivity of the sequence
on the choice is rejected in equation (1):

a.(b+ c) 6≡behaviorally a.b+ a.c (1)

The key point of our approach is based on the fact that this
distributivity is not rejected in occurrence nets. The timing
of the choices in a process is essential [9]. The nodes of
occurrence nets are events. An event is a fired transition of the
underlying Petri net. In CCS, an observer observes possible
futures. In occurrence nets, the observer observes arborescent
past. This controversy in the theory of concurrency is an
important topic of linear time versus branching time. In the
model, equation (2) holds:

a ≺ (b ⊥ c) ≡ (a ≺ b) ⊥ (a ≺ c) (2)

Equation (2) is a basic axiom of our algebraic model. The
equivalence relation differs then from bisimulation equiva-
lence. This relation will be defined in the following with the
definition of the canonic form of an unfolding.

Branching process does not fit with process algebra on
numerous other aspects. For example, a difference can be
noticed about parallelism. While unfolding keeps true paral-
lelism, process algebra considers a parallelism of interleaving.
Another difference is relative to events and conditions, which
are nodes of different nature in an unfolding. Conditions and
events differ in term of ancestor. Every condition is produced
by at most one event ancestor (none for the condition standing
for m0, the initial marking), whereas every event may have 1
or n condition ancestor(s).

In CCS, there is no distinction between conditions and
events. Moreover, conditions will be consumed defining pro-
cesses as set of events. However, a lot of works [5][9][10]
have shown the interest of an algebraic formalization: it allows
the study of connectives, the compositionally and facilitates
reasoning (tools like [11]). Let have two Petri nets; it is
questionable whether they are equivalent. In principle, they are
equivalent if they are executed strictly in the same manner.
This is obviously a too restrictive view they may have the
same capabilities of interaction without having the same
internal implementations. These works resulted to find matches
(rather flexible and not strict) between nets. Mention may be
made among other the occurrence net equivalence [12], the
bisimulation equivalence [13], the partial order equivalence
[14], or the ST-bisimulation equivalence [15]. These different
equivalences are based either on the isomorphism between the
unfolding of nets or on observable actions or traces of the
execution of Petri nets or other criteria.

The approach developed in this paper proposes a new
equivalence, which is weaker than a trace equivalence; it does
not preserves traces but preserves conflicts. The originality
of the approach is to encapsulate causality and concurrency
in a new operator, which “aggregates” and “abstracts” events
in a process. This new operator reduces the representation
and accelerates the reduction process. This paper intends first,
to give an algebraic model to an unfolding, and second,



to establish a canonic form leading to the definition of an
equivalence conflict.

III. UNFOLDING A PETRI NET

In this section, Petri nets and unfolding of Petri nets are
presented.

A. Petri Net

A Petri net [8] N =< P, T,W > is a triple with: P , a finite
set of places, T , the finite set of transitions, P ∪ T are nodes
of the net; (P ∩ T = ∅ signifies that P and T are disjoint),
andW : (P ×T ) ∪ (T ×P )→ N , the flow relation defining
arcs (and their valuations) between nodes of N . A marking of
N is a multiset M: P → {0, 1, 2, ...} and the initial marking
is denoted M0.

The pre-set (resp. post-set) of a node x is denoted •x =
{y ∈ P ∪ T | W(y, x) > 0} (resp. x• = {y ∈ P ∪ T |
W(x, y) > 0}). A transition t ∈ T is said enabled by m iff:
∀p ∈ •t, m(p) ≥ W(p, t). This is denoted: m t→ Firing of t
leads to the new marking m′ (m t→ m′): ∀p ∈ P, m′(p) =
m(p)−W(p, t)+W(t, p). The initial marking is denoted m0.

A Petri net is k-bounded iff ∀m, reachable from m0,m(p) ≤
k (with p ∈ P ). It is said safe when 1-bounded. Two transitions
are in a structural conflict when they share at least one pre-
set place; a conflict is effective when these transitions are both
enabled by a same marking. The considered Petri nets in this
paper are k-bounded.

Reset arcs constitute an extension of Petri nets. These arcs
does not change the enabling rules of transitions [16]. If
Rst(p, t) represents the set of reset arcs from a transition t

to a place p. If M t→M ′ then ∀p ∈ P such as Rst(p, t) = 0,
M ′(p) = 0. But if W (t, p) > 0 then M ′(p) = W (t, p). The
firing rule is defined by the following relation

∀p ∈ P, M ′ = (M − Pre(p, t)) . R(p, t) + Post(p, t)

where “.” is the Hadamard matrix product.

Definition 1 (Reset arc Petri Nets). A reset arc Petri Nets is
a tuple NR =< P, T,W,R > with < P, T,W > a Petri nets
and Rst : P ×T → {0, 1} is the set of reset arcs (Rst(p, t) =
0 is there exists a reset arc binding p to t, else Rst(p, t) = 1).

B. Unfolding

In [3], the notion of branching process is defined as an
initial part of a run of a Petri net respecting its partial order
semantics and possibly including non deterministic choices
(conflicts). This net is acyclic and the largest branching process
of an initially marked Petri net is called the unfolding of this
net. Resulting net from an unfolding is a labeled occurrence
net, a Petri net whose places are called conditions (labeled
with their corresponding place name in the original net) and

transitions are called events (labeled with their corresponding
transition name in the original net).

An occurrence net [17] is a net O =< B, E ,F > , where
B is the set of conditions (places), E is the set of events
(transitions), and F the flow relation (1-valued arcs), such
that:

• for every b ∈ B, |•b| ≤ 1;
• O is acyclic;
• for every e ∈ E , •e 6= ∅;
• O is finited preceded;
• no element of B ∪ E is in conflict with itself;
• F+, the transitive closure of F , is a strict order relation.

Min(O) = {b | b ∈ B, |•b| = 0} is the minimal conditions
set: the set of conditions with no ancestor can be mapped
with the initial marking of the underlying Petri net. Also,
Max(O) = {x | x ∈ B ∪ E , |x•| = 0} are maximal nodes.
A configuration C of an occurence net is a set of events
satisfying:

• if e ∈ C then ∀e′ ≺ e implies e′ ∈ C (C is causally
closed);

• ∀e, e′ ∈ C : ¬(e ⊥ e′) (C is conflict-free).

A local configuration [e] of an event e is the set of event e’,
such that e′ ≺ e.

Three kinds of relations could be defined between the nodes
of O:

• The strict causality relation noted ≺: for x, y ∈ B ∪
E , x ≺ y if (x, y) ∈ F+ (for example e3 ≺ e6, in
Figure 3.b).

• The conflict relation noted ⊥: ∀b ∈ B, if e1, e2 ∈ b•

(e1 6= e2), then e1 and e2 are in conflict relation, denoted
e1 ⊥ e2 (for example e4 ⊥ e5, in Figure 3.b).

• The concurrency relation noted o: ∀x, y ∈ B∪E (x 6= y),
x o y ssi ¬((x ≺ y) ∨ (y ≺ x) ∨ (x ⊥ y)) (for example
e2 o e3, in Figure 3.b).

Remark 1. The transitive aspect of F+ implies a transitive
definition of strict causality.

A set B ⊆ B of conditions such as ∀b, b′ ∈ B, b 6= b′ ⇒ b o b′
is a cut. Let B be a cut with ∀b ∈ B, @b′ ∈ B\B, b o b′, B is
the maximal cut.

Definition 2. The unfolding UnfF
def
=< OF , λF > of a

marked net < N ,m0 >, with OF
def
=< BF , EF ,FF > an

occurrence net and λF : BF ∪ EF → P ∪ T (such as
λ(BF ) ⊆ P and λ(EF ) ⊆ T ) a labeling function, is given by:

1) ∀p ∈ P , if m0(p) 6= ∅, then Bp
def
= {b ∈ BF | λF (b) =

p ∧ •b = ∅} and m0(p) = |Bp|;
2) ∀Bt ⊆ BF such as Bt is a cut, if ∃t ∈ T , λF (Bt) =
•t ∧ |Bt| = |•t|, then:

a) ∃!e ∈ EF such as •e = Bt ∧ λF (e) = t;
b) if t• 6= ∅, then B′t

def
= {b ∈ BF | •b = {e}} is as

λF (B
′
t) = t• ∧ |B′t| = |t•|;

c) if t• = ∅, then B′t
def
= {b ∈ BF | •b = {e}} is as

λF (B
′
t) = ∅ ∧ |B′t| = 1;



3) ∀Bt ⊆ BF , if Bt is not a cut , then @e ∈ EF such as
•e = Bt.

Definition 2 represents an exhaustive unfolding algorithm
of < N ,m0 >. In 1., the algorithm for the building of the
unfolding starts with the creation of conditions corresponding
to the initial marking of < N ,m0 > and in 2., new events
are added one at a time together with their output conditions
(taking into account sink transitions). In 3., the algorithm
requires that any event is a possible action: there are no adding
nodes to those created in items 1 and 2. The algorithm does
not necessary terminate; it terminates if and only if the net
< N ,m0 > does not have any infinite sequence. The sink
transitions (ie t ∈ T , t• = ∅) are taken into account in 2.(c).

Let be E ⊂ EF . The occurrence net O def
=< B, E ,F >

associated with E such as B def
= {b ∈ BF | ∃e ∈ E , b ∈ •e∪e•}

and F def
= {(x, y) ∈ FF | x ∈ E ∨ y ∈ E} is a prefix of OF if

Min(O) =Min(OF ). By extension, Unf def
=< O, λ > (with

λ, the restriction of λF to B ∪ E) is a prefix of unfolding
UnfF .

It should be noted that, according to the implementation, the
names (the elements in the sets E and B) given to nodes in the
same unfolding can be different. A name can be independently
chosen in an implementation using a tree formed by its causal
predecessors and the name of the corresponding nodes in N
[3].
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Figure 3. a) Petri net, b) Unfolding.

Definition 3. A causal net C is an occurrence net C def
=<

B, E ,F > such as:

1) ∀e ∈ E : e• 6= ∅ ∧ •e 6= ∅;
2) ∀b ∈ B : |b•| ≤ 1 ∧ |•b| ≤ 1.

Definition 4. Pi = (Ci, λF ) is a process of < N ,m0 > iff:
Ci

def
=< Bi, Ei,Fi > is a causal net and λ : Bi ∪Ei → P ∪T

is a labeling fonction such as:

1) Bi ⊆ BF and Ei ⊆ EF
2) λF (Bi) ⊆ P and λF (Ei) ⊆ T ;
3) λF (

•e) =• λF (e) and λF (e
•) = λF (e)

•

4) ∀ei ∈ Ei, ∀p ∈ P : W(p, λF (e)) = |λ−1(p) ∩•
e| ∧ W(λF (e), p) = |λ−1(p) ∩ e•|

5) If p ∈Min(P )⇒ ∃b ∈ Bi : •b = ∅ ∧ λF (b) = p

Max(Ci) is the state of N . Min(Ci) and Max(Ci) are
(resp. minimum) maximum cuts. Generally, any maximal cut
B ⊆ Bi corresponds to a reachable marking m of < N ,m0 >
such as ∀p ∈ P,m(p) = |Bp| avec Bp = {b ∈ B | λ(b) = p}.

The local configuration of an event e is defined by: [e] def
=

{e′ | e′ ≺ e}∪{e} and is a process. For example of unfolding
in Figure 3.b: [e4]

def
= {e1, e3, e4}.

The conflicts in an unfolding derive from the fact that there
is a reachable marking (a cut in an unfolding) such as two or
many transitions of a labelled net < N ,m0 > are enabled
and the firing of one transition disable other. Whence the
proposition:

Proposition 1. Let be e1, e2 ∈ EF . If e1 ⊥ e2, then there
∃(e′1, e′2) ∈ [e1]× [e2] such as •e′1 ∩ •e′2 6= ∅ et •e′1 ∪ •e′2 is a
cut.

IV. BRANCHING PROCESS ALGEBRA

The Section III-B showed how unfolding exhibits causal
nets and conflicts. Otherwise, every couple of events that are
not bounded by a causal relation or the same conflict set are
in concurrency. Then, an unfolding allows to build a 2D-
table making explicit every binary relations between events.
Practically, this table establishes the relations of causality and
exclusion. If a binary relation is not explicit in the table, it
means that the couple of events are in a concurrency relation.

Let EB = E ∪ B a finite alphabet, composed of the events
and the conditions generated by the unfolding. The event table
(produced by the unfolding) defines for every couple in EB
either a causality relation C, either a concurrency relation I
or an exclusive relation X . These sets of binary relations dot
not intersect and the following expressions can be deduced:

Unf/X = C ∪ I (3)
Unf/C = X ∪ I (4)
Unf/I = C ∪ X (5)

To illustrate these relation sets, the negation operator noted
¬ can be introduced. Then, equations (3), (4), (5) lead to (6),
(7), (8):

¬((e1, e2) ∈ I) ⇔ (e1, e2) ∈ C ∪ X (6)
¬((e1, e2) ∈ C) ⇔ (e1, e2) ∈ I ∪ X (7)
¬((e1, e2) ∈ X ) ⇔ (e1, e2) ∈ C ∪ I (8)

Equation (8) expresses that if two events are not in conflict
they are in the same branching process. Let us now define
the union of binary relations C and I: P = C ∪ I. For
every couple (e1, e2) ∈ P , either (e1, e2) are in causality or
in concurrency: P is the union of every branching process of
an unfolding.
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e2

e3 e4

e5 e6

e1

Table : 

T(e0, e2)=#t
T(e1, e3)=#t
T(e1, e4)=#t
T(e3, e5)=#t
T(e4, e6)=#t
T(e1, e5)=#t
T(e1, e6)=#t 

T(e3, e4)=#f
T(e3, e6)=#f
T(e4, e5)=#f
T(e5, e6)=#f

Causalities Conflicts

Figure 4. Unfolding.

a) Example: Figure 4 represents an unfolding (in the
left part) and a Table T (right part), which defines the event
relations of the unfolding.

In Figure 4, the Table T contains 7 causal relations and
4 conflict relations. (e0, e4) is not (negation) in the table, it
means that e0 and e4 are concurrent. Moreover, if two events
are not in conflict (consider e0 and e6): (e0, e6) is not a key
of the table, (e0, e6) are in concurrency and thus, those events
belongs to the same branching process.

A. Definition of the Algebra

The starting point of this work is based on the fact that
the logical negation operator articulates the relation between
two sets: the process set P and the exclusion set X . As
mentioned in Section IV, C, I and P does not intersect,
then semantically, if a couple of events is not in a relation
of exclusion (noted ⊥), the events are in P . P contains binary
relations between events that are in branching process.

To express that events are in the same branching process,
a new operator noted ⊕ is introduced. An algebra describing
branching process can be defined as follow:

{U ,≺ , o , ⊥ ,⊕, ¬}

Let us note; ∗ = ⊕,≺, or ⊥, #t the void process, and #f
the false process. Here is the formal signature of the language:

• ∀e ∈ EB, e ∈ U ,#t ∈ U ,#f ∈ U
• ∀e ∈ U ,¬e ∈ U
• ∀(e1, e2) ∈ U2, e1 ∗ e2 ∈ U .

B. Definition of operators

1) Causality: C is the set of all the causalities between ev-
ery elements of EB. e1 ≺ e2 if e1 is in the local configuration
of e2, i.e., the Petri net contains a path with at least one arc
leading from e1 to e2:

e1 ≺ e2 if e1 ∈ [e2] (9)

• ≺ is associative: e1 ≺ (e3 ≺ e5) ≡ (e1 ≺ e3) ≺ e5;
• ≺ is transitive: (e1 ≺ e3) ∨ (e3 ≺ e5) ≡ e1 ≺ e5;
• ≺ is not commutative: e1 ≺ e3 but e3¬ ≺ e1;
• #t is the neutral element for ≺: #t ≺ e ≡ e;
• every element of EB has an opposite: #f ≺ e ≡ ¬e.

b1

e1

b2

b4

e3

b3

b5

e2

e4

e5

b6

Figure 5. Causalite.

2) Exclusion: X is the set of all the exclusion relations
between every elements of EB. Two events e and e′ are in
exclusion if the net contains two paths b e1 ... e and b e2 ... e′

starting at the same condition b and e1 6= e2:

e1 ⊥ e2 ≡ ((•e1 ∩ •e2 6= ∅) or (∃ei, ei ≺ e2 and e1 ⊥ ei))
(10)

b1

e1

b3

b6

e4

b4

b7

e2

e5

b2

b5

e3

Figure 6. Exclusion.

• ⊥ is commutative: e1 ⊥ e2 ≡ e2 ⊥ e1;
• ⊥ is associative: e1 ⊥ (e2 ⊥ e3) ≡ (e1 ⊥ e2) ⊥ e3;
• ⊥ is not transitive: (e1 ⊥ e2) ∨ (e2 ⊥ e3) but e1¬ ⊥ e3;
• #f is the neutral element for ⊥: e ⊥ #f ≡ e;
• #t is the absording element for ⊥: e ⊥ #t ≡ #t.

3) Concurrency: I is the set of every couple of element
of EB in concurrency. e1 and e2 are in concurrency if the
occurrence of one is independent of the occurrence of the
other. So, e1 o e2 iff e1 and e2 are neither in causality neither
in exclusion.

e1 o e2 ≡ ¬((e1 ⊥ e2) or (e1 ≺ e2) or (e2 ≺ e1)) (11)

• o is commutative: e1 o e5 ≡ e5 o e1;
• o is associative: e1 o (e5 o e7) ≡ (e1 o e5) o e7;
• o is not transitive: (e1 o e5) ∨ (e5 o e2) but e1 ⊥ e2;
• #t is the neutral element for o: e o#t ≡ e;
• #f is an absorbing element for o: e o#f ≡ #f .

4) Process: ⊕ aggregates events in one process. Two events
e1 and e2 are in the same process if e1 causes e2 or if e1 is
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Figure 7. Concurrency.

concurrent with e2:

e1 ⊕ e2 ≡ (e1 ≺ e2) or (e2 ≺ e1) or (e1 o e2) (12)

This operator constitutes an abstraction that hides in a black
box causalities and concurrencies. The meaning of this opera-
tor is similar to the linear connector ⊕ of MILL [18]. It allows
to aggregates resources. But, in the context of unfolding,
events or conditions are unique and then they cannot be
counted. Thus, this operator is here idempotent.

The expression e1 ⊕ e2 defines that e1 and e2 are in the
same process.

Note that (⊕ e1 e2 ... en−1 en) will abbreviate (e1⊕ e2⊕
e3 ⊕ ...en−1 ⊕ en)
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b7

e2

e5

b1b2

b5

b8

e6

e3

Processus 1 Processus 2

Figure 8. Process.

• ⊕ is commutative, associative, and transitive (definition
of ⊕);

• Idempotency: e⊕ e ≡ e
• Neutral element: e⊕#t ≡ e
• Absorbing element: e⊕#f ≡ #f
• e⊕ ¬e ≡ #f

C. Axioms

The following axioms stem directly from previous assump-
tions and definitions made upon the algebraic model:

Axiom 1 (Distributivity of ≺).

e ≺ (e1 ⊥ e2) ≡def (e ≺ e1) ⊥ (e ≺ e2)

This first axiom constitutes the basis of our approach. As
discussed in the Section II, on the contrary of CCS, e is
distributed onto two expressions, giving alternative processes.

Axiom 2 (Definition of ⊕).

e1 ⊕ e2 ≡def (e1 ≺ e2) ⊥ (e2 ≺ e1) ⊥ (e1 o e2)

⊕ aggregates two elements in a process. Two elements are
in a process if they are concurrent or in a causality relation.

Axiom 3 (≺).

e1 ≺ e2 ≡def ¬e1 ⊥ (e1 ⊕ e2)

A causality can be expressed by two processes in exclusion:
either ¬e1: e1 has not occurred either e1⊕e2: e1 and e2 within
the same process.

Axiom 4 (Duality between ⊕ and ⊥).

e1 ⊕ e2 ≡def e1¬⊥e2 e1¬⊕e2 ≡def e1 ⊥ e2

This axiom comes from the introduction of the operator ¬
discussed in the beginning of the Section IV. It expresses that
P and X are complementary sets.

Axiom 5 (Exclusion).

e1 ⊥ e2 ≡def (¬e1 ⊕ e2) ⊥ (e1 ⊕ ¬e2)

The fifth axiom expresses that a conflict can be considered
as two processes in conflict.

D. Distributivities

The distributivities over ⊥ are used in the transformation
of an expression in the canonical form (Section V). The other
distributivities will be used in the reduction process.

1) Distributivities over o:

• ≺ is distributive over o:

e ≺ (e1 o e2) ≡ (e ≺ e1) o (e ≺ e2)

• ⊥ is distributive over o:

e ⊥ (e1 o e2) ≡ (e ⊥ e1) o (e ⊥ e2)

• ⊕ is distributive over o:

e⊕ (e1 o e2) ≡ (e⊕ e1) o (e⊕ e2)

2) Distributivities over ⊥:

• ≺ is distributive over ⊥ (Axiom 1):

e ≺ (e1 ⊥ e2) ≡ (e ≺ e1) ⊥ (e ≺ e2)

• o is distributive over ⊥:

e o (e1 ⊥ e2) ≡ (e o e1) ⊥ (e o e2)

• ⊕ is distributive over ⊥:

e⊕ (e1 ⊥ e2) ≡ (e⊕ e1) ⊥ (e⊕ e2)



3) Distributivities over ⊕:

• ⊥ is distributive over ⊕:

e ⊥ (e1 ⊕ e2) ≡ (e⊕ e1) ⊥ (e⊕ e2)

• o is distributive over ⊕:

e o (e1 ⊕ e2) ≡ (e⊕ e1) o (e⊕ e2)

E. Derivation Rules

This section gives a set of rules, which transform branching
processes toward a canonical form. These transformations
preserve conflicts whereas ≺ and o are transformed in ⊕.

Let us note b a condition, e an event and E a well formed
formula on the algebra. These rules allow to reduct process:

1) Modus Ponens:

` ⊕ b ... ` ⊕ b ... ≺ e
` e MP1

` e ` e ≺ ⊕ b ...
` ⊕ e b ...

MP2

Where ⊕ b ... stands for the general form for
(⊕ b1 b2 ... bn). MP1 expresses that the set of
conditions ⊕ b ... are consumed by the causality,
whereas in MP2, e stays in the conclusion.

2) Dual form:

` ¬e1 ` e1 ≺ e2
` ¬e1 ⊕ ¬e2 MP ′

3) Simplification:

` ¬e1 ⊕ E
` E S1

` ⊕ b ... E
` E S2

Those rules are applied, in fine, to clear not pertinent in-
formations in the process. S1 rule is applied, to clear the
negations, whereas S2 is applied to clear the conditions,
which have not been consumed.

4) Reduction of o:

` e1 o e2
` e1 ⊕ e2

Par

This rule corresponds to the definition of ⊕
These rules have been defined to lead to a canonic form.

V. CANONIC FORM AND CONFLICT EQUIVALENCE

A canonic form is a relation expressed on elements of EB
and with the operators ⊕ and ⊥ ordered by an alphanumeric
sort on the name of its symbol. This definition of the canonic
form allows to define an equivalence called a “conflict equiv-
alence”.

Theorem 1 (Canonical form). Let us consider an unfolding
U , this form can be reduced in the following form:

U = (⊥ P1 P2 ... Pn),where Pi = (⊕ ei1 ... ein)

This form is canonic and exhibits every processes Pi of the
unfolding.

Proof. In an unfolding every causality (≺) and every partial
order (o) can be reduced in ⊕ by deduction rules Modus
Ponens (MP,MP1,MP2), Simplification rule (S) and Par
(see Section IV-E).

Moreover, ⊕ and ⊥ are mutually distributive, so ⊥ can be
factorized in every sub-formula to reach the higher level of
the formula. In fine, an alphanumeric sort on symbols of the
processes can be applied to assure the unicity of the form.

This canonic form preserves conflicts, let us now define a
conflict equivalence:

Definition 5 (Conflict Equivalence). Let us U1, U2 unfoldings
of Petri nets:

U1 ≈conf U2 iff they have the same canonic form.

Remark 2. A process is an aggregate set of events, where
≺ and o are hidden. This equivalence is lower than a trace
equivalence: each process Pi is an abstraction of a set of
traces.

A. Theorems

The properties of operators (definitions, axioms and dis-
tributivites) allow to define theorems, which are congruences.

Theorem 2 (Conflict).

e1 ≺ (e2 ⊥ e3) ≡ (e1 ≺ (e2 ⊕ ¬e3)) ⊥ (e1 ≺ (¬e2 ⊕ e3))

Proof.

e1 ≺ (e2 ⊥ e3) ≡Ax5 e1 ≺ ((e2 ⊕ ¬e3) ⊥ (¬e2 ⊕ e3)
≡dist (e1 ≺ (e2 ⊕ ¬e3)) ⊥ (e1 ≺ (¬e2 ⊕ e3))

This theorem expresses how to develop a conflict and the
following theorem allows to reduce processes:

Theorem 3 (Absorption). Let E,F some processes:

E ⊥ (E ⊕ F ) ≡ E ⊕ F



Proof.

E ⊥ (E ⊕ F ) ≡ (E ⊕#t) ⊥ (E ⊕ F )
≡Neutral E ⊕ (#t ⊥ F )
≡ E ⊕ F

B. Chain of conflicts

This section presents a theorem that computes the branching
process in canonic form of a chain of conflict illustrated in
Figure 9.

e1 e2 ep-1 ep

b0 b1 bp-1 bp

e3

Figure 9. Chain of conflicts.

The axiomatic representation of the unfolding is:

U = ((⊕ b0 b1 ... (b0 ≺ (e1 ⊥ e2))(b1 ≺ (e2 ⊥ e3))...)

After some steps of reduction (MP + S):

U = (e1 ⊥ e2 ⊥ ... ⊥ ep)

Let us note:

• l1 = (e1, e2, ...en), l2 = (e2, ...en)
• li the ith element of a list l.
• If ei is an element of the list l, let us note indice(ei) the

position of ei in l.

Remark 3. In the list of event constituting a chain of conflict
(l = (e1, e2, ...en)), for every event ei, the next (resp. previous)
event in the same branching process is ei+2 or ei+3 (resp. ei−2
or ei−3)

The next definition defines two processes Un and Vn, which
are aggregation of events, where the possible successor of an
event ei is either l(indice(ei)+2) either l(indice(ei)+3).

Definition 6. Let us consider that n <= p,


U0= e1
U1
n= l1n+2 ⊕ U2

n+2

U2
n= l1n+3 ⊕ U2

n+3

Un= U1
n ⊕ U2

n

Un: processes beginning by e1


V0= e2
V 1
n= l2n+2 ⊕ V 2

n+2

V 2
n= l2n+3 ⊕ V 2

n+3

Vn= V 1
n ⊕ V 2

n

Vn: processes beginning by e2
where p is the index of the last event implied in the chain of
conflict

Theorem 4. The canonic form of a chain of conflict C is
Un ⊕ Vn:

(e1 ⊥ e2 ⊥ ... ⊥ ep) ≡ Un ⊕ Vn

Proof. Correctness: let us consider an incorrect process
q ∈ Lp:

q = (⊕ eq1 eq2 ... eqp)

An incorrect process contains two event in conflict. Thus, this
incorrectness implies the existence of two events in q such
as eqi ⊥ eqi+1 and eqi , eqi+1 corresponding to two successive
events of l. This is in contradiction with the definition of the
functions (U1

n, U
2
n, V

1
n , V

2
n ) for which events are added with

either ln+2 either ln+3. For a correct process, indices cannot
be consecutive.
Completeness: let us consider a valid process:

q = (⊕ eq1 eq2 ... eqp)

which is not included in Lp. ∀e ∈ q, if q is valid then
∀(ei, ej) ∈ q,¬(ei ⊥ ej), so it implies that ei and ej
are not successive in l and every enabled event is in q.
Moreover, as q is not included in Lp, thus, it exists at
least one couple (eqi , eqj ), which does not correspond to the
construction defined by the functions (U1

n, U
2
n, V

1
n , V

2
n ), which

define the possible successor of an event. This means that
indice(eqj ) > indice(eqi + 3).

For every n = indice(eqj )− indice(eqi) greater than 3, let
us note i2 = indice(eqi)+2 the event eqi2 is a possible event,
which is not in q (contradiction).

VI. EXAMPLES

Examples VI-A and VI-B illustrate conflit equivalence,
whereas the example VI-C contains reset arcs.

A. Example 1

Figure 10 gives a Petri net, which represents a chain of
conflicts and its unfolding.

P1

t1 t2

P2

t3

P3

t4

P4

t5

e1 e2 e3 e4 e5

b2 b3 b4b1

Figure 10. PN and unfolding of a chain of conflicts.

The unfolding gives a table of binary relations on events (see
Section IV), which is represented by the following algebraic
expression U2:

U1 = (⊕ b1 b2 b3 b4 b5 (b1 ≺ (e1 ⊥ e2)) (b2 ≺ (e2 ⊥ e3)) ...)



After some steps of reduction (MP + S), U1 becomes:

(e1 ⊥ e2 ⊥ e3 ⊥ e4 ⊥ e5) (13)

Theorem 4 allows to compute from (13) its following canonic
form:

(⊥ (⊕ e1 e3 e5)(⊕ e1 e4 )(⊕ e2 e4)(⊕ e2 e5))

B. Example 2

Let us consider the following Unfolding of Figure 11. The

e1 e2 e3

b12

b0

e4 e5

b2b1 b3

e3 e4 e5

b4

e4 e5

b3 b4

e1 e5

b7

e1 e2

b8 b10b9 b11

e3 e2 e1

Figure 11. U2.

table has been computed and the set of binaries relations
between events leads to the following algebraic expression U2:

U2 = (⊕ b12 (b12 ≺ (e1 ⊥ e2 ⊥ e3 ⊥ e4 ⊥ e5))

(e1 ≺ (⊕ b0 b1 b2 b3))(e2 ≺ b4)(e3 ≺ (⊕b5 b6))

(e5 ≺ (⊕b8 b9 b10 b11))((⊕ b0 b1) ≺ e3)

((⊕ b1 b2) ≺ e4) (e4 ≺ b7) ((⊕ b2 b3) ≺ e5)

(b4 ≺ (⊥ e4 e5))(b5 ≺ e1) (b6 ≺ e5)

(b7 ≺ (⊥ e1 e2)) ((⊕ b8 b9) ≺ e3)

((⊕ b9 b10) ≺ e2) ((⊕ b10 b11) ≺ e1)) (14)

Let us note P the aggregation of the five first lines of the
previous Equation (14) becomes:

U2 = (⊕ b12 (b12 ≺ (⊥ e1 e2 e3 e4 e5)) P (15)

Rules MP1, MP2 and theorem 1 reduce (15) in:

U2 = (⊥ (⊕ e1 P ) (⊕ e2 P ) (⊕ e3 P )

(⊕ e4 P ) (⊕ e5 P ) )

Distributivity of perp:

U2 = (⊕ (⊥ (⊕ e1 b0 b1 b2 b3)(⊕ e2 b4)(⊕ e3 b5 b6)

(⊕ e4 b7)(⊕ e5 b8 b9 b10 b11)) ((⊕ b0 b1) ≺ e3)

((⊕ b1 b2) ≺ e4)((⊕ b2 b3) ≺ e5) (b4 ≺ (⊥ e4 e5))

(b5 ≺ e1) (b6 ≺ e5)(b7 ≺ (⊥ e1 e2))

((⊕ b8 b9) ≺ e3) ((⊕ b9 b10) ≺ e2)

((⊕ b10 b11) ≺ e1))

Distributivity of ⊥ and MP1:

U2 = (⊥ (⊕ e1 e3 e5 b1 b2)(⊕ e1 e4 b0 b3)(⊕ e2 e4)

(⊕ e2 e5) (⊕ e3 e1)(⊕ e3 e5)(⊕ e4 e1)

(⊕ e4 e2)(⊕ e5 e1 e3 b9 b10) (⊕ e5 e2 b8 b11))

Theorem 2 : absorption of (⊕ e3 e1) and (⊕ e3 e5) in
(⊕ e1 e3 e5 b1 b2), idempotency of ⊥:

U2 = (⊥ (⊕ e1 e3 e5 b1 b2)(⊕ e1 e4 b0 b3)(⊕ e2 e4)

(⊕ e2 e5) (⊕ e4 e1)(⊕ e5 e1 e3 b9 b10)

(⊕ e5 e2 b8 b11))

Rules of simplification S1 and S2 and theorem 2:

U2 = (⊥ (⊕ e1 e3 e5)(⊕ e1 e4)(⊕ e2 e4)(⊕ e2 e5))

The two unfoldings of examples 1 and 2 have the same
canonic form, they are conflict-equivalent: U1 ≈conf U2

1) Reasoning about processes: Let us consider all the
process p of U2 : (⊕ e1 e3 e5), (⊕ e1 e4), ...

• ∀p ∈ U2 whenever e3 is present, e1 is present.
• ∀p ∈ U2,¬e3 ⊥ (e1 ⊕ e3 ⊕ e5)

This is the algebraic definition of ≺. Finally, from this
chain of conflicts, the following causality can be deduced:

e3 ≺ (e1 ⊕ e5) (16)

• A similar reasoning can be made:

∀p ∈ U2,¬(e1 ⊕ e5) ⊥ (e1 ⊕ e3 ⊕ e5)

This is the algebraic definition of:

(e1 ⊕ e5) ≺ e3 (17)

Equations (16) and (17) express that there is a strong link
between e3 and the process (e1 ⊕ e5) but ≺ is no well
suited to encompass this relation. These two processes
are like “intricated”.

• In the same manner:

¬e2 ⊥ (e2 ⊕ e4) ⊥ (e2 ⊕ e5)

≡dist ¬e2 ⊥ (e2 ⊕ (e4 ⊥ e5))

≡def e2 ≺ (e4 ⊥ e5) (18)

e2 leads to a conflict

¬e1 ⊥ ((⊕e1e3e5) ⊥ (e1 ⊕ e4)

≡dist ¬e1 ⊥ (e1 ⊕ ((e3 ⊕ e5) ⊥ e4))

≡def e1 ≺ ((e3 ⊕ e5) ⊥ e4) (19)

Equations (18) and (19) show that e1 and e2 transform the
chain of conflict in a unique conflict. New relations between
events or processes can be introduced:

• Alliance relation: e1, e3 and e5 are in “an alliance
relation”. Every event of this set is enforced by the
occurrence of the other events: e1⊕e3 enforces e5, e1⊕e5
enforces e3 and e3 ⊕ e5 enforces e1.

• Intrication: the occurrence of e3 forces e1 ⊕ e5 and
reciprocally e1 ⊕ e5 forces e3.

• Resolving conflicts (liberation):
– e1 resolves 3 conflicts on 4 (as e2, e4 and e5)
– e3 resolves every conflicts.



Semantically, e3 can be identified as an important event in the
chain. Moreover, (⊕e1 e3 e5) is a process aggregated with
“associated events”. This chain of conflict can be seen as two
causalities in conflicts: (e1 ≺ (e4 ⊥ (e3 ⊕ e5))) ⊥ (e2 ≺ (e4 ⊥
e5))

C. Example 3 (Cash dispenser)

Let us consider a cash dispenser illustrated in Figure 12.
The user has three tries (3 tokens are generated in place
WaitEnterCode) to enter a valid code (OKcode), then he can
get Cash or can Consult its account. In this example, a reset
arc from OKCode allow to clear the tokens that have not be
consumed (for example when the user has entered a valid code
at its first or second try) and two reset arcs have been added
from getConsult and getCash to clear ReadyToConsult or
ReadyToGetCash.

It could be useful to prove that if the events GetCash
implies that Okcode belongs to the same process.

3 3

1

WaitCustomerAction

AnalyzeCode

WaitEnterCode

ReadyToGetCash

WaitConsult WaitGetCash

ReadyToConsult

Consult

GetConsult

Cash

EnterCode

GetCash

OkCode

BadCode

Figure 12. Cash dispenser.

The unfolding of cash dispenser is given in Figure 13. A
combinatory inflation of the net is caused by to the reset arcs
and by the transitions, Consult and Cash, which produces 3
tokens each.

The reset arcs introduces for each events e9, e10, e11, e18,
e19, and e20 (events relative the transition OKcode) two arcs,
which consumes adding conditions. The translation of reset
arcs have been defined manually and is not yet implemented
in reduction rules. The computing of the canonical form of
the processes is following expression:

U3 = (⊥ (⊕ Consult EnterCode OKcode GetConsult)

(⊕ Consult EnterCode BadCode OKcode GetConsult)

(⊕ Consult EnterCode BadCode BadCode OKcode GetConsult)

(⊕ Consult EnterCode BadCode BadCode BadCode)

(⊕ Cash EnterCode OKcode Getcash)

(⊕ Cash EnterCode BadCode OKcode Getcash)

(⊕ Cash EnterCode BadCode BadCode OKcode Getcash)

(⊕ Cash EnterCode BadCode BadCode BadCode)

This expression formally proves that if GetCash is in a
process then OkCode belongs to the same process.

VII. IMPLEMENTATION ASPECTS

A program [19] has been developed. It takes Petri Nets
as inputs Romeo [20] unfolds and computes the canonical
form. This program has been written in Lisp. The algebraic
definitions and the reduction rules has been described with
redex, a formal package introduced in [11].

A. Syntax of the language

The redex package allows to implement the syntactic rules
of the language with an abstract and conceive way:

1; Nodes
2[ boo l t f ]
3[ n v a r i a b l e boo l b e (¬ ⊕ n ) ]
4[ e v a r i a b l e (¬ e ) ]
5[ b v a r i a b l e (¬ b ) ]
6; n−ary or b i n a r y o p e r a t o r s
7[ on ⊕ ⊥ o ]
8[ o2 ≺ ]
9; P r o c e s s
10[ P v a r i a b l e (⊕ Q . . . ) ]
11[Q v a r i a b l e P n ]
12[C−P (⊕ C−P P ) (⊕ P C−P) h o l e ]
13; C o n f l i c t s
14[X v a r i a b l e (⊥ Y . . . ) ]
15[Y v a r i a b l e X n ]
16[C−X (⊥ C−X P ) (⊥ P C−X) h o l e ]
17; E x p r e s s i o n
18[ E v a r i a b l e ( on F . . . )
19( b o2 e ) ( P o2 X) ]
20[ F v a r i a b l e E P ]
21[C−E ( on C−E E ) ( on E C−E)
22( E o2 C−E) (C−E o2 E ) h o l e ]

- The lines 2 to 5 define the basics nodes, which are
boolean, b conditions and e the events. The term
variable in lines 3 to 5 allows to use in the language
every symbols denoted as ni, bi or ei. These symbols
are the terminal symbols of the alphabet.

- The lines 7 and 8 group the n-ary and the binary
operators.

- Lines 10 to 12 define the process. A process P is
constitued with ⊕ operator on Q, where Q is defined
as a node n or a process P . Every non terminal
symbol Pi is a process.

- Lines 14 to 16 define conflicts in a similar way.
- Finally, lines 18 to 22 define expressions that are

built from conflicts, process and causality.
- For every term: Process, Conflicts and Expression,

contexts are defined. The contexts capture prefixes
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Figure 13. Unfolding of Cash dispenser.

and suffixes of an expression and put them into a
hole.

B. Reductions rules

Definitions have been implemented as reduction rules:

(−−> ( in−hole C−P
(⊕ Q 1 . . . f Q 2 . . . ) )

( in−hole C−P f ) ”A⊕ ” )
(−−> ( in−hole C−E

(⊕ Q 1 . . . e 1 Q 2 . . . (¬ e 1 ) Q 4 . . . ) )
( in−hole C−E f ) ”F⊕ ” )

The particularities of this syntax are:

• Qi... is equivalent to the regular expression Q∗i , which
represents an ordered list of symbol Qi, which is even-
tually empty, finite or infinite.

• The contexts C-P or C-E allows to capture every sub-
expression with every prefix and suffixe.

The first rule, labelled A⊕, illustrates that f is an absorbing
element. In this rule, C-P captures the context of a Process
P and put into a hole. This reduction rule expresses that
every sub-expression of the type (⊕Q1...fQ2...), which can

be reduced to the node f . This rule is named and thus, its use
can be traced in a future proof.

The second rule F⊕ states the property defined in Section
IV-B4 : e1⊕¬e1 ≡ #f . This reduction rules defines that every
expression (for every context C-E) containing e1 and ¬e1 in
an ⊕ operator can be reduced to f .

C. Theorems

This section describes the implementation and the coding
of theorems.

1) Theoreme 4: Theorem 4 has been stated from definition
6, which corresponds to the following statements:

( d e f i n e ( U1n n l )
( i f (>= (− ( maxi l ) n ) 2 )

( cons ( l i s t− r e f l (+ n 2 ) )
( Rn (+ n 2) l ) ) empty ) )

( d e f i n e ( V2n n l )
( i f (>= (− ( maxi l ) n ) 3 )

( cons ( l i s t− r e f l (+ n 3 ) )
( Rn (+ n 3) l ) ) empty ) )



Finally, the implementation is coded like the union of the
previous definitions:

( d e f i n e ( Rn n l )
( i f (>= (− ( maxi l ) n ) 1 )

( Union ( U1n n l ) ( U2n n l ) )
empty ) )

Note that the implementation of the definitions and the
theorems are closed to their formal expression.

2) Theoreme 3: E ⊥ (E ⊕ F ) ≡ (E ⊕ F ) has been
implemented has a reduction rule:

(−−> ( in−hole C−E
(⊥ E 1 . . . E E 2 . . .

(⊕ E E 3 . . . ) E 4 . . . ) )
( in−hole C−E

(⊥ E 1 . . . E 2 . . .
(⊕ E E 3 . . . ) E 4 . . . ) ) ”T3” )

This code means that if E is in a “⊥ expression:” (⊥
E1... EE2...), then if a sub expression in ⊕ contains E, then
E can be suppressed of the “⊥ expression” for any context.

VIII. CONCLUSION AND FUTURE WORK

This work is a first attempt to present an axiomatic frame-
work to the analyze of the processes issued of an unfolding.
From a set of axioms, distributivities, and derivation rules,
theorems have been established and a reduction process can
lead to a canonic form. The unfolding process, definitions,
theorems, and reduction rules have been coded in LISP[21]
with a package named PLT/Redex[11][22]. This canonic form
assets an equivalence conflicts (≡conf ) between unfoldings
and then Petri nets.

Several perspectives are into progress. First, new theorems
have to be established allowing to speed up the procedure
of canonic reduction and to extend extraction of knowledge
on relationship between events. Different kinds of relation-
ship between events can be defined and formalized: Alliance
relation, Intrication, etc. Moreover, as already outlined in the
examples, algebraic reasoning can raise semantic informations
about events from the canonic form. Another perspective is to
extend the approach to Petri nets with inhibitor or drain arcs.
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