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Bayesian Sparse Fourier Representation of
Off-Grid Targets with Application to

Experimental Radar DataI,II
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aUniversity of Toulouse, ISAE/DEOS, 10 Avenue Edouard Belin, 31055 Toulouse, France
bMS3, TU Delft EEMCS Building 36, Mekelweg 4, 2628 CD Delft, The Netherlands

Abstract

The problem considered is the estimation of a finite number of cisoids embedded in white noise, using a sparse signal
representation (SSR) approach, a problem which is relevant in many radar applications. Many SSR algorithms have been
developed in order to solve this problem, but they usually are sensitive to grid mismatch. In this paper, two Bayesian
algorithms are presented, which are robust towards grid mismatch: a first method uses a Fourier dictionary directly
parametrized by the grid mismatch while the second one employs a first-order Taylor approximation to relate linearly the
grid mismatch and the sparse vector. The main strength of these algorithms lies in the use of a mixed-type distribution
which decorrelates sparsity level and target power. Besides, both methods are implemented through a Monte-Carlo
Markov chain algorithm. They are successfully evaluated on synthetic and experimental radar data, and compared to a
benchmark algorithm.

Keywords:
sparse representation, grid mismatch, Bayesian inference, Monte-Carlo Markov Chain

1. Introduction

Usually in radar applications, the received signal con-
sists of the signal of interest modeled by a sum of cisoids
embedded in additive noise

y =
N∑
n=1

αnan + n with [an]m = exp{j2πfnm} (1)

where y ∈ CM is the observation vector and M is the size
of the observation space; αn,an are respectively the com-
plex amplitude and the steering vector with frequency fn
of the nth target signal and n is the noise vector. Several
methods have been developed to estimate the target scene
(αn, fn) using the observation vector y; they can be di-
vided into two classes. When no specific model about the
noise covariance matrix is assumed, the technique is said
to be non-parametric (e.g., Fourier transform, Capon al-
gorithm [1], APES [2]). Otherwise, the technique is called
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parametric (e.g., subspace methods: MUSIC [3] and ES-
PRIT [4]). Recently, a new model for the estimation of the
target scene has emerged, called sparse signal reconstruc-
tion (SSR) [5, chap.5]. In radar applications, the signal
of interest is usually sparse, e.g., when a small number of
targets are present in the target scene. A sparse repre-
sentation is thus a natural choice and is deemed to “per-
mit efficient fundamental signal processing” [6]. In what
follows we adopt an SSR approach where the signal is de-
scribed as a linear combination of a finite number of atoms
from a dictionary. Using the Fourier basis as a sparsifying
dictionary, the problem (1) can be recasted as

y = Fx+ n (2)

with

F ∈ CM×M̄ the Fourier dictionary of sizeM×M̄ where usu-
ally M̄ ≥M ;

x ∈ CM̄ the sparse vector having ideally exactlyN nonzero
components.

Several methods have been developed to estimate x
from the noisy measurement y. Most of them are formu-
lated from a deterministic point of view and aim at finding
the solution x̂ as

x̂ = arg min ‖ x ‖1 s.t. ‖ Fx− y ‖2≤ τ. (3)

where F is a sparsifying dictionary and τ is the energy
bound on the additive noise n. The problem (3) can be

January 28, 2015



reformulated and solved with the Basis Pursuit [7] or Lasso
[8] algorithms as well as thresholding-based techniques,
e.g., [9].The so-called “greedy algorithms”, e.g., Orthog-
onal Matching Pursuit (OMP) [10] or Subspace Pursuit
[11], reduce the calculation load by iteratively identifying
the support of vector x.

Despite the prominence of techniques that solve (3),
they all endure the so-called “grid mismatch problem” that
arises when the grid frequencies do not match the true
frequencies of the signal. This problem was first described
in [12] and quantified several times in [13, 14, 15, 16]. They
all conclude that it is essential to take into account the
grid mismatch problem, at risk of dramatically deteriorate
the sparse recovery performance. The most natural way
to deal with grid mismatch is to refine the grid [14, 17,
12]. However, refining the grid increases the coherence in
the sparsifying dictionary, which can damage the overall
estimation performance. Thus, most of the robust SSR
techniques aim at estimating jointly the grid mismatch
and the sparse vector. A parametric model can be adopted
where the dictionary directly depends on grid mismatch.
For example, in [18], a Bayesian approach was adopted and
a variational Expectation–Maximization (EM) algorithm
implemented. Nonetheless, in general the dictionary is
not linear with respect to (wrt) the grid mismatch, so this
model induces quite heavy calculations [19]. Thus, most of
the techniques choose alternatively to add a perturbation
matrix to the dictionary [20], which is usually obtained
from a first order Taylor approximation [19, 21, 22] so that
the dictionary becomes linear wrt the grid mismatch. In
this paper, such a model will be called a “first-derivative-
based” model. Several estimation methods can be used
with this model. In [20], the method used is a total least-
squares optimization under special constraint for sparsity
and error in the dictionary. In [21], a Bayesian framework
is adopted and an EM algorithm is implemented. The
Bayesian inference of [18] was taken up again in [19], as
well as a variational Bayesian (VB) algorithm, but the
calculations are simplified by the Taylor approximation.
Finally, in [22] the classical algorithms OMP [10] and Lasso
[8] are augmented to jointly estimate the grid mismatch
and the sparse vector.

In this paper, we propose a robust hierarchical Bayesian
scheme, which is an extension of a non-robust SSR method
[23]. In particular, the analysis matrix is reduced to a
Fourier dictionary and a step is added in the algorithm
in order to sample the grid mismatch. The advantage
of the proposed formulation over that of [18, 19, 21] is
that it enforces more sparsity via the use of a hierarchi-
cal Bernoulli-complex Gaussian prior on x. A mixed-type
prior enables to decorrelate the sparsity level of the scene
and the target power. Furthermore, it permits to estimate
the grid mismatch only when a target is present, with-
out previously setting a threshold or number of targets.
No attempt has been made yet at robustifying a model
using this prior. Besides, the sparse vector and grid mis-
match are estimated for the first time using a Monte-Carlo
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Figure 1: Directed acyclic graph associated with the hierarchical
Bayesian parametric model.

Markov Chain algorithm, which provides an optimal solu-
tion. The motivation is above all to reach high estimation
performance, and not to optimize the calculation load.

The remaining of the paper is organized as follows. In
section 2 a parametric model is presented together with
the hierarchical Bayesian scheme used, and in particular
the sampling of the grid mismatch. Then, in section 3 a
first-derivative-based model is presented, which is widely
used in the literature, as well as its associated hierarchical
Bayesian scheme. This model simplifies the sampling of
the grid mismatch. These two models are then compared
to a state-of-the-art algorithm in section 4 on synthetic
data and in section 5 on experimental data retrieved from
the PARSAX radar system [24]. Section 6 concludes with
the performance of the proposed algorithms and some fu-
ture work considered.

2. Parametric signal model

In this section, we describe the so-called “parametric
model”. The hierarchical Bayesian model considered is
represented graphically in Fig. 1.

2.1. Bayesian Model

2.1.1. Observation model

Modeling of grid mismatch. We consider the observation
model y = Fx+ n described in (2) with M̄ fixed. When
each true frequency of the signal matches a frequency in
the analysis grid, an appropriate choice for the Fourier
dictionary F is

[f m̄]m = 1/
√
M exp{j2πm(m̄/M̄)}

where f m̄ is the m̄th column of F . In practice, the target
frequencies do not match the ones in the analysis grid. As
a consequence, as in [25] we propose to model the possible
grid error by introducing a perturbation vector on the fre-

quency axis denoted as ε =
[
ε0 . . . εm̄ . . . εM̄−1

]T
so that the Fourier dictionary is directly parameterized by
ε as follows

F , F (ε) =
[
f0(ε0) . . . f m̄(εm̄) . . . fM̄−1(εM̄−1)

]
2



where the m̄th column of F (ε) is now expressed as

[f m̄(εm̄)]m = 1/
√
M exp{j2πm(m̄+ εm̄)/M̄}.

In order to avoid overlapping between the frequency bins
of F , the grid errors are assumed bounded such that for
m̄ = 0, . . . , M̄−1, εm̄ ∈ [−0.5, 0.5). The observation model
(2) can then be written as the “parametric model”

y = F (ε)x+ n (4)

where the Fourier matrix F is directly parameterized by
the vector of frequency error ε.

Likelihood. An additive white noise background is consid-
ered, and n is assumed to be centered Gaussian with power
σ2, which is denoted as

n|σ2 ∼ CNM

(
0, σ2I

)
(5)

where I is the identity matrix. Note that the clutter is sup-
posedly represented by discretes with zero velocity. This
representation may be sufficient in several radar applica-
tions and is relevant for the experimental data used in
Section 5. The likelihood function is thus given by

f
(
y|ε,x, σ2

)
=

1

πMσ2M
exp

{
−
‖y − F (ε)x‖22

σ2

}
. (6)

A Bayesian framework is established in order to estimate
the target scene x, ε. Each unknown parameter is mod-
eled by a random variable with a given prior probability
density function (pdf). The choice of each prior density
is aimed at facilitating the calculation of the estimation
(mathematical tractability), yet preserving physical sense
to the hierarchical model.

2.1.2. Prior pdfs of the parameters

Target amplitude vector. Ideally in SSR the vector x in-
troduced in (2) has exactly N nonzero elements. As in [23]
a Bernoulli-complex Gaussian prior is chosen to actually
enforce sparsity in x. The elements xm̄ , [x]m̄ of the
amplitude vector are assumed independent and identically
distributed (iid) according to the following mixed type pdf

f(xm̄|w, σ2
x) = (1− w)δ(|xm̄|) + w

1

πσ2
x

exp

{
−|xm̄|

2

σ2
x

}
.

(7)
The prior (7), denoted as xm̄|w, σ2

x ∼ BerCN
(
w, 0, σ2

x

)
,

amounts to considering that a target with power σ2
x is

present at the m̄th frequency bin with probability w.

Grid errors. We propose to define the prior pdf of the
grid error on the m̄th frequency grid εm̄ conditionally to
the magnitude of xm̄: no grid error will be estimated if
no target signal is present at the corresponding frequency
bin. This notion is also used in [21, 18, 19] albeit either a
threshold on the target amplitude has to be fixed, or the

number of targets N known. Since we use a mixed-type
prior on x, there is no need of either setting up a target
amplitude threshold or knowing the number of targets.
Here, we consider that the εm̄|xm̄ are iid with pdf

f(εm̄|xm̄ = 0) = δ(εm̄) (8a)

f(εm̄|xm̄ 6= 0) = I[−0.5,0.5](εm̄) (8b)

where IA(.) is the indicator function of the set A.

Noise power. An inverse-gamma prior is chosen for the
white noise power σ2 mostly since this distribution is con-
jugate to the likelihood (6). The prior pdf of σ2 can there-
fore be expressed as

f(σ2|γ0, γ1) ∝ e−γ1/σ
2

(σ2)γ0+1
I[0,+∞)(σ

2) (9)

where γ0, γ1 are respectively the shape and scale param-
eters. The distribution (9) is denoted as σ2 |γ0, γ1 ∼
IG (γ0, γ1). The shape and scale parameters (γ0, γ1) al-
low to select a very informative, or on the contrary flat,
prior. Nonetheless, they can be chosen in such a way that
they keep hold of their physical sense. In radar applica-
tions, the thermal noise power is usually rather accurately
known so that only a moderately informative prior is re-
quired in (9).

2.1.3. Prior pdfs of the hyperparameters

Since usually the probability w and target signal power
σ2
x are both unknown, another level needs to be added to

the hierarchical model.

Target signal power. Similarly to σ2, an inverse-gamma
prior is chosen for the target signal power σ2

x and is de-
noted as σ2

x|β0, β1 ∼ IG (β0, β1). This time, the shape
and scale parameters β0, β1 must be chosen carefully and
in compliance with some prior knowledge about the target
scene. Besides, the targets present in the signal may have
different amplitudes from one to another, hence a not so
informative prior might be necessary.

Level of occupancy. If no information is available about
the sparsity level of the target scene, a convenient prior is
a uniform pdf over the interval [0, 1], i.e., w ∼ U[0,1].

2.2. Bayesian estimation

Herein we propose an estimation scheme of the target
scene x, ε based on the Bayesian hierarchical model de-
scribed in Section 2.1. More precisely, our objective is to
obtain the minimum mean square error (MMSE) estima-
tors of x and ε

x̂MMSE =

∫
xf(x|y)dx, (10a)

ε̂MMSE =

∫
εf(ε|y)dε. (10b)
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In [23], the grid mismatch was not taken into account but
the MMSE estimator of x was already intractable to de-
rive analytically because of the complexity of the poste-
rior distribution of x|y. When considering grid mismatch,
the analytic calculation of the MMSE estimators (10a)
and (10b) seems all the more demanding. As a conse-
quence, a Monte-Carlo Markov Chain (MCMC) is imple-
mented [26]. More specifically, an hybrid Gibbs sampler
[26, chap.10] is used, which simulates iteratively samples

σ2(t)
, ε(t),x(t), w(t), σ2

x
(t)

according to their conditional pos-

terior distribution f(θi|y,θ−i) where θ =
[
σ2, εT ,xT , w, σ2

x

]T
and θ−i is the vector θ whose ith element has been re-
moved. After a burn-in time Nbi, the samples are dis-
tributed according to their posterior distribution f(θi|y).
When enough samples are acquired (Nr), the MMSE esti-
mators can be built empirically as

θ̂iMMSE = N−1
r

Nr∑
t=1

θi
(t+Nbi). (11)

The conditional posterior distributions are obtained from
the joint posterior pdf of σ2, ε,x, w, σ2

x|y

f(σ2, ε,x, w, σ2
x|y) ∝ (12)

f(y|ε,x, σ2)f(ε|x)f(x|w, σ2
x)f(w)f(σ2

x)f(σ2).

In particular, both vectors x and ε are sampled element-
wise with conditional posterior distributions of εm̄ and xm̄
derived from their conditional joint posterior distribution

f(εm̄, xm̄|y, ε−m̄,x−m̄, σ2, w, σ2
x)

∝ exp
{
−σ−2

[
|xm̄|2 − x∗m̄f m̄(εm̄)Hem̄ − xm̄eHm̄f m̄(εm̄)

]}
× f(εm̄|xm̄)f(xm̄|w, σ2

x) (13)

In the preceding equation, we used (6) along with the
fact that y − F (ε)x = em̄ − f m̄xm̄ with em̄ = y −∑
i6=m̄ f i(εi)xi.

2.2.1. Sampling of x

Following [23], x is sampled element-wise. From in-
spection of (13), it is straightforward to see that the m̄th
element of x follows the distribution BerCN

(
wm̄, µm̄, η

2
m̄

)
with

η2
m̄ =

(
1

σ2
+

1

σ2
x

)−1

(14a)

µm̄ =
η2
m̄

σ2
f m̄(εm̄)Hem̄ (14b)

wm̄ =
w
η2
m̄

σ2
x

exp
{
|µm̄|2
η2
m̄

}
1− w + w η2

m̄

σ2
x

exp
{
|µm̄|2
η2
m̄

} . (14c)

2.2.2. Sampling of ε

The parameter ε is sampled element-wise, in the same
way as vector x. Using (13), the conditional posterior

distribution of εm̄ is calculated

f(εm̄|y, ε−m̄,x)

∝ exp
{
−σ−2

[
|xm̄|2 (15)

−x∗m̄f m̄(εm̄)Hem̄ − xm̄eHm̄f m̄(εm̄)
]}
f(εm̄|xm̄)

∝ exp
{

2σ−2Re
[
x∗m̄f m̄(εm̄)Hem̄

]}
f(εm̄|xm̄)

∝ exp

{
M−1∑
m=1

κm cos
(

2π
εm̄
M̄
m− φm

)}
× f(εm̄|xm̄) (16)

where κm = 2
σ2
√
M
× |bm| and φm = ∠bm. b has been de-

fined as b = x∗m̄u
∗
m̄�em̄, where um̄ = exp{j2πm(m̄/M̄)}.

Knowing that f(εm̄|xm̄ 6= 0) = I[−0.5,0.5](εm̄), we rec-
ognize from (16) a dilated and truncated generalized von
Mises distribution [27]. Such a distribution can be trouble-
some to sample, so a Metropolis-Hastings (MH) algorithm
is used [26]. This algorithm is based on a proposal distribu-
tion that should be easy to simulate from, and as close as
possible to the target distribution. We represent in Fig.2
the conditional posterior distribution of εm̄ for different
values of mismatch and post-processing SNR defined as

M × E{|αn|2}/σ2.

We observed that when M̄ ≥M , in the case of low SNR, a
flat proposal would be appropriate, while a Gaussian pro-
posal would better fit the distribution in case of high SNR.
Thus, in our MH algorithm we switch from a flat proposal
to a Gaussian proposal (and vice-versa) depending on the

estimated target power, namely |xm̄(t)|2/σ2(t)
. The pro-

posal scheme should be employed only during a burn-in
period in order to preserve the convergence properties [26,
chap.7], but in fact it does not damage the performance
when used in the whole process.

2.2.3. Sampling of σ2, w and σ2
x

As in [23], the parameter σ2 and hyperparameters w
and σ2

x are sampled according to their conditional posterior
distribution

σ2|y,x, ε ∼ IG
(
γ0 +M,γ1+ ‖ y − F (ε)x ‖22

)
(17)

w|x ∼ Be (1 + n1, 1 + n0) (18)

σ2
x|x ∼ IG

(
β0 + n1, β1+ ‖ x ‖22

)
(19)

where n1 is the number of nonzero elements of x and n0 =
M̄ − n1.

The hybrid-Gibbs sampler computed is summarized in
Fig. 3 where the sampling of each parameter is detailed.

3. First-derivative-based signal model

3.1. Bayesian Model

The previous method relies on an exact modeling of
the grid mismatch ε, embedded in the exponential term.

4
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Figure 2: Shape of the conditional posterior distribution
f(εm̄|y, ε−m̄,x, σ2) for a single target at zero velocity with M̄ = M .
(a) SNR=5dB, εm̄ = .15. (b) SNR=5dB, εm̄ = .45. (c) SNR=15dB,
εm̄ = .15. (d) SNR=15dB, εm̄ = .45.

Require: y, (γ0, γ1), (β0, β1)
Ensure: σ̂2

MMSE, ŵMMSE, σ̂2
xMMSE, x̂MMSE, ε̂MMSE

{Initialization}
w(0) ∼ U[0,1]

σ2
x

(0) ∼ IG (β0, β1)

x(0) ∼
∏M̄−1
i=0 BerCN

(
w(0), 0, σ2

x
(0)
)

ε(0) ∼ U[−0.5,0.5]

{Iterations}
for n = 1 to Nbi +Nr do

σ2(n)|y,x(n−1), ε(n−1) ∼
IG
(
γ0 +M,γ1+ ‖ y − F (ε(n−1))x(n−1) ‖22

)
w(n)|x(n−1) ∼ Be (1 + n1, 1 + n0)

σ2
x

(n)|x(n−1) ∼ IG
(
β0 + n1, β1+ ‖ x(n−1) ‖22

)
for m̄ = 0 to M̄ − 1 do
xm̄

(n)|y,x−m̄(n), w(n), σ2
x

(n)
, σ2(n)

, ε(n−1) ∼
BerCN

(
wm̄, µm̄, η

2
m̄

)
, as in (14)

εm̄
(n)|y, ε−m̄(n),x(n), σ2(n) ∼
dGvM[−.5,+.5](κm, φm)

end for
end for
{Estimators}
θ̂MMSE = 1

Nr

∑Nr

n=1 θ
(n+Nbi)

Figure 3: Hybrid-Gibbs sampler used with the parametric model.
The acronym “dGvM[−.5,+.5]” refers to a dilated truncated general-
ized von Mises distribution defined in (16). According to [26, p.268],
this algorithm will converge whatever the initialization of the param-
eters.

However, this leads to a rather complicated posterior dis-
tribution (namely a truncated generalized von Mises dis-
tribution), which in turn induces additional complexity to

the sampler. Therefore, we now turn to a possibly simpler
model. Following an approach widely used in the literature
[28, 19, 29, 22, 30], we also investigate a first-derivative-
based signal model which will be later compared with the
parametric model. Indeed, in the parametric model, the
Fourier dictionary F is not linear wrt the grid mismatch
vector ε. A first-order Taylor approximation can be used
to make F linear wrt ε and thus reduce the calculation
load. The first-derivative-based model stems from a first-
order Taylor approximation around ε = 0

F (ε) = F (0) +
∂F

∂ε

∣∣∣∣
ε=0

(ε− 0)

= F (0) +DF (0)Dε (20)

with D = diag
(
j 2π
M̄

[
0 . . . M − 1

])
and Dε = diag(ε).

The first-derivative-based observation model is then
written as

y = (F (0) +DF (0)Dε)x+ n (21)

where there is now a linear relationship between the grid
mismatch vector ε and the sparse vector x.

Remark 1. The accuracy of the approximation (20) highly
depends on the number of points in the analysis grid M̄ :
the larger its value, the better the approximation. As
a consequence, the relative quadratic error of the recon-
structed target scene F (ε)x, namely ‖ (F (0)+DF (0)Dε)x−
F (ε)x ‖2 / ‖ F (ε)x ‖2, significantly decreases when M̄ in-
creases, especially in the case of high mismatch. However,
in that case F (0) becomes highly coherent.

Likelihood. Just as with the parametric model, the addi-
tive white noise background n is assumed to be centered
Gaussian with power σ2. The likelihood function is now
given by

f(y|ε,x, σ2) =

1

πMσ2M
exp

{
−
‖y − (F (0) +DF (0)Dε)x‖22

σ2

}
.

(22)

A Bayesian framework is set up to estimate the target
scene x, ε. The prior pdfs assigned to the different param-
eters are the same as with the parametric model, as well
as the hierarchical Bayesian model (Fig.1).

3.2. Bayesian estimation

The target scene is estimated through the calculation of
the MMSE estimators (10) via an MCMC algorithm. The
conditional posterior distributions of the parameters and
hyperparameters are calculated using the joint posterior
distribution (12), but they differ to a certain extent from
the ones with the parametric model.
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3.2.1. Sampling of x

The sparse vector x is sampled element-wise, and xm̄
follows the distribution BerCN

(
wm̄, µm̄, η

2
m̄

)
with now

η2
m̄ =

(
‖ gm̄ ‖22
σ2

+
1

σ2
x

)−1

(23a)

µm̄ =
η2
m̄

σ2
gHm̄em̄ (23b)

wm̄ =
w
η2
m̄

σ2
x

exp
{
|µm̄|2
η2
m̄

}
(1− w) + w η2

m̄

σ2
x

exp
{
|µm̄|2
η2
m̄

} . (23c)

where gm̄ is the m̄th column of F (0) + DF (0)Dε and
em̄ = y −

∑
i 6=m̄ gixi.

3.2.2. Sampling of ε

The grid mismatch vector ε is sampled element-wise
too. The conditional posterior distribution of εm̄ is now
written as

f(εm̄|y,x, ε−m̄, σ2) ∝ exp

{
− (εm̄ − µεm̄)

2

2σ2
εm̄

}
f(εm̄|xm̄)

(24)

with

σ2
εm̄ =

σ2

2 ‖ ḟ m̄ ‖22 |xm̄|2

µεm̄ = 2Re
{
x∗m̄ḟ

H

m̄ẽm̄

} σ2
εm̄

σ2

where ẽm̄ = y − F (0)x −
∑
i 6=m̄ [DF (0)diag(x)]i εi and

ḟ m̄ is the m̄th column of DF (0).
Using f(εm̄|xm̄ 6= 0) = I[−0.5,0.5](εm̄), we see from (24)

that the conditional posterior distribution of εm̄|xm̄ 6= 0 is
a Gaussian distribution with mean µεm̄ and variance σ2

εm̄ ,
truncated on the interval [−0.5,+0.5).

An MH algorithm is used to draw samples following
this distribution, with a Gaussian proposal with mean µεm̄
and variance σ2

εm̄ . The sampling of ε in the first-derivative-
based model is thus easier than with the parametric model.
Note that other techniques can be used to draw samples
following a truncated Gaussian distribution, e.g., [31].

3.2.3. Sampling of σ2, w and σ2
x

To finish, the conditional posterior distributions of σ2,
w and σ2

x are calculated

f(σ2|y,x, ε) ∼ (25)

IG
(
γ0 +M,γ1+ ‖ y − (F (0) +DF (0)Dε)x ‖22

)
f(w|x) ∼ Be (1 + n1, 1 + n0) (26)

f(σ2
x|x) ∼ IG

(
β0 + n1, β1+ ‖ x ‖22

)
(27)

where n1 is the number of nonzero elements of x and n0 =
M̄ − n1.

The hybrid-Gibbs sampler modified in the case of the
first-derivative-based model is summarized in Fig. 4.

Require: y, F (0), D, (γ0, γ1), (β0, β1)
Ensure: σ̂2

MMSE, ŵMMSE, σ̂2
xMMSE, x̂MMSE, ε̂MMSE

{Initialization}
w(0) ∼ U[0,1]

σ2
x

(0) ∼ IG (β0, β1)

x(0) ∼
∏M̄−1
i=0 BerCN

(
w(0), 0, σ2

x
(0)
)

ε(0) ∼ U[−0.5,0.5]

{Iterations}
for n = 1 to Nbi +Nr do

σ2(n)|y,x(n−1), ε(n−1) ∼
IG
(
γ0 +M,γ1+ ‖ y − (F (0) +DF (0)Dε)x(n−1) ‖22

)
w(n)|x(n−1) ∼ Be (1 + n1, 1 + n0)

σ2
x

(n)|x(n−1) ∼ IG
(
β0 + n1, β1+ ‖ x(n−1) ‖22

)
for m̄ = 0 to M̄ − 1 do
xm̄

(n)|y,x−m̄(n), w(n), σ2
x

(n)
, σ2(n)

, ε(n−1) ∼
BerCN

(
wm̄, µm̄, η

2
m̄

)
, as in (23)

εm̄
(n)|y, ε−m̄(n),x(n), σ2(n) ∼
N[−.5,+.5]

(
µεm̄ , σ

2
εm̄

)
end for

end for
{Estimators}
θ̂MMSE = 1

Nr

∑Nr

n=1 θ
(n+Nbi)

Figure 4: Hybrid-Gibbs sampler used with the first-derivative-based
model. The vector ε is now sampled following a truncated Gaussian
distribution N[−.5,+.5]

(
µεm̄ , σ

2
εm̄

)
.

4. Results on synthetic data

First, the parametric and first-derivative-based mod-
els are evaluated through several numerical simulations on
synthetic data. The synthetic data are generated accord-
ing to (1) and (5). As underlined before, the radar op-
erator must set the hyperparameters (β0, β1) and (γ0, γ1)
with special care. They are chosen to give the desired
mean and variance of the prior distributions of the ther-
mal noise power σ2 and target power σ2

x. Indeed for an
inverse gamma distribution g ∼ IG (ν0, ν1) the mean and
variance are respectively

mg =
ν1

ν0 − 1
, ν0 > 1

varg =
ν2

1

(ν0 − 1)2(ν0 − 2)
, ν0 > 2.

These equations are used to tune the hyperparameters in
the simulations.

4.1. Example after one realization

We begin with a first (non-quantitative) illustration
of the algorithms behavior, from a single run. A sim-
ple scenario is considered with three targets with mis-
match ε0 ∈ {0, 0.15, 0.45} and a post-processing SNR of
20 dB. Fig.5 shows the estimated target scene (x̂, ε̂). The
results obtained with the proposed algorithms (paramet-
ric and first-derivative-based models) are compared with
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the ones obtained with a non-robust method (proposed
algorithm in Fig.3 without the sampling of ε, i.e., ε =
0). The target scene estimated with the Capon algo-
rithm [1] is also represented for the sake of comparison
with a classical high-resolution spectral method. We can
see that when |εm̄| → .5 the target spreads over the sur-
rounding frequency bins with the non-robust analysis and
first-derivative-based model. However, the estimation per-
formed with the parametric model is a lot more accu-
rate in terms of both amplitude and mismatch estima-
tion. Besides, the parametric model does not result in
as much sidelobes as with the Capon algorithm and the
non-robust analysis. Thus, in this example the practi-
cal interest of the non-robust analysis and first-derivative-
based model is questionable when compared with a clas-
sical high-resolution spectral analysis such as Capon, but
the parametric model clearly is advantageous.

The histograms of the sampled parameters σ2, w, σ2
x,

x0 and ε0 are represented in Fig.6 together with their prior
distribution. They were obtained with the proposed algo-
rithm and the parametric model. The estimation process
results in a posterior distribution peaked around the es-
timated value, even when starting with a flat prior dis-
tribution (as with parameter w or ε0). These estimated
values seem quite reliable: σ2

MMSE = 1.02 is close from
its true value σ2 = 1; wMMSE = 12.6% while the true
level of occupancy is N/M̄ ≈ 9.4%; σ2

xMMSE = 18.8 dB
while the average power of the scatterers in the scene is
1/N

∑
n σ

2SNRn = 20 dB. If we focus on the target with
zero velocity, the estimation is good too: |x0MMSE| = 9.53
and ε0MMSE = 0.13 whereas the true values are 10 (20 dB)
and 0.15 respectively.

4.2. Results after several Monte-Carlo simulations

4.2.1. Discussion about an appropriate metric

In the case of SSR, finding an appropriate metric to
evaluate the quality of the estimation is a delicate choice,
e.g., [13]. Indeed, with a sparse representation there is an
inherent ambiguity about the position of a target at the
edge of a frequency bin. This ambiguity is represented in
Fig.7: the target can be considered in the m̄ − 1th fre-
quency bin with a mismatch of 0.5 (εm̄−1 = +.5) or in the
m̄th frequency bin with a mismatch of -0.5 (εm̄ = −.5).

If we consider a target such that εm̄ = −.5, the esti-
mated target might be shifted on the previous frequency
bin with a high positive mismatch (i.e., εm̄−1 → +.5), or
even split between the previous frequency bin and the true
one but with acceptable mismatches (i.e., εm̄−1 → +.5 and
εm̄ → −.5). In both cases, the estimation of the target
frequency (m̄ + εm̄)/M̄ is accurate and thus the recon-
structed target scene can be correctly estimated. However,
the MSEs of x̂MMSE and ε̂MMSE would be high since the
target is not estimated in the correct bin. As a result,
the MSE of F (ε̂MMSE)x̂MMSE seems more representative
of the estimation quality. More precisely, in what follows,
the normalized MSE is calculated via Nmc = 500 Monte-
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Figure 5: SSR of synthetic target scene: M = 32, N = 3, σ2 = 1,
M̄ = M , Nr = 1000, Nbi = 100, (mσ2

x
,
√

varσ2
x

) = MdB+(0, 3.5) dB

where MdB = 10 log10(M), (mσ2 ,
√

varσ2 ) = (0, 2.4) dB. (a) Grid
mismatch ε. (b) Target amplitude vector corrected by the estimated
grid mismatch.

Carlo runs as

nMSE(F (ε̂MMSE)x̂MMSE) =

1

Nmc

Nmc∑
n=1

‖ F (ε̂
(n)
MMSE)x̂

(n)
MMSE − F (ε)x ‖22

‖ F (ε)x ‖2
(28)

where ε̂
(n)
MMSE refers to the value of ε̂MMSE at the nth

run.(likewise for x̂
(n)
MMSE).

4.2.2. Performance of the proposed algorithms

The parametric and first-derivative-based models are
studied in the case of a simple scenario: a single target
with an SNR of 10 dB (Fig.8(a)) and 20 dB (Fig.8(b))
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Figure 6: Prior and empirical posterior pdfs of the parameters: (a) Noise power σ2. (b) Level of occupancy w. (c) Post-processing target
power σ2

x. (d) Amplitude of target x0. (e) Associated grid mismatch ε0. The dotted curve is the prior distribution. The dashed line is the
estimated value of the parameter. The plain line is the true value in the case of σ2.
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Figure 7: Illustration of the ambiguity about the representation of
a target at the edge of a frequency bin. The plain lines represent
the center of a frequency bin and the dashed lines the edge of the
frequency bin. The target location is symbolized by an arrow.

and a varying mismatch ε0. Their performance is assessed
through the calculation of the MSE of the reconstructed
target scene F (ε̂MMSE)x̂MMSE, and compared with the
performance of the non-robust analysis, together with the
performance of the clairvoyant analysis wrt ε (proposed al-
gorithm in Fig.3 with the true value of ε). First, the para-
metric model outperforms the first-derivative-based model
and the non-robust analysis, except for very low values of
mismatch ε0 (in theory, it is better not to estimate the
grid mismatch when it is null). The clairvoyant analy-
sis based on the parametric model does not depend on
the mismatch, contrary to the first-derivative-based model
that highly depends on the mismatch per se because of the
initial Taylor approximation. It is interesting to see that
when SNR=20 dB, the performance of both models drops
off when increasing the mismatch, but it occurs for a lower
value with the first-derivative-based model and more dra-
matically.

In the interest of fairness, our algorithm was then com-
pared with another algorithm of the literature, the OGSBI
algorithm [21]. This algorithm is an SSR technique that
uses a first-derivative-based model. The sparse vector and
grid mismatch are jointly estimated thanks to an Expectation–
Maximization (EM) algorithm.

The comparison between our method of resolution and
the OGSBI algorithm is represented in Fig.9 through the
calculation of the normalized MSE of the reconstructed
target scene F (ε̂)x̂. The proposed algorithms clearly out-
perform the OGSBI algorithm, whatever the SNR of the
target, even if the OGSBI algorithm does not depend on
grid mismatch as much as them. Then, we can assure that
the parametric model and the proposed method of resolu-
tion are a lot more accurate than a first-derivative-based
model used with an EM algorithm.

The high performance of the parametric model is rooted
in the choice of prior for x, as well as the use of an MCMC
algorithm. It should be noted that in the OGSBI algo-
rithm, as in several publications, the sparsity is only in-
duced via a two-stage Laplacian prior on vector x or on
the real and imaginary parts of vector x. Then, only one
hyperparameter can be adjusted in order to monitor both
the sparsity level and the average target power. On the
contrary, in the Bayesian scheme proposed the mixed-type
prior on x allows to tune the sparsity level independently
from the average target power, e.g., [32]. To finish, the al-
gorithms mostly used in the literature provide sub-optimal
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Figure 8: Performance on synthetic target scene: M = 32, N =
1, σ2 = 1, M̄ = M , (mσ2

x
,
√

varσ2
x

) = MdB + (0, 3.5) dB,

(mσ2 ,
√

varσ2 ) = (0, 2.4) dB. Comparison with the clairvoyant wrt ε
and non-robust estimation for both parametric and first-derivative-
based model.

solutions compared with the MCMC algorithm, e.g., EM
or VB algorithms. The EM algorithm can converge to
a local, and not global, maximum [26, chap.5]. The VB
algorithm is also sub-optimal because it is based on an ap-
proximation of the posterior distribution, and is dependent
on the initialization [33].

4.2.3. Discussion about the appropriate choice of grid length
M̄

As underlined in the Introduction, the most natural
way to deal with grid mismatch is to refine the grid [12,
14, 17]. One can use this technique jointly with methods
estimating grid mismatch, being based on different mod-
els, such as a parametric or first-derivative-based model.
Here, we assess the influence of grid length on the proposed
algorithms and on the OGSBI algorithm.

The different models are compared for different val-
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Figure 9: Comparison between the proposed algorithms and the
OGSBI algorithm. The scenario considered is a single target with
grid mismatch ε0. In the OGSBI algorithm, the noise precision was
initialized to 1/σ2 in order to provide the best performance.

ues of grid length M̄ in Fig. 10 via the calculation of the
normalized MSE of the reconstructed target scene. The
signal corresponds to a single target with a Doppler fre-
quency uniformly distributed over the interval [0, 1/M ],
and an SNR of 10, 20 and 40dB. In the case of low power
(SNR=10dB), the grid length does not improve the nor-
malized MSE of the reconstructed target scene, whatever
the model considered. However, in the case of high power
(SNR=20 and 40dB), the results obtained with a first-
derivative-based model (the one presented here and OGSBI)
improve when refining the grid, whereas they are unchanged
with the parametric model. Then, we find the same results
as in [18, 19]: there is no interest in refining the grid with
a parametric model while this approach is successful with
a first-derivative-based model. However, refining the grid
is costly in the proposed algorithm because an MCMC is
implemented.

5. Results on experimental data

Finally, the proposed model was tested on experimental
data collected from the PARSAX radar [24] on November
2010. For the data set considered, the radar was pointing
on a freeway during a heavy traffic time. The ground truth
is unknown. The target amplitudes are very high compar-
ing with the ones in the synthetic case, so the hyperpa-
rameters (β0, β1) are tuned accordingly (a similar tuning
is made for the OGSBI algorithm). Fig.11 and Fig.12 show
the results obtained on the data set with the parametric
model, the first-derivative-based model and the OGSBI
algorithm, as well as with the non-robust method. An
initialization process was established in order to acceler-
ate the convergence of the proposed algorithms. A Capon
analysis was performed on each range bin and all the values
under a predefined threshold (the assumed thermal noise
level) were set to zero: the resulting vector is used as an
initialization for vector x (x(0)), its number of non-zero el-

ements is w(0) and its variance is σ2
x

(0)
. The analysis was

made for different values of grid length (M̄ = M in Fig.11
and M̄ = 2M in Fig.12). The number of realizations was
observed as depending on the grid length: 1000 iterations
are needed when M̄ = M against 5000 iterations when
M̄ = 2M . The amplitude estimated with the Capon anal-
ysis is displayed as a transparent background, and can be
seen as an indicator of the ground truth.

First, we can see that the proposed algorithms are
sparser than the OGSBI algorithm. As underlined before,
this might be the consequence of the use of a Laplacian
prior in the latter algorithm that induces a coupling be-
tween sparsity level and target power. In general, all the
algorithms give a good estimation of the possible targets
with high power. In particular, the possible target iden-
tified at range bins #3 and 4 and velocity ≈ −17m.s−1 is
split with the proposed method as well as with the OGSBI
algorithm so it is not an anomaly inherent to our method
(e.g., [22]). However, this target is split only at range
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Figure 10: Influence of grid length M̄ on the proposed algorithms and OGSBI technique in the case of a single target; M = 32, Nr = 1000,
Nbi = 100.

bin #4 with the parametric model. Besides, some targets
are only estimated with the parametric model: range bin
#3, 4 and velocity ≈-5 m.s−1; range bin #7 and velocity
≈-7 m.s−1; range bins #7, 8 and velocity ≈-17, -19 m.s−1.
In the case when M̄ = 2M the non-robust method bet-
ter estimates the possible target at range bins #3, 4 and
velocity ≈ −17m.s−1: the high mismatch when M̄ = M
becomes almost null when M̄ = 2M . The first-derivative-
based model improves, but neither the parametric model
(some possible targets are split) nor the OGSBI (more pos-
sible false alarms and targets split) does. However, the
parametric model is still the only one to estimate some
possible targets.

6. Conclusions

In this paper, we presented two Bayesian algorithms
for the sparse representation of off-grid targets in a Fourier
basis and using a Monte-Carlo Markov chain. More specif-
ically, an error vector representing grid mismatch was in-
troduced: it directly parametrizes the Fourier basis in the
parametric model, whereas it is used in an additive per-
turbation matrix in the first-derivative-based model. Both
proposed algorithms were proved to be more robust to grid
mismatch than a reference algorithm, at the cost of compu-
tational complexity. The sampling of the grid mismatch is
more difficult with the parametric model, but this model
is a lot more accurate in terms of estimation of the re-
constructed target scene. Besides, the sparsity was well
preserved thanks to the Bernoulli–Gaussian prior even in
the case of high mismatch. This prior can also be tuned in
a more flexible way, since it adjusts separately the sparsity
and the target power.

Some points need to be further investigated. First,
there seems to be an intrinsic limitation in the problem
formulation since the case of high mismatch is limiting

whatever the method used. Moreover, the parameters of
the target power need to be set by the radar operator
and they can significantly change the performance of the
analysis.
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