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Abstract—The unfolding process of Petri Nets produces a set of
causal nets where nodes are conditions or events and arcs express
relations of causality, conflict or concurrency called branching
processes. We propose in this paper an algebra and reduction
rules allowing to extract informations, relation on events and a
canonic representation of branching processes.

I. INTRODUCTION

Petri nets are a modeling tool widely used in the formal
study of concurrent discrete-event systems. Verification of
properties is based on a computable state graph [1] if the net
is bounded. For a highly concurrent system, this computation
is hindered by a combinatory explosion. One cause of this
explosion is the semantics of interleaving used to approximate
the concurrency aspects of a system under modeling. Technics
of unfolding [4]–[7] produce a-cyclic nets keeping concurrent
aspects with partial order semantics.

Unfolding Petri nets give a set of causal nets where nodes
are conditions or events. The arcs specify the causality re-
lations. The exhibition of conflicts allows to partition this
set in term of branching process. This paper proposes an
algebra dedicated to the extraction of semantics in branching
processes. This formal framework is based on a few basic
assumptions and concepts and proposes a logical growth from
expressions (well formed formulae) on terms to derivation
rules and laws. In figure 1 is an unfolding. The events ei
stand for events and bi for conditions:
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Fig. 1. Unfolding

The algebra presented in this paper offers a syntax to express
this unfolding and the reduction rules proposed in this paper,
determine all the maximal processes of the unfolding. By
example, which are expressed by the following expressions:

(e1 ⊕ e3 ⊕ e5) ⊥ (e1 ⊕ e4) ⊥ (e2 ⊕ e4) ⊥ (e2 ⊕ e5)

(e1 ⊕ e3) ⊥ e2

Where ⊥ stands for the exclusion and ⊕ aggregates events
in a processus, whereas e1⊕e3⊕e5 is a compact representation
of e1 ⊕ e2 ⊕ e3 ⊕ e4 ⊕ e5.

The originality of this approach is that it allows to extract
non intuitive causalities from this set of events in conflicts,
for example (figure 1), we will exhibit:

• Strong causalities: e3 4 (e1 ⊕ e5) and e4 4 (e1 ⊥ e2),
or e6 4 e8

• Weak causalities e1 - e3, e1 - e5,...

II. RELATED WORKS

A process algebra (CCS) has been already developed by
Milner [10]. CCS is based on two central ideas: The notion
of observability and the concept of synchronized communica-
tion. The elements of the alphabet are observable events and
concurrent systems (processes) can be specified with the use
of three operators: sequence, choice and parallelism.

A main property of CCS is the rejection of distributivity
of the sequence upon the choice. This rejection is based on
the fact that a.(x+y) and a.x+a.y are ”language equivalent”
but they are not equivalent in term of behavior.

Let’s consider the expression x+ y. It represents a choice:
either x or either y can be observed. Let’s now consider the
expression a.(x + y), after the observation of a, (x + y)
stay observable which means that either x or either y can be
observable. But, in the expression a.x+ a.y the distributivity
has made a choice and this expression expresses two scenarios:
one with a followed by x and one followed by y.

In CCS, Milner defines a finer law, the behavior law
rejecting the distributivity of the sequence on the choice:

a.(x+ y) 6≡behaviorally a.x+ a.y

In the context of unfolding, branching processes differ from
the concurrents systems of Milner. Branching process are



constituted with occurred events. The notion of observability
loses sense in term of realized process. An unfolding produces
all the prefixes (a is a prefix) called branching processes,
a.x and b.x are the maximal processes for the considered
expression.

The distributivity is then kept valid and a 4 (x⊕ y) can be
reduced in (a 4 x)⊕ (a 4 y) where a 4 x and a 4 y stands
for two (distinct) branching processes. This last expression
asserts that a causes x and a causes y. Unfolding can be
represented with a set of a-cyclic graph. In an unfolding, every
arc carries a unique label because it identifies an event which
represent is the firing of a transition of the underlying Petri
net. e1 represents the firing of a transition in a given state
corresponding to a particular marking. Another label e2 can
represent the firing of the same transition with different state
of the system (marking).

Branching process does not feet with process algebra on
numerous other aspects. For example a difference can be
noticed about parallelism. While unfolding keeps true paral-
lelism, process algebra considers a parallelism as interleavings.

Another difference is relative to events and conditions which
are nodes of different nature in an unfolding. Conditions and
events differ in term of ancestor. Every condition is produced
by at most one event ancestor (none for the condition standing
for m0, the initial marking), whereas every event may have 0, 1
or n condition ancestor(s). In CCS, there is no distinction
between conditions and events and process can be cyclic.

However the works developed in CCS have shown the
interest of an algebraic formalization: it allows to extract infor-
mation, to propose reduction rules, and it defines equivalences.
And this proposed algebra is dedicated to branching process
tends to yield the same objective than CCS:
• a syntax that expresses in non ambiguous way the rela-

tions between the events ;
• equivalence and reduction rules ;
• extraction of semantics ;
• a canonical form of an unfolding.
For example, in the figure 1, e1, e3 and e5 are bounded by a

particular relation. If two of these, for example e1 and e5 are in
a process then e3 must belong also, to the same process. This
particular relation is captured by properties of ⊕ operator. In
particular, we will establish that in a following theorem (VI):

(e1 ⊕ e5) ⊥ (e1 ⊕ e3 ⊕ e5) ≡ (e1 ⊕ e3 ⊕ e5)

The second section exposes the basics notions about Petri
net and unfolding. The third section depicts the new algebra,
which is the contribution of this paper. The fourth section
illustrates the use of the algebra on the unfolding of a non
safe Petri Net.

III. UNFOLDING A PETRI NET

A. Petri net

A Petri net [9] N =< P, T ,W > is a triple with: P , a finite
set of places, T , the finite set of transitions (P ∪T are nodes

of the net; (P∩T = ∅), andW : (P×T ) ∪ (T ×P) −→ N,
the flow relation defining arcs (and their valuations) between
nodes of N . In the sequel, we will consider only 1-valued
Petri nets.

The pre-set (resp. post-set) of a node x is denoted •x =
{y ∈ P ∪ T | W(y, x) > 0} (resp. x• = {y ∈ P ∪ T |
W(x, y) > 0}).

A marking of a Petri net N is a mapping m : P −→ N.
A transition t ∈ T is said enabled by m iff: ∀p ∈ •t, m(p) ≥
W(p, t). This is denoted: m t→. Firing of t leads to the new
marking m′ (m t→ m′): ∀p ∈ P, m′(p) = m(p)−W(p, t) +
W(t, p). The initial marking is denoted m0.

A Petri net is k-bounded iff ∀m, reachable from m0,m(p) ≤
k (with p ∈ P). It is said safe when 1-bounded. Two transitions
are in a structural conflict when they share at least one pre-
set place; a conflict is effective when these transitions are both
enabled by a same marking.

B. Unfolding

In [5], the notion of branching process is defined as an
initial part of a run of a Petri net respecting its partial order
semantics and possibly including non deterministic choices
(conflicts). It is another Petri net that is acyclic and the largest
branching process of an initially marked Petri net is called
the unfolding of this net. Resulting net from an unfolding is
a labeled occurrence net, a Petri net whose places are called
conditions (labeled with their corresponding place name in
the original net) and transitions are called events (labeled with
their corresponding transition name in the original net).

An occurrence net [3] O =< B, E ,F > is a 1-valued arcs
Petri net, with B the set of conditions, E the set of events, and
F the flow relation (1-valued arcs), such that: |•b| ≤ 1 ( ∀b ∈
B), •e 6= ∅ (∀e ∈ E), and F+ (the transitive closure of F) is a
strict order relation, from which O is acyclic. Min(O) = {b |
b ∈ B, |•b| = 0} is the minimal conditions and corresponds to
the initial marking. Also, Max(O) = {x | x ∈ B ∪ E , |x•| =
0} are maximal nodes.

Three kinds of relations could be defined between the nodes
of an occurrence net. First, two nodes x, y ∈ B ∪ E are in
strict causal relation if (x, y) ∈ F+, and will be denoted
x 4 y. ∀b ∈ B, if e1, e2 ∈ b• (e1 6= e2), then e1 and e2
are in conflict relation, denoted e1 ] e2. More generally, for
x, y ∈ B ∪ E , if e1 4 x et e2 4 y, then x ] y, x ] e2 and
e1 ] y. Symbol o represents concurrency relation: x o y iff
¬((x 4 y) ∨ (y 4 x) ∨ (x ] y)).

A cut is a set of conditions all in mutually concurrency
relation. A B-cut is a maximal cut according to inclusion and
represents a marking of the original net.

The local configuration of an event e, denoted [e], is the
set of events e′ such that e′ 4 e (relation ≺ is defined on F∗
where F∗ is the transitive and reflexive closure of F).

Let be a net N = (P, T ,W). < N ,m0 > admits Unf =<
O, λ > as branching process (or unfolding) if:
• O =< B, E ,F > is an occurrence net;
• λ is the labeling function such that λ : B ∪ E → P ∪ T .

It verifies the following properties:



– λ(B) ⊆ P , λ(E) ⊆ T ;
– λ(Min(O)) = m0;
– for all e ∈ E , restriction of λ to •e (resp. e•) is

a bijection between •e (resp. e•) and •λ(e) (resp.
λ(e)•). We have •λ(e) = λ(•e) and λ(e)• = λ(e•),
what means that λ preserves the environment of a
transition.

The resulting labeled occurrence net is defined up to iso-
morphism, what means that we obtain a same structure of net
up to the name of nodes, and with same labeling of nodes.

A causal net C is an occurrence net C =< B, E ,F > with
an adding restriction: ∀b ∈ B, |b•| ≤ 1. So, all conflicts are
resolved in a causal net, and this net corresponds to a partial
order run in an unfolding. The set of events of a causal net is
called a process. Notice that only the order relations ≺ and o
are admitted between events of a process.

IV. DEFINITION OF THE ALGEBRA

We have shown in the previous section, how unfolding
exhibits causal nets and conflicts. Otherwise, every couple
of events which are not bounded by a causal relation or the
same conflict set are in concurrency. We have developed a
software producing the unfolding which builds a table making
explicit every binary relations between events. In fact, this
table establishes only the relations of causality and exclusion.
If a binary relation is not explicit in the table, it means that
the couple of events are in a concurrency relation. We show
in this section that this table has led us to introduce a new
operator which collapses events in a process.

Let EB = E ∪ B a finite alphabet, composed of the events
and the conditions generated by the unfolding. In this set every
couple of elements satisfies:
• a causality relation C
• a concurrency relation I
• an exclusive relation X
The set of binary relations is partitioned in three parts as

illustrated in figure 2:
This last figure makes appear the operators of this algebra.

A couple of events can be bounded by a relation of causality,
exclusion or concurrency. The causality and concurrency set
can be collapsed to constitute the set of all the processes of an
unfolding. And this set is the complementary of the exclusion
set. If some events are not in a relation of exclusion, they are
in the same process. To express the fact that events are in the
same process, a new operator noted ⊕ is introduced.

The negation operator allows to switch from exclusion set
to the process set. The algebra is then defined by

A = {EB, (4 , o , ⊥ , ¯ ,⊕)}

⊕ and ⊥ are almost similar to boolean operator ”.” and ”+
”, except that boolean operators are mutually distributive and
we will show in the section IV-B2, that ⊥ is not distributive
over ⊕.

The internal composition laws are:
• 4: The causality ;

Causality 

Exclusion

Concurrency

Process

Ⅽ

ℐ
X

Fig. 2. Partition of binary relations

• o: The concurrency ;
• ⊥: The exclusion ;
• :̄ The negation ;
• ⊕: building process.

A. Definitions of operators

In the following, e1, e2, e3 are elements of EB.
1) Causality: C is the set of all the causalities C between

every elements of EB. e1 4 e2 if e2 is in the local configura-
tion of e1:

|= e1 4 e2 if e2 ∈ [e1]

Obviously, if e1 ≺ e2 then e1 4 e2. The occurrence of e1 is
a necessary condition to the occurrence of e2.

Properties:

• 4 is associative and transitive;
• 4 has a neutral element t 4 e ≡ e;
• every element of EB has an opposite: f 4 e ≡ ē.
2) Exclusion: X is the set of all the exclusion relations

between every elements of EB. To define the this operator let’s
first go back to it’s definition given in the section concerning
the unfolding:

e1 ] e2 ≡ ((•e1 ∩ •e2 6= ∅) and (e1 6= e2)

The definition of ⊥ is more generally: two events are in
exclusion iff they are either in direct conflict, either it exists
a conflict at the level of a common ancestor. And so they
belongs to different processes:

e1 ⊥ e2 ≡ ((•e1 ∩ •e2 6= ∅) or (∃ei, ei 4 e2 and e1 ⊥ ei))



Properties:
• Commutativity: e1 ⊥ e2 ≡ e2 ⊥ e1
• Neutral element: e ⊥ f ≡ e
• Absorbing element: e ⊥ t ≡ t

Let’s note that ⊥ is not transitive.

In the previous example (fig. 1):
|= e1 ⊥ e2
|= e2 ⊥ e3

but |= e1 o e3
We will use a pre-fixed notation for an n-ary use of ⊥ (n >

2):
(⊥ e1 e2 e3 e4 ...)

which abbreviates p |= (⊥ e1 e2 e3 e4 ...) and which
abreviates the following set of exclusions:

p |= (e1 ⊥ e2), p |= (e2 ⊥ e3), p |= (e3 ⊥ e4)...

3) Concurrency: I is the set of every couple of element
of EB in concurrency. e1 and e2 are in concurrency if the
occurrence of one is independent of the occurrence of the
other. So, e1 o e2 iff e1 and e2 are neither in causality neither
in exclusion.

e1 o e2 ≡ ¬((e1 ⊥ e2) or (e1 4 e2) or (e2 4 e1))

Properties:
• o is commutative and associative;
• o is not transitive;

b0 b1

e1 e3 e2

Fig. 3. Non-transitivity of o

The figure (fig. 3) illustrates a counter-example:
– e2 is an concurrent event, so:

e1 o e2
e2 o e3

– but e1 ⊥ e3
• Neutral element: e o t ≡ e
• Absorbing element: e o f ≡ f
In the same manner used for ⊥, we will use a pre-fixed

notation for o for an n-ary use (n > 2):

(o e1 e2 e3 e4 ...)

which abbreviates the set of concurrencies:

(e1 o e2), (e2 o e3), (e3 o e4)...

4) Process: The figure fig. 2) illustrates that ⊕ aggregates
events in one process. Two events e1 and e2 are in the same
process if e1 causes e2 or if e1 is concurrent with e2:

e1 ⊕ e2 ≡ (e1 4 e2) or (e1 o e2)

The meaning of this operator is similar to the linear connector
⊕ of MILL [2] in the sense that its allows to aggregates
resources. But in the context of unfolding, events or conditions

are unique and then they cannot be counted. Thus, this operator
is idempotent.

The relation e1 ⊕ e2 defines that e1 and e2 are in the same
process. This operator is n-ary. In n-ary expressions we will
use the pre-fixed notation (⊕e1e2e3...) which abbreviates (e1⊕
e2) and (e2 ⊕ e3)....

Properties:
• ⊕ is commutative, associative and transitive;
• Idempotency: e⊕ e ≡ e
• Neutral element: e⊕ t ≡ e
• Absorbing element: e⊕ f ≡ f
• e⊕ ē ≡ t
In the same manner used for ⊥, we will use a pre-fixed

notation for ⊕ for an n-ary use (n > 2): (⊕ e1 e2 e3 e4 ...)
which abbreviates the set of concurrencies: (e1 ⊕ e2), (e2 ⊕
e3), (e3 ⊕ e4) ...

B. Relations between operators

The distributivities over ⊥ are used in the transformation of
an expression in the canonical form. The other distributivities
will be used in the reduction process.

1) Distributivities:
• 4 est distributive over o.
• ⊥ is distributive o.
• ⊕ is distributive over ⊥1 and o.
• o is distributive over ⊥ and ⊕.
2) Non-distributivities:
• ⊕, ⊥ and o are non distributive over ≺:

e⊕ (e1 4 e2) 6≡ (e⊕ e1) 4 (e⊕ e2)

e ⊥ (e1 4 e2) 6≡ (e ⊥ e1) 4 (e ⊥ e2)

e o (e1 4 e2) 6≡ (e o e1) 4 (e o e2)

For the first and the second item, the right member these
items are of the form: (e op e1) 4 (e op e2) (with
op = ⊕,⊥ o). Theses expressions establish a temporal
precedence between (e op e1) over (e op e2) which does
not exist in the left member. For example, in the second
member of the first ”non distribitivity”, (e ⊕ e1) cannot
precede (e⊕ e2) because of the presence of e in the two
expressions.

e ⊥ (e1 ⊕ e2) 6≡ (e ⊥ e1)⊕ (e ⊥ e2)

if e ⊥ (e1⊕e2) implies (e ⊥ e1)⊕(e ⊥ e2) the reciprocal
is false. This is a semi-distributivity.

• 4 is non distributive over ⊕:

e 4 (e1 ⊕ e2) 6≡ (e 4 e1)⊕ (e 4 e2)

Because (e 4 e1)⊕(e 4 e2) can derive in e 4 (e1 ⊥ e2).
To resume the distributivities (

√
) and the non distributivities

(×) are expressed in the following table. The distributivities
must be read from in rows. For example, the first line expresses
that 4 is only distributive over ⊥.

1The distributivity over ⊥ is rejected in CCS



4 ⊥ ⊕ o
4 × ×

√

⊥ × ×
√

⊕ ×
√ √

o ×
√ √

∣∣∣∣∣∣∣∣∣∣
C. Axiom, derivation and theorem

1) Axioms:
Axiom 1 (⊕):

e1 ⊕ e2 ≡def e1⊥̄e2

e1⊕̄e2 ≡def e1 ⊥ e2

The following axiom explicits a conflict:
Axiom 2 (Exclusion):

e1 ⊥ e2 ≡def (ē1 ⊕ e2) ⊥ (e1 ⊕ ē2)

The following axiom expresses that a concurrency relation
encompasses three alternative processes: the occurrence of e1,
the occurrence of e2, or the process composed with e1 and e2:

Axiom 3 (Concurrency):

e1 o e2 ≡def e1 ⊥ e2 ⊥ e1 ⊕ e2

2) Derivation Rules: Theses rules allow to reduct process:
1) Reduction of 4

` e1 4 e2
` e1 ⊕ e2

Caus

2) Modus Ponens:

` e1 ` e1 4 e2
` e2

MP

3) Dual form:
` ē1 ` e1 4 e2

` ē2 MP ′

4) General form:

` ē1 ` (e1 ⊕ e2 . . .⊕ en) 4 e

` ē GMP ′

5)
` (⊕ b ... E) ` (⊕ b ...) 4 (⊥ e1 e2)

` (⊥ (⊕ e1 (e2) E)(⊕ e2 (e2)E))
D

This rule expresses that a conflict divides a process.
6)

` ē1 ⊕ E
` E S

This rule is applied on canonical form to clear the
negations.

V. CANONICAL FORM

We give first, the definitions of algebraic definition of
unfolding and process:

A. Preliminar definitions

Definition 1 (AEU ): An Algebraic Expression of Unfold-
ing (AEU ) is a well formed formulae inductively defined by:
• t stand for true, f stand for false are terms ;
• ∀e ∈ EB, e, ē are terms ;
• a term is an AEU
• if φ, φ1, φ2 are AEU :

* φ1 ⊕ φ2 is an AEU ;
* φ1 ⊥ φ2 is an AEU ;
* φ1 o φ2 is an AEU ;
* φ1 4 φ2 is an AEU ;

Theorem 1: Every unfolding of Petri nets is an algebraic
expression of unfolding.

Proof: As the unfolding process produces only three
types of relation between events: causality, concurrency and
exclusion, every unfolding can be translated in a AEU . As
evoked in the figure 1, by definition, every pair of elements
(e1, e2) in EB|X - either e1 ≺ either e1 o e2 is bounded by
the ⊕ operator.
An AEU is composed of processes.

Definition 2 (Process): A process is a well formed formu-
lae inductively defined by:
• t, f are terms ;
• ∀e ∈ EB are terms ;
• a term is a process ;
• If p1, p2, . . . pn are processes:

* p1 ⊕ p2 . . .⊕ pn is a process ;
* p1 o p2 . . . o pn is a process ;
* p1 4 p2 . . . 4 pn is a process ;

⊥ is an operator that partitions the AEU into processes.

B. Canonical form

Definition 3: A canonic process is a formula expressed on
elements of EB and with the operators ⊕ and o ordered by an
alphanumeric sort on the name of its symbol.

Theorem 2 (Canonical form): Let’s consider an unfolding
U , this form can be reduced in the following form:

U = p0 ⊥ p1 ⊥ ... ⊥ pn

This form is canonic and allows to extract all the canonic
processes pi.

Proof: In an unfolding every operator 4 can be reduced in
⊕ by deduction rule Caus (see section IV-C2). Moreover, ⊕ is
distributive on the other operators ⊥ and o and ⊥ is distributive
over o . So ⊥ can be factorized in every sub-formula. In fine
an alphanumeric sort on symbols of the process can then be
applied to assure the unicity of the form.

Definition 4 (member of a canonic process): Let e ∈ EB,
φ a term, p a process
• e ∈ p iff e is a term of the process p.
• φ ∈ p iff φ is a process and φ is a sub-formula of p.



Now we can define the membership of an unfolding. An
element e ∈ EB, e belongs to an unfolding U iff ∃pi ∈
U such that e ∈ pi. Let’s now define how a formula can be
interpreted.

Let U = p0 ⊥ p1 ⊥ ... ⊥ pn be an unfolding, constituted
by n processes, e an event, φ a term:
• |= e if e ∈ U
• pi |= e if e ∈ pi.
• |= ē if e 6∈ U
• pi |= ē if e 6∈ pi.
• |= φ if φ ∈ pi,∀pi ∈ U,
• pi |= φ if φ ∈ pi.
• |= φ ⊥ ψ if

∃pi, pj ∈ U such as
{
pi |= φ
pj |= ψ

The canonical form of the upper graph of the example of
the figure 1:

(⊥ e1 e2 e3 e4 e5) ≡ (⊥ (⊕ e1 e2 e3 e4 e5)
(⊕ e1 e2 e3 e4 e5)
(⊕ e1 e2 e3 e4)
(⊕ e1 e2 e3 e5))

C. Extraction of semantics

The extraction of semantics is based on the formulation in
canonical form and the analysis of membership of events in
processes.

In the unfolding the causality (≺) is defined by the transitive
closure of F+, where F is the flow relation in causal nets
which is a strict notion of causality, because it induces a path
between nodes to be causal. We introduce here a larger notion
of causality (4) where two events can be causal event even if
it does not exist a path between them.

Definition 5 (Strong causality): e1 4 e2 iff for every pi in
U , whenever e1 belong to process pi, e2 belongs to pi, else if
e1 does not belong to a process pj then e2 cannot belong to
pj .

In the previous example, ∀pi ∈ U , whenever pi |= e3 then
pi |= (e1 ⊕ e5). Moreover, if pi |= e4 then pi |= (e1 ⊥ e2), in
the same manner if pi |= e5 then pi |= (e1 ⊥ e2). So, we can
deduce of the canonical form the following causalities:
• e3 4 (e1 ⊕ e5)
• e4 4 (e1 ⊥ e2)
• e5 4 (e2 ⊥ e3)
• e6 4 e8
• e8 4 e6

In this example, it is obvious that e6 forces e8 and vice
versa. A weaker causality can be defined relaxing the second
assertion in the definition of 4:

Definition 6 (Weak causality): e1 - e2 iff for every pi in
U , whenever e1 belong to process pi, e2 belongs to pi, else if
e1 does not belong to a process pj then e2 can belong to pj .

In the previous example (introduction), whenever ∀pi ∈
U, if pi |= e2 then pi |= e4, but it exists a process pj =

e1 ⊕ e4 where pj |= e4 but pj 2 e2. In the same manner
∀pi ∈ U, if pi |= e3 then pi |= e5, but it exists a process
pj = e2 ⊕ e5 where pj |= e5 but pj 2 e2:
• e2 - e4
• e3 - e5

VI. THEOREMS

The first theorem of this section allows to build the canonic
form of the generalized of the example of the introduction.
Let’s consider the following conventions:
• The set of conflicts (e1 ⊥ e2) ⊕ (e2 ⊥ e3)... can be

aggregated with

C = (⊥ e1 e2 e2 e3 e4 ... ep)

• Lets note li the ith element of a list l.
• if ei is an element of the list l, let’s note indice(ei) the

position of ei in l

The next definition defines two Un and Vn union of lists
where the possible successor of an element ei is l(indice(ei)+
2) either l(indice(ei) + 3):

Definition 7: Let’s consider that n <= p:
U0= e1
Un= U1

n ∪ U2
n

U1
n=ln+2 ∪ U2

n+2

U2
n=ln+3 ∪ U2

n+3

Un defines all the processes beginning par e1.
V0 = e2
Vn= V 1

n ∪ V 2
n

V 1
n =l1n+2 ∪ V 2

n+2

V 2
n =l1n+3 ∪ V 2

n+3

Vn defines all the processes beginning par e2.

Theorem 3: If we consider the conflict

C = (⊥ e1 e2 e2 e3 e4 ... ep)

Then this conflict can be canonically rewritten with the fol-
lowing form

C ≡ Un ∪ Vn

Proof: Correctness
Let’s consider an incorrect process q ∈ Lp.

q = (⊕ eq1 eq2 eq3 eq4 ... eqp)

This incorrectness implies the existence of two events in q such
as eqi ⊥ eqi+1 and eqi, eqi+1 corresponding to two successive
events of l. This is in contradiction with the definition of the
functions (U1

n, U
2
n, V

1
n , V

2
n ) for which events are added with

either ln+2 either ln+3. So the indices cannot be consecutive.
Completeness

Let’s consider a valid process

q = (⊕ eq1 eq2 eq3 eq4 ... eqp)



not included in Lp. ∀e ∈ q, if q is valid then ∀(ei, ej) ∈
q,¬(ei ⊥ ej) so it implies that ei and ei are not successive in
l and every enabled event is in q. Moreover, as q is not included
in Lp, it exist at least one couple (eqi, eqij) which does
not correspond to the construction defined by the functions
(U1

n, U
2
n, V

1
n , V

2
n ) which define the possible successor of an

event. This means that indice(eqj) > indice(eqi + 3). For
every n = indice(eqj)− indice(eqi) greater than 3, lets note
i2 = indice(qi) + 2 the event eqi2 is an possible event which
is not in q (contradiction).

The following theorem is evoked in the introduction (section
II), allows to compute maximal process:

Theorem 4: Let E an EAU , e ∈ EB:

e ⊥ (e⊕ E) ≡ e⊕ E

Proof:

e ⊥ (e⊕ E) ≡ (e⊕ t) ⊥ (e⊕ E)

≡dist e⊕ (t ⊥ E)

≡prop⊥ e⊕ E

The following theorem expresses how to develop a conflict:
Theorem 5 (Conflict):

e1 4 (e2 ⊥ e3) ≡ (e1 4 (e2 ⊕ e3)) ⊥ (e1 4 (e2 ⊕ e3))

Proof:

e1 4 (e2 ⊥ e3) ≡def e1 4 ((e2 ⊕ e3) ⊥ (e2 ⊕ e3)

≡dist (e1 4 (e2 ⊕ e3)) ⊥ (e1 4 (e2 ⊕ e3))

VII. APPLICATION

In the following example we show how to translate an
unfolding and how to produce reduction to obtain the maximal
processes of the unfolding. Let’s considerer the Petri net in the
figure 4:

The unfolding builds a table that explicit every relations
between events and conditions, its representation is given in
the figure 5:

This net is unsafe, P3 may have 2 tokens, this appears in the
unfolding with the two parts of the figure which distinguish
between the token coming from P1 and those from P2.

The algebraic translation is produced with the following
transformations:
• Each arc is a causal relation e1 4 e2
• Each conflict:

e 4 (⊥ e1 e2 . . . en)

• When more than one condition bi is expressed on an
event:

(⊕ b1 b2 . . . bn) 4 e

1P 1 1P 2

P 3 1P 4

P 5

T 1 
 [ 0; 0 ]

T 2 
 [ 0; 0 ]

T 3 
 [ 0; 0 ]

T 4 
 [ 0; 0 ]

T 5 
 [ 0; 0 ]

Fig. 4. Petri net

B1(P1)B2(P2)

B3(P4)
B6(P3) B4(P3)

B5(P5)B7(P5)

E1(T1) 
 [ 0; 0 ]

E2(T2) 
 [ 0; 0 ]

E3(T5) 
 [ 0; 0 ]

E6(T3) 
 [ 0; 0 ]

E4(T3) 
 [ 0; 0 ]

E5(T4) 
 [ 0; 0 ]

E7(T4) 
 [ 0; 0 ]

Fig. 5. Unfolding

• Min(O), the initial marking:

⊕ b1 b2 . . . bn

The unfolding is expressed by:

U = (⊕ b1 b2 b3 (Initial marking)
(b2 4 (e3 ⊥ e2))

(e2 4 b6)

((b3 ⊕ b6) 4 e6)

(e6 4 b7)

(b7 4 e7)

(b1 4 e1)

(b3 4 (e6 ⊥ e4))

(e1 4 b4)



((b3 ⊕ b4) 4 e4)

(e4 4 b5)

(b5 4 e5))

Let’s note

U = (⊕ b2 (b2 4 (⊥ e3 e2)) P )

The derivation rule D is applied on:

⊕ b2 (b2 4 (⊥ e3e2))

and U becomes:

U = ⊕ (⊥ (⊕ e3 ē2) (⊕ ē3 e2)) P

The distributivity of ⊕ on ⊥, allows to exhibit two pro-
cesses:

⊥ (⊕ e3 ē2 P )(⊕ e2 ē3 P )

Let’s note in the following

P1 = (⊕ e3 ē2 P )

and
P2 = (⊕ e2 ē3 P )

A term of P is e2 4 b6. Let’s define P ′ as

P = (e2 4 b6) P ′

Thus:

P1 = ⊕ e3 ē2 P = ⊕ e3 ē2 (e2 ≺ b6) P ′

The MP ′ simplification can be done:

P1 = ⊕ e3 ē2 (e2 4 b6) P ′ ⇒ ⊕ e3 b̄6 P
′

Let’s note:
P1a = ⊕ e3 b̄6 P

′

In the same manner, let’s note P ′′ as

P ′ = ⊕((⊕ b3 b6) 4 e6) P ′′

Thus:
P1a = ⊕ e3 b̄6 ((⊕ b3 b6) 4 e6)P ′′

The GMP ′ rule gives P1a:

P1a ⇒ e3 ⊕ ē6 ⊕ P ′′

Thus P1 becomes:

P1 ⇒ ⊕ b1 b3 e3 ē2 b̄6 ē6 b̄7 ē7

(b3 4 (e6 ⊥ e4))

(b1 4 e1))

(e1 4 b4)

((⊕ b3 b4) 4 e4)

(e4 4 b5)

(b5 4 e5)

The same simplifications are applied twice to the left part
of the unfolding: ē6 treats the conflict b3 4 (e6 ⊥ e4) and P1

becomes:

P1 ⇒ ⊕ e3 ē2 b̄6 ē6 b̄7 ē7 e1 b4 e4 b5 e5

In this process, e3 corresponds to the firing of T5, this process
illustrates the case where the activity of the net comes from
the token in P1. Another proof sequence (firing of T2) can be
conducted to lead to the two other processes. One for the case
leading to the event e5 and the other leading to the event e7.

VIII. IMPLEMENTATION ASPECTS

The unfolding has been implemented in Racket/Scheme [13]
(a recent evolution of LISP language). The unfolding pro-
duces an hashing table. The couples of events are associative
keys for the table. For every couple of events, the relation is
explicated as follow:
• table[e1, e2] = t if e1 4 e2 (≺ corresponds to the

definition of section III-B) ;
• table[e1, e2] = f if e1 ⊥ e2;
• if (e1, e2) is not a key of the table then e1 o e2.
The axiomatisation of the algebra allows to solve the

previous example like a fixed-point formulae. When non more
rules can be applied the final formulas (the leaves of the prove
tree) gives the set of maximal processes.

The algebra and reduction rules have been defined with a
package named ”PLT/Redex” [12]. A Redex Model is formed
of two parts: a regular-tree grammar and reduction rules.

The following part of code is the grammar. It defines the
Algebraic Expression of Unfolding AEU , the process P , X
the conflicts (section 1) and E a well formed expression.
The following code gives the S − expression (programs,
expressions, variables, or literal constants) and contexts which
are parts of the syntax of the language.

(define-language Process-lang
[n variable bool b e (¬ n)] ; node
[bool t f] ; boolean
[e variable (¬ e)] ; event
[b variable (¬ b)] ; condition
[on (⊕ ⊥)] ; n-nary operators
[o2 ≺] ; binary operators

; process
[P variable (⊕ Q ...)]
[Q variable P n]
[C-P (⊕ C-P P) (⊕ P C-P) hole]

; Conflicts
[X variable (⊥ Y ... )]
[Y variable X n ]
[C-X (⊥ C-X P) (⊥ P C-X) hole]

; Expression
[E variable (on F ...) (b o2 e) (P o2 X)]
[F variable E P ]
[C-E (on C-E E) (on E C-E)
(E o2 C-E) (C-E o2 E) hole]

)

The define − language key-world specify the abstract
syntax with a fully parenthesized notation:
• The second line defines the set of terms: e



• The following defines boolean type, the events and the
conditions, then n− ary operator and unary operator.

• Then comes the definitions of process (P ), conflicts (X)
and Expression.

• The keyword variable means that a variable can be in-
stantiated: for example e can be instantiated by e1, e2, ...

• The ellipse F... represent the regular expression F ∗

• Finally, C − P , C −X and C − E are respectively the
contexts of the processes, the conflicts and the expres-
sions.

This second part describes pattern-based formulation of
reduction possibly in context.
(define Process-red
(reduction-relation
Process-lang

;-------------------------------------------------------
; (⊕
; Absorbing element
(--> (in-hole C-P (⊕ Q_1 ... f Q_2 ... ))

(in-hole C-P f))
;------------------------------------------------------
; Falsification
(--> (in-hole C-E (⊕ Q_1 ... e_1 Q_2 ... (¬e_1) Q_4 ...))

(in-hole C-E f) )
;------------------------------------------------------
; associativity
(--> (in-hole C-E (⊕ E_1 ... (⊕ E_2 ...) E_3 ...))

(in-hole C-E (⊕ E_1 ... E_2 ... E_3 ...) ))
;-----------------------------------------------------
; Distributivity of ⊕ over ≺
(--> (in-hole C-E (⊕ E_1 ... (≺ E_2 E_3) E_4 ...))

(in-hole C-E (≺ (⊕ E_1 ... E_2 E_4 ...)
(⊕ E_1 ... E_3 E_4 ...) )))

;------------------------------------------------------
; Conflict between 2 events
(--> (in-hole C-E (⊕ b ... E_1 ...

((⊕ b ...) ≺ (⊥ n_1 n_2)) E_2 ...))
(in-hole C-E (⊥ (⊕ n_1 (¬n_2) E_1 ... E_2 ...)

(⊕ n_2 (¬n_1) E_1 ... E_2 ...))))
;------------------------------------------------------
; Conflict between n events
(--> (in-hole C-E (⊥ e ...)) (in-hole C-E (f (⊥ e ... ))))
;-------------------------------------------------------
; ≺: Causality

((⊕ b_0 ... ((b_1 ≺ e) E ...)) . --> .
( (⊕ b_0 ... ((b_1 ≺ e) E ...)))"Caus_S")

((⊕ b_0 ... ((⊕ b_1 ...) ≺ e) E ...) . --> .
( (⊕ b_0 ... ((⊕ b_1 ...) ≺ e) E ...))"Caus_G")

))
;-------------------------------------------------------
; META FUNCTION
(define-metafunction Process-lang
; [( (⊕n ...)) ,(cons ’⊕(symbol-sort (term (n ...))))]

[( (⊕ b_0 ... (b_1 ≺ e) E ...))
,(cons ’⊕(and (member (term b_1) (term (b_0 ...)))

(append (symbol-sort (append
(complement (term (b_0 ...))

(term b_1 ))
(list (term e)))
(term (E ...))))))]

[( (⊕ b_0 ... ((⊕ b_1 ...) ≺ e) E ... ))
,(cons ’⊕(and (? (term (b_1 ...)) (term (b_0 ...)))

(append (symbol-sort (append
(complement (term (b_0 ...))

(term (b_1 ...)))
(list (term e))))
(term (E ...)))))]

[( (⊥ e ... )) ,(lproc (term (e ...) )) ] )

The first part express basics properties: absorbing element
and associativity of ⊕. The second part illustrates how causal-

ity and conflicts are reduced.
f is a meta-function which has several rules: It is first used

to ease the resolution of conflicts:
• The first item sorts the symbol in alphabetic order. It is

useful to assure the canonicity of the expression;
• The second verifies that if b1 is member of the sequence
b0... then b1 is substituted by e.

• The third verifies that if the sequence b1.. is a subse-
quence of b0... then b1... is substituted by e.

The second rule of f is to implement the computing of

Lp = Un ∪ Vn

The auxiliary function lproc is the implementation of the
theorem (3). f builds for every list of event in conflicts of
type:

(⊥ e1...en)

the set of resulting processes.

A. Example 1

Let’s consider the examples given in the introduction of the
paper, if we apply the reduction rules defined in our algebra
of the first graph, 4 maximal processes expressed in canonical
form are obtained:

Fig. 6. (⊥ e1 e2 e3 e4 e5)

Extraction of semantics: The canonical form of this ex-
pression has been obtained in one pass by this implementation
of the theorem 3.

(⊥ e1 e2 e3 e4 e5) = (⊥ (⊕ e1 e2 e3 e4 e5)
(⊕ e1e2 e3 e4 e5)
(⊕ e1 e2 e3 e4)
(⊕ e1 e2 e3 e5))

Theses processes exhibits two groups of causalities:
(e1e3e5) and (e2e4). Moreover the following relations can be
deduced:
• e3 4 (e1 ⊕ e5),
• (e1 ⊕ e3) 4 e5
• (e1 ⊕ e5) 4 e3
• (e3 ⊕ e5) 4 e1, ...
• e1 - e5, e3 - e5, ...
• e2 - e4, e4 - e2,...

In the second form:

(⊥ e6 e7 e8) ≡ ((⊕ e6 e7 e8) ⊥ (⊕ e6 e7 e8))

It can be deduced that e6 4 e8 and e8 4 e6



B. Example 2

Concerning the Petri Net presented in this section, the
analyze of the unfolding gives 138 applications of derivation
rules and theorem. It finally exhibits four maximal processes
in canonical form which are the leaves of the demonstration
tree (two frames from which where none rules can be applied
any more):

Fig. 7. Unfolding of figure 4

Extraction of semantics: : The information that can be
extracted of the analyze is:
• If e7 occurs that the condition b4 is pending.
• If e5 occurs and e3 does not then the condition b4 is

pending.
The definitions of - and 4 allow to extract the following
relations: In each process pi, we can verify that either e3
belongs to pi either (⊕ e3 e5) either (⊕ e3 e5). So we can
deduces that e3 - e5.

Moreover, ∀p ∈ U, when b4 |= p then e7 |= p. This
induces that b4 4 e7. In the same manner we can prove that
b6 4 e5,...

IX. CONCLUSION

This work is a first attempt to establish an algebra for
reasoning about branching process. It shows that an unfolding
of a Petri net can be represented in an algebraic way. This
algebra leads to express the unfolding in a canonical form.

This algebraic framework has been implemented in
PTL/Redex, which is a module based on the language
Racket (last evolution of LISP ).

The canonical form is induced by the structure of the algebra
and the consideration of an alphanumeric sort on the symbols.
This form illustrates processes that are in exclusion. From this
form, non intuitive relations can be established.

Some perspectives of this work can be evoked. First, the
procedure of extraction of semantics needs to be automatized
and other types of relations between events need to be ex-
plored.

This paper propose an analyze of the unfolding of non-
temporized Petri net. A second perspective, could be to
extend this work to temporized Petri nets. In PLT/redex,
some works shows how to introduce rules to extends models
with the axiomatics calculus on integer (based on λcalculus).
Theses adding rules could help to manage the computing of
temporalities.
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