David Delfieu
email: david.delfieu@univ-nantes.fr

Maurice Comlan
email: comlan@hotmail.fr

Médésu Sogbohossou
email: sogbohossoumedesu@yahoo.fr

Algebraic Analysis of Branching Processes

Keywords: Petri Nets, Unfolding, Branching process, Algebra

Combinatory explosion is a limit which can be encountered when a state space exploration is driven on large specification modeled with Petri nets. Technics like unfolding have been proposed to cope with this problem. This paper presents an axiomatic model to reduce unfoldings to canonic forms which preserves conflicts.

I. INTRODUCTION

Petri nets are a widely used tool used to model critical real-time systems. The formal verification of properties is then based on the computation of state space [START_REF] Berthomieu | State class constructions for branching analysis of time petri nets[END_REF]. But, this computation faces generally, for highly concurrent and large systems, to combinatory explosion. A major cause is the semantics of interleaving. Partial order semantics [START_REF] Esparza | Unfoldings -a partial-order approach to model checking[END_REF] have been introduced to shunt those interleavings. This work, initiated in [START_REF] Delfieu | An algebra for branching processes[END_REF], go further with the introduction of the conflict equivalence. An operator which is an abstraction of sequence and true parallelism simplifies the representation of processes, only conflicts are preserved. This approach can be used to speed up the identification of the branching processes of an unfolding. The notion of equivalence can be used to make a new type of reduction of unfoldings.

Finite prefixes of net unfoldings constitute a first transformation of the initial Petri Net (PN), where cycles have been flattened. This computation produces a process set where conflicts act as a discriminating factor. A conflict partitions a process in branching processes. An unfolding can be transformed into a set of finite branching processes. Theses processes constitute a set of acyclic graphs -several graphs can be produced when the PN contains parallelism -built with events and conditions, and structured with two operators: causality and true parallelism. An interesting particularity of an unfolding is that in spite of the loss of the concept of global marking, these processes contain enough information to reconstitute the reachable markings of the original Petri nets. In most of the cases, unfoldings are larger than the original Petri net. This is provoked essentially when values of precondition places exceed the precondition of non simple conflicts. This produces a lot of alternative conditions. In spite of that, a step has been taken forward: cycles have been broken and the conflicts have structured the nets in branching processes.

A lot of works have been proposed to improve unfolding algorithms [START_REF] Esparza | Unfoldings -a partial-order approach to model checking[END_REF][4] [START_REF] Esparza | An Improvement of McMillan's Unfolding Algorithm[END_REF] [START_REF] Mcmillan | Using unfoldings to avoid the state explosion problem in the verification of asynchronous circuits[END_REF]. Is there another way to draw on recent works about unfolding? In spite of the eventual increase of the size of the net unfoldings, the suppression of conflicts and loops has decreased its structural complexity, allowing to compute the state space and to the extract of semantics.

From a developer's point of view an unfolding can be efficiently coded by a boolean table of events. This table describes every pair to pair relation between events. This table has been the starting point of our reflection: it stresses the point that a new connector can be defined to express that a set of events belong to the same process. This connector allows to aggregate all the events of a branching process. For example, a theorem is proposed to compute all the branching processes, in canonic form, for chains of conflicts of the kind illustrated in Figure 1. The work presented in this paper takes place in the context of combining process algebra [START_REF] Hoare | Communicating sequential processes[END_REF][8] and Petri nets [START_REF] Petri | Communication with automata[END_REF]. The axiomatic model of Milner's process with Calculus of Communicating Systems (CCS) is compared with the branching processes and related to other works in Section II. Then, after a brief presentation of Petri nets and unfoldings in Section III, Section IV presents our contribution with the definition of an axiomatic framework and the description of properties. The last section presents examples, in particular, illustrating a conflict equivalence.

II. RELATED WORKS

Process algebra appeared with Milner [START_REF] Milner | Communication and concurrency[END_REF] on the Calculus of Communicating Systems (CCS) and the Communicating Sequential Processes (CSP) of Hoare [START_REF] Hoare | Communicating sequential processes[END_REF] in not equivalent but similar approaches. The algebra of branching process we propose in this paper is inspired by the process algebra of Milner. CCS is based on two central ideas: The notion of observability and the concept of synchronized communication; CCS is as an abstract code that corresponds to a real program whose primitives are reduced to simple send and receive on channels. The terms (or agents) are called processes with interaction capabilities that match requests communication channels. The elements of the alphabet are observable events and concurrent systems (processes) can be specified with the use of three operators: sequence, choice, and parallelism. A main axiom of CCS is the rejection of distributivity of the sequence upon the choice. Let p and q be two processes, the complete process of syntax is: Consider an observer. In the first automaton of the Figure 2, after the occurrence of the action a, he can observe either b or c. In the second automaton, the observation of a does not imply that b and c stay observable. The behavior of the two automata are not equivalent.

Capacity α := x | x | τ Proces p ::= α.p | p||q | p + q | D(x) | p\x | 0
In CCS, Milner defines the observational equivalence. Two automata are observational equivalent if there are bisimular. On a algebraic point of view, the distributivity of the sequence on the choice is rejected in the equation (1):

a.(b + c) ≡ behaviorally a.b + a.c (1)
The key point of our approach is based on the fact that this distributivity is not rejected in occurrence nets. The timing of the choices in a process is essential [START_REF] Glabbeek | Petri net models for algebraic theories of concurrency[END_REF]. The nodes of occurrence nets are events. An event is a fired transition of the underlying Petri net. In CCS, an observer observes possible futures. In occurrence nets, the observer observes arborescent past. This controversy in the theory of concurrency is an important topic of linear time versus branching time. In our model the equation (2) holds:

a ≺ (b ⊥ c) ≡ (a ≺ b) ⊥ (a ≺ c) (2)
The equation (2) is a basic axiom of our algebraic model. The equivalence relation differs then from bisimulation equivalence. This relation will be defined in the following with the definition of the canonic form of an unfolding.

Branching process does not fit with process algebra on numerous other aspects. For example, a difference can be noticed about parallelism. While unfolding keeps true parallelism, process algebra considers a parallelism of interleaving. Another difference is relative to events and conditions which are nodes of different nature in an unfolding. Conditions and events differ in term of ancestor. Every condition is produced by at most one event ancestor (none for the condition standing for m 0 , the initial marking), whereas every event may have 1 or n condition ancestor(s). In CCS, there is no distinction between conditions and events. Moreover, conditions will be consumed defining processes as set of events. However, a lot of works [START_REF] Mcmillan | Using unfoldings to avoid the state explosion problem in the verification of asynchronous circuits[END_REF][10] [START_REF] Best | The box algebra=petri nets+process expressions[END_REF] have shown the interest of an algebraic formalization: it allows the study of connectives, the compositionally and facilitates reasoning (tools like [START_REF] Felleisen | Semantics Engineering With PLT Redex[END_REF]). Let have two Petri nets; it is questionable whether they are equivalent. In principle, they are equivalent if they are executed strictly in the same manner. This is obviously a too restrictive view they may have the same capabilities of interaction without having the same internal implementations. These work resulted to find matches (rather flexible and not strict) between nets. Mention may be made among other the occurrence net equivalence [START_REF] Nielsen | Petri nets, event structures and domains[END_REF], the bisimulation equivalence [START_REF] Baeten | An operational semantics for process algebra[END_REF], the partial order equivalence [START_REF] Boudol | On the semantics of concurrency: partial orders and transitions systems[END_REF], or the ST-bisimulation equivalence [START_REF] Glaabeek | Petri nets for algebraic theories of concurrency[END_REF]. These different equivalences are based either on the isomorphism between the unfolding of nets or on observable actions or traces of the execution of Petri nets or other criteria. This approach in this paper is weaker than a trace equivalence; it does not preserves traces but preserves conflicts. The originality of this approach is to encapsulate causality and concurrency in a new operator which "aggregates" and "abstract" events in a process. This new operator reduces the representation and accelerates the reduction process. This paper intends first, to give an algebraic model to an unfolding, and second, to establish a canonic form leading to the definition of an equivalence conflict.

III. UNFOLDING A PETRI NET

A. Petri Net

A Petri net [START_REF] Petri | Communication with automata[END_REF] N =< P, T, W > is a triple with: P, a finite set of places, T , the finite set of transitions, P ∪ T are nodes of the net; (P ∩ T = / 0), and W : (P × T) ∪ (T × P) -→ N , the flow relation defining arcs (and their valuations) between nodes of N .

The pre-set (resp. post-set) of a node x is denoted

• x = {y ∈ P ∪ T | W (y, x) > 0} (resp. x • = {y ∈ P ∪ T | W (x, y) > 0}). A marking of a Petri net N is a mapping m : P -→ N . A tran- sition t ∈ T is said enabled by m iff: ∀p ∈ • t, m(p) ≥ W (p,t). This is denoted: m t → Firing of t leads to the new marking m (m t → m): ∀p ∈ P, m (p) = m(p) -W (p,t) + W (t, p). The initial marking is denoted m 0 . A Petri net is k-bounded iff ∀m, reachable from m 0 , m(p) ≤ k (with p ∈ P).
It is said safe when 1-bounded. Two transitions are in a structural conflict when they share at least one pre-set place; a conflict is effective when these transitions are both enabled by a same marking. The considered Petri nets in this paper are k-bounded.

B. Unfolding

In [START_REF] Engelfriet | Branching processes of petri nets[END_REF], the notion of branching process is defined as an initial part of a run of a Petri net respecting its partial order semantics and possibly including non deterministic choices (conflicts). This net is acyclic and the largest branching process of an initially marked Petri net is called the unfolding of this net. Resulting net from an unfolding is a labeled occurrence net, a Petri net whose places are called conditions (labeled with their corresponding place name in the original net) and transitions are called events (labeled with their corresponding transition name in the original net).

An occurrence net [START_REF] Chatain | Complete finite prefixes of symbolic unfoldings of safe time petri nets[END_REF] O =< B, E , F > is a 1-valued arcs Petri net, with B the set of conditions, E the set of events, and F the flow relation (1-valued arcs), such that:

| • b| ≤ 1 (∀b ∈ B), • e = / 0 (∀e ∈ E), and F + (the transitive closure of F) is a strict order relation. This net O is a set of acyclic graphs. Min(O) = {b | b ∈ B, | • b| = 0}
is the minimal conditions set: the set of conditions with no ancestor can be mapped with the initial marking of the underlying Petri net. Also,

Max(O) = {x | x ∈ B ∪ E , |x • | = 0} are maximal nodes.
Three kinds of relations could be defined between the nodes of O:

• The strict causality relation noted ≺: ∀x, y ∈ B ∪ E , x ≺ y if (x, y) ∈ F + • The conflict relation noted #: ∀b ∈ B, if e 1 , e 2 ∈ b • (e 1 = e 2)
, then e 1 and e 2 are in conflict relation, denoted e 1 # e 2 (in Figure 3.b e 4 #e 5).

• The concurrency relation noted : ∀x, y ∈ B ∪ E (x = y), x y ssi ¬((x ≺ y) ∨ (y ≺ x) ∨ (x y)). (in Figure 3.b e 2 e 3).

F def =< O F , λ F > of a marked net < N , m 0 >, with O F def =< B F , E F , F F > an occur- rence net and λ F : B F ∪ E F → P ∪ T (such as λ (B F) ⊆ P and λ (E F) ⊆ T) a
labeling function, is given by:

1) ∀p ∈ P, if m 0 (p) = / 0, then B p def = {b ∈ B F | λ F (b) = p ∧ • b = / 0} and m 0 (p) = |B p |; 2) ∀B t ⊆ B F such as B t is a cut, if ∃t ∈ T , λ F (B t) = • t ∧ |B t | = | • t|, then: a) ∃!e ∈ E F such as • e = B t ∧ λ F (e) = t; b) if t • = / 0, then B t def = {b ∈ B F | • b = {e}} is as λ F (B t) = t • ∧ |B t | = |t • |; c) if t • = / 0, then B t def = {b ∈ B F | • b = {e}} is as λ F (B t) = / 0 ∧ |B t | = 1; 3) ∀B t ⊆ B F , if B t is not a cut , then e ∈ E F such as • e = B t .
The definition 3.2 represents an exhaustive unfolding algorithm of < N , m 0 >. In 1., the algorithm for the building of the unfolding starts with the creation of conditions corresponding to the initial marking of < N , m 0 > and in 2., news events are added one at a time together with their output conditions (taking into account sink transitions). In 3., the algorithm requires that any event is a possible action: there are no adding nodes to those created in item 1 and 2. The algorithm does not necessary terminate; it terminates if and only if the net < N , m 0 > does not have any infinite sequence. The sink transitions (ie t ∈ T ,t • = / 0) are taken into account in 2.(c).

Let be

E ⊂ E F . The occurrence net O def =< B, E , F > associated with E such as B def = {b ∈ B F | ∃e ∈ E , b ∈ • e ∪ e • } and F def = {(x, y) ∈ F F | x ∈ E ∨ y ∈ E } is a prefix of O F if Min(O) = Min(O F). By extension, Un f def =< O, λ > (with λ , the restriction of λ F to B ∪ E) is a prefix of unfolding Un f F .
It should be noted that, according to the implementation, the names (the elements in the sets E and B) given to nodes in the same unfolding can be different. A name can be independently chosen in an implementation using a tree formed by its causal predecessors and the name of the corresponding nodes in N [START_REF] Engelfriet | Branching processes of petri nets[END_REF]. is a labeling fonction such as: The conflits in a unfolding derive from the fact that there is an reachable marking (a cut in an unfolding) such as two or many transitions of a labelled net < N , m 0 > are enabled and the firing of one transition disable other. Whence the proposition:

Definition 3.3: A causal net C is an occurrence net C def =< B, E , F > such as: 1) ∀e ∈ E : e • = / 0 ∧ • e = / 0; 2) ∀b ∈ B : |b • | ≤ 1 ∧ | • b| ≤ 1. Definition 3.4: P i = (C i , λ F) is a process of < N , m 0 > iff: C i def =< B i , E i , F i > is a causal net and λ : B i ∪ E i → P ∪ T
1) B i ⊆ B F and E i ⊆ E F 2) λ F (B i) ⊆ P and λ F (E i) ⊆ T ; 3) λ F (• e) = • λ F (e) and λ F (e •) = λ F (e) • 4) ∀e i ∈ E i , ∀p ∈ P : W (p, λ F (e)) = |λ -1 (p) ∩ • e| ∧ W (λ F (e), p) = |λ -1 (p) ∩ e • | 5) If p ∈ Min(P) ⇒ ∃b ∈ B i : • b = / 0 ∧ λ F (b) = p Max(C i) is the state of N . Min(C i)
Proposition 3.5: Let be e 1 , e 2 ∈ E F . If e 1 ⊥ e 2 , then there ∃(e 1 , e 2) ∈ [e 1] × [e 2] such as • e 1 ∩ • e 2 = / 0 et • e 1 ∪ • e 2 is a cut.

IV. BRANCHING PROCESS ALGEBRA

The previous section showed how unfolding exhibits causal nets and conflicts. Otherwise, every couple of events which are not bounded by a causal relation or the same conflict set are in concurrency. Then, an unfolding allows to build a 2Dtable making explicit every binary relations between events. Practically, this table establishes the relations of causality and exclusion. If a binary relation is not explicit in the table, it means that the couple of events are in a concurrency relation.

Let E B = E ∪ B a finite alphabet, composed of the events and the conditions generated by the unfolding. The event table (produced by the unfolding) defines for every couple in E B either a causality relation C , either a concurrency relation I or an exclusive relation X . These sets of binary relations dot not intersect and the following expressions can be deduced:

Un f / X = C ∪ I (3) Un f / C = X ∪ I (4) Un f / I = C ∪ X (5)
To illustrate these relation sets, the negation operator noted ¬ can be introduced. Then, the equations (3),(4),(5) leads to (6),(7), [START_REF] Milner | Communication and concurrency[END_REF]:

¬((e 1 , e 2) ∈ I) ⇔ (e 1 , e 2) ∈ C ∪ X (6) ¬((e 1 , e 2) ∈ C) ⇔ (e 1 , e 2) ∈ I ∪ X (7) ¬((e 1 , e 2) ∈ X) ⇔ (e 1 , e 2) ∈ C ∪ I (8)
The equation [START_REF] Milner | Communication and concurrency[END_REF] expresses that if two events are not in conflict they are in the same branching process. Let us now define the union of binary relations C and I : P = C ∪ I For every couple (e 1 , e 2) ∈ P, either (e 1 , e 2) are in causality or in concurrency: P is the union of every branching process of an unfolding. a) Example: Let us consider an unfolding (left part) on the Figure 4 and the table T (right part) which is its representation: In Figure 4, the table T contains 7 causal relations and 4 conflict relations. (e 0 , e 4) is not (negation) in the table, expresses that e 0 and e 4 are concurrent. Moreover, if two events are not in conflict (consider e 0 and e 6): (e 0 , e 6) is not a key of the table, (e 0 , e 6) are in concurrency and thus, those events belongs to the same branching process.

A. Definition of the Algebra

The starting point of this work is based on the fact that the logical negation operator articulates the relation between two sets: the process set P, and the exclusion set X . As mentioned in Section IV, C , I and , P does not intersect, then semantically, if a couple of events is not in a relation of exclusion (noted ⊥), the events are in P. P contains binary relations between events that are in branching process.

To express that events are in the same branching process, a new operator noted ⊕ is introduced. An algebra describing branching process can be defined as follow: {U , ≺ , , ⊥ , ⊕, ¬} Let us note; * = ⊕, ≺, or ⊥, #t the void process, and # f the false process. Here is the formal signature of the language:

• ∀e ∈ E B, e ∈ U , #t ∈ U , # f ∈ U • ∀e ∈ U , ¬e ∈ U • ∀(e 1 , e 2) ∈ U 2 , e 1 * e 2 ∈ U
Properties, neutral/absorbing elements, distributivities and semi-distributivities have been defined in [START_REF] Delfieu | An algebra for branching processes[END_REF]. However, let us now just recall the definitions (equations (9),(10),(11),(12)):

1) Causality: C is the set of all the causalities between every elements of E B. e 1 ≺ e 2 if e 1 is in the local configuration of e 2 :

e 1 ≺ e 2 if e 1 ∈ [e 2] (9)
2) Exclusion: X is the set of all the exclusion relations between every elements of E B. Two events are in exclusion iff they are either in direct conflict, either it exists a conflict at any level with an ancestor:

e 1 ⊥
This operator constitutes an abstraction which hides in a black box causalities and concurrency. The meaning of this operator is similar to the linear connector ⊕ of MILL [START_REF] Girard | Linear logic[END_REF]. It allows to aggregates resources. But, in the context of unfolding, events or conditions are unique and then they cannot be counted. Thus, this operator is here idempotent.

The expression e 1 ⊕ e 2 defines that e 1 and e 2 are in the same process.

Note that (⊕ e 1 e 2 ... e n-1 e n) will abbreviate (e 1 ⊕ e 2 ⊕ e 3 ⊕ ...e n-1 ⊕ e n)

B. Axioms

The following axioms stem directly from previous assumptions and definitions made upon the algebraic model: The first axiom constitutes the basis of our approach. As discussed in the Section II, on the contrary of CCS, e is distributed onto two expressions, giving alternative process. ⊕ aggregates two elements in a process. Two elements are in a process if they are concurrent or in a causality relation. A causality can be expressed by two processes in exclusion: either ¬e 1 : e 1 has not occurred either e 1 ⊕ e 2 : e 1 and e 2 within the same process. This axiom comes from the introduction of the operator ¬ discussed in the beginning of the Section IV. It expresses that P and X are complementary sets.

Axiom 4.5 (Exclusion):

e 1 ⊥ e 2 ≡ de f (¬e 1 ⊕ e 2) ⊥ (e 1 ⊕ ¬e 2)
The fifth axiom expresses that a conflict can be considered as two processes in conflict Axiom 4.6 (Distributivities):

• ≺, ⊥, ⊕ are distributive over .

• ≺, ⊕, are distributive over ⊥ (axiom 4.3).

• ⊥, are distributive over ⊥ and ⊕.

The distributivities over ⊥ are used in the transformation of an expression in the canonic form. The other distributivities will be used in the reduction process.

C. Canonic Form 1) Definition: The definition of the canonic form allows to define an equivalence called a "conflict equivalence". Definition 4.1: A canonic process is a formula expressed on elements of E B and with the operators ⊕, ⊥ ordered by an alphanumeric sort on the name of its symbol. where

P i = (⊕ e i 1 ... e i n)
This form is canonic and exhibits every processes P i of the unfolding.

Proof: In an unfolding every causality (≺) and every partial order () can be reduced in ⊕ by deduction rules Modus Ponens (MP, MP 1 , MP 2), Simplification rule (S) and Par (see Section IV-C2). Moreover, ⊕ and ⊥ are mutually distributive, so ⊥ can be factorized in every sub-formula to reach the higher level of the formula. In fine, an alphanumeric sort on symbols of the processes can be applied to assure the unicity of the form.

This canonic form preserves conflicts, let us now define a conflict equivalence:

U 1 ≈ con f U 2
iff they have the same canonic form.

Remark 4.4:

A process is an aggregate set of events where ≺ and are hidden. This equivalence is lower than a trace equivalence: each process P i is an abstraction of a set of traces.

2) Derivation Rules: This section gives a set of rules which transform branching processes toward a canonical form. Theses transformations preserve conflicts whereas ≺ and are transformed in ⊕.

Let us note b a condition, e an event and E a well formed formula on the algebra. Theses rules allow to reduct process: 2) Dual form:

¬e 1 e 1 ≺ e 2 ¬e 1 ⊕ ¬e 2 MP
3) Simplification:

¬e 1 ⊕ E E S 1 ⊕b... E E S 2
Those rules are applied, in fine, to clear not pertinent informations in the process. S 1 rule is applied, to clear the negations whereas S 2 is applied to clear the conditions which have not been consumed.

4) Reduction of :

e 1 e 2 e 1 ⊕ e 2 Par
This rule corresponds to the definition of ⊕ These rules have been defined to lead to a canonic form.

D. Theorems

The properties of operators (definition, axioms and distributivites) allow to define theorems which are congruences w.r.t the operators of Section IV-A (proofs have been already stated in [START_REF] Delfieu | An algebra for branching processes[END_REF]). Let us now consider the following conventions: Let us note:

• l 1 = (e 1 , e 2 , ...e n), l 2 = (e 2 , ...e n)

• l i the i th element of a list l.

• If e i is an element of the list l, let us note indice(e i) the position of e i in l.

Remark 4.7: In the list of event constituting a chain of conflict (l = (e 1 , e 2 , ...e n)), for every event e i , the next (resp. previous) event in the same branching process is e i+2 or e i+3 (resp. e i-2 or e i-3)

The next definition defines two processes U n and V n which are aggregation of events where the possible successor of an event e i is either l (indice(e i)+2) either l (indice(e i)+3) . Definition 4.8: Let us consider that n <= p (p: index of the last event implied in the chain of conflict):

       U 0 = e 1 U 1 n = l 1 n+2 ⊕U 2 n+2 U 2 n = l 1 n+3 ⊕U 2 n+3 U n = U 1 n ⊕U 2 n U n : processes beginning by e 1        V 0 = e 2 V 1 n = l 2 n+2 ⊕V 2 n+2 V 2 n = l 2 n+3 ⊕V 2 n+3 V n = V 1 n ⊕V 2 n
V n : processes beginning by e 2 binary relations on events (see Section IV) which is represented by the following algebraic expression U 2 :

U 1 = (⊕ b 1 b 2 b 3 b 4 b 5 (b 1 ≺ (e 1 ⊥ e 2)) (b 2 ≺ (e 2 ⊥ e 3)) ...)
After some steps of reduction (MP + S), U 1 becomes:

(e 1 ⊥ e 2 ⊥ e 3 ⊥ e 4 ⊥ e 5) (13)
The theorem (T 4.9) allows to compute from (13) its following canonic form: The two unfoldings of example 1 and 2 have the same canonic form, they are conflict-equivalent: U 1 ≈ con f U 2 1) Reasoning about processes: Let us consider all the process p of U 2 : (⊕ e 1 e 3 e 5), (⊕ e 1 e 4), ...

• ∀p ∈ U 2 whenever e 3 is present, e 1 is present.

• ∀p ∈ U 2 , ¬e 3 ⊥ (e 1 ⊕ e 3 ⊕ e 5)
This is the algebraic definition of ≺. Finally from this chain of conflicts, the following causality can be deduced:

e 3 ≺ (e 1 ⊕ e 5) (16)
• A similar reasoning can be made:

∀p ∈ U 2 , ¬(e 1 ⊕ e 5) ⊥ (e 1 ⊕ e 3 ⊕ e 5)
This is the algebraic definition of:

(e 1 ⊕ e 5) ≺ e 3 (17)
(16) and (17) expresses that there is a strong link between e 3 and the process (e 1 ⊕ e 5) but ≺ is no well suited to encompass this relation. Theses two processes are like "intricated". • In the same manner:

Equations (18) and [START_REF] Steele | Common LISP: the language[END_REF] show that e 1 and e 2 transform the chain of conflict in a unique conflict. New relations between events or processes can be introduced:

• Alliance relation: e 1 , e 3 and e 5 are in "an alliance relation". Every event of this set is enforced by the occurrence of the other events: e 1 ⊕ e 3 enforces e 5 , e 1 ⊕ e 5 enforces e 3 and e 3 ⊕ e 5 enforces e 1 .

• Intrication: the occurrence of e 3 forces e 1 ⊕ e 5 and reciprocally e 1 ⊕ e 5 forces e 3 .

• Resolving conflicts (liberation):

• e 1 resolves 3 conflicts on 4 (as e 2 , e 4 and e 5)

• e 3 resolves every conflicts.

Semantically, e 3 can be identified as an important event in the chain. Moreover (⊕e 1 e 3 e 5) is a process aggregated with "associated events". This chain of conflict can be seen as two causalities in conflicts: (e 1 ≺ (e 4 ⊥ (e 3 ⊕ e 5))) ⊥ (e 2 ≺ (e 4 ⊥ e 5))

2) Example 3 (Cash dispenser): Let us consider the cash dispenser of the Figure 8, its unfolding in canonical form is: U3 = (⊥ (⊕ Consult EnterCode OKcode GetConsult) (⊕ Consult EnterCode OKcode Getcash) (⊕ Consult EnterCode BadCode) (⊕ Cash EnterCode OKcode Getcash) (⊕ Cash EnterCode OKcode GetConsult) (⊕ Cash EnterCode BadCode))

This expression enlightens that GetCash and BadCode are neither in the same process.

VI. CONCLUSION AND FUTURE WORK

This work is a first attempt to present an axiomatic framework to the analyze of the processes issued of an unfolding. From a set of axioms, distributivities and derivation rules, theorems have been established and a reduction process can lead to a canonic form The unfolding process, definitions, theorems and reduction rules have been coded in LISP [START_REF] Steele | Common LISP: the language[END_REF] with a package named PLT/Redex [3][12]. This canonic form assets an equivalence conflicts (≡ con f) between unfoldings and then Petri nets.

Several perspectives are into progress. First, news theorems have to be established allowing to speed up the procedure of canonic reduction and to extend extraction of knowledge on relationship between events. Different kinds of relationship between events have to be defined and formalized: Alliance relation, Intrication, etc. Moreover, as already outlined in the last part of the example section, algebraic reasoning can raise semantic informations about events from the canonic form. Another perspective is to extend this approach to Petri nets with inhibitor and drain arcs.

Fig 1 .

 1 Fig 1. Chain of conflicts.

Fig 2 .

 2 Fig 2. Milner: rejection of distributivity of sequence on choice.

Remark 3 . 1 :

 31 The transitive aspect of F + implies a transitive definition of strict causality. A set B ⊆ B of conditions such as ∀b, b ∈ B, b = b ⇒ b b is a cut. Let B be a cut with ∀b ∈ B, b ∈ B\B, b b , B is the maximal cut. Definition 3.2: The unfolding Un f

Fig 3

 3 Fig 3. a) Petri net, b) Unfolding.

 and Max(C i) are maximum cuts. Generally, any maximal cut B ⊆ B i corresponds to a reachable marking m of < N , m 0 > such as ∀p ∈ P, m(p) = |B p | avec B p = {b ∈ B | λ (b) = p}. The local configuration of an event e is defined by: [e] def = {e | e ≺ e} ∪ {e} and is a process. For example of unfolding in Figure 3.b: [e 4] def = {e 1 , e 3 , e 4 }.

 Fig 4. Unfolding.

Axiom 4 . 1 (

 41 Distributivity of ≺): e ≺ (e 1 ⊥ e 2) ≡ de f (e ≺ e 1) ⊥ (e ≺ e 2)

Axiom 4 . 2 (

 42 Definition of ⊕):e 1 ⊕ e 2 ≡ de f (e 1 ≺ e 2) ⊥ (e 2 ≺ e 1) ⊥ (e 1 e 2)

1 ≺ e 2 ≡

 12 de f ¬e 1 ⊥ (e 1 ⊕ e 2)

Axiom 4 . 4 (

 44 Duality between ⊕ and ⊥):e 1 ⊕ e 2 ≡ de f e 1 ¬⊥e 2 e 1 ¬⊕e 2 ≡ de f e 1 ⊥ e 2

Theorem 4 . 2 (

 42 Canonical form): Let us consider an unfolding U, this form can be reduced in the following form: U = (⊥ P 1 P 2 ... P n)

Definition 4 . 3 (

 43 Conflict Equivalence): Let us U 1 ,U 2 unfoldings of Petri nets:

1)

 1 Modus Ponens: ⊕ b... ⊕ b... ≺ e e MP 1 e e ≺ ⊕ b... ⊕ e b... MP 2 Where ⊕b... stands for the general form for ⊕b 1 b 2 ... b n . MP 1 expresses that b... are consumed by the causality, whereas, in MP 2 e stays in the conclusion.

Theorem 4 . 5 (

 45 Conflict): e 1 ≺ (e 2 ⊥ e 3) ≡ (e 1 ≺ (e 2 ⊕ ¬e 3)) ⊥ (e 1 ≺ (¬e 2 ⊕ e 3)) This theorem expresses how to develop a conflict and the following theorem allows to reduce processes: Theorem 4.6 (Absorption): Let E, F some processes: E ⊥ (E ⊕ F) ≡ E ⊕ F 1) Chain of conflicts: This section presents a theorem which computes the branching process in canonic form of a chain of conflict illustrated in Figure 5.

Fig 5 .

 5 Fig 5. Chain of conflicts. The axiomatic representation of the unfolding is: U = ((⊕ b 0 b 1 ... (b 0 ≺ (e 1 ⊥ e 2))(b 1 ≺ (e 2 ⊥ e 3))...) After some steps of reduction (MP + S): U = (e 1 ⊥ e 2 ⊥ ... ⊥ e p)

Theorem 4 . 9 :

 49 The canonic form of a chain of conflict C isU n ⊕V n : (e 1 ⊥ e 2 ⊥ ... ⊥ e p) ≡ U n ⊕V n V. EXAMPLES A. Example 1The Figure6gives a Petri net which represents a chain of conflicts and its unfolding. The unfolding gives a tableof

Fig 6 .

 6 Fig 6. PN and unfolding of a chain of conflicts.

(Fig 7 . U 2 .expression U 2 :

 722 Fig 7. U 2 .

¬e 2 ⊥

 2 (e 2 ⊕ e 4) ⊥ (e 2 ⊕ e 5) ≡ dist ¬e 2 ⊥ (e 2 ⊕ (e 4 ⊥ e 5))≡ de f e 2 ≺ (e 4 ⊥ e 5)(18)e 2 leads to a conflict ¬e 1 ⊥ ((⊕e 1 e 3 e 5) ⊥ (e 1 ⊕ e 4) ≡ dist ¬e 1 ⊥ (e 1 ⊕ ((e 3 ⊕ e 5) ⊥ e 4)) ≡ de f e 1 ≺ ((e 3 ⊕ e 5) ⊥ e 4)

Fig 8 .

 8 Fig 8. Cash dispenser.

 e 2 ≡ ((•e 1 ∩ •e 2 = / 0) or (∃e i , e i ≺ e 2 and e 1 ⊥ e i))[START_REF] Glabbeek | Petri net models for algebraic theories of concurrency[END_REF] 3) Concurrency: I is the set of every couple of element of E B in concurrency. e 1 and e 2 are in concurrency if the occurrence of one is independent of the occurrence of the other. So, e 1 e 2 iff e 1 and e 2 are neither in causality neither in exclusion.e 1 e 2 ≡ ¬((e 1 ⊥ e 2) or (e 1 ≺ e 2) or (e 2 ≺ e 1))[START_REF] Best | The box algebra=petri nets+process expressions[END_REF] 4) Process: ⊕ aggregates events in one process. Two events e 1 and e 2 are in the same process if e 1 causes e 2 or if e 1 is concurrent with e 2 : e 1 ⊕ e 2 ≡ (e 1 ≺ e 2) or (e 2 ≺ e 1) or (e 1 e 2)