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Control valves are commonly used for the operation of water distribution systems. Modeling these devices typically requires that their operating states are known, or that a computationally expensive search is undertaken over all possible operating states. This paper presents a novel method of modeling control valves (including flow control, pressure sustaining, pressure reducing and check valves) in extended-period simulations of water distribution systems. Instead of the normal discrete control problem formulation, it is approached with the Karush-Kuhn-Tucker equations for an optimization problem with constraints.

The proposed method does not pre-require the operating state (open, closed, active) of each valve to be determined, as this is done implicitly. Pipe and valve flow rates and nodal heads are determined by (1) minimizing deviations from targets at control valves and (2) satisfy the state equations (conservation of mass and energy) by solving a constrained least-square problem.

INTRODUCTION

Water distribution systems have to provide a high level of service under widely varying conditions. To achieve this, engineers often employ control valves to manage flows and pressures. Control valves can operate mechanically (such as check valves) or through hydraulic circuits (such as flow control and pressure regulating valves), and can be controlled by local conditions or an external signal.

The common algorithms used for modeling the hydraulics of a water distribution system do not model the time-varying behavior of the system continuously, but calculate 'snapshots' of the system's hydraulic state at certain points in the simulation period. At each time step, the snapshot solver has to solve the hydraulic network equations while simultaneously calculating the settings of all the control valves in the system. Tank levels are updated between snapshot simulations using a simple Euler integration scheme.

The commonly used open source software, Epanet [START_REF] Rossman | EPANET User's manual[END_REF], uses a set of control rules to calculate control valve settings. Although the Epanet method works well in practice and is widely accepted in the hydraulic modeling community, there is no guarantee that its heuristic algorithm will be able to find the correct control valve settings in all cases. In fact, 3 [START_REF] Simpson | Modeling of Pressure Regulating Devices: The last major Problem to be Solved in hydraulic Simulation[END_REF] illustrated this through a number of control valve problems for which the Epanet hydraulic engine could not find a solution, or produced incorrect results.

Alternative methods for modeling control valves have developed in recent years. Piller and Bremond (2001) proposed a least-squares global optimization approach to determine the control valve state by minimizing the differences between the target settings and calculated values. [START_REF] Piller | Control in the Water Industry CCWI05 'Water Management for the 21st Century[END_REF] applied the same optimization framework with an attempt to model time-varying behavior of the system continuously using slow transients (or rigid column without water hammer). This allowed them to model the continuous changes in the system state until an equilibrium (steady) state is achieved. The reaction speed of the control valve can be incorporated in the calculations by adding a constraint in the optimization solver. The authors noted that certain solutions that are infeasible using a demand-driven approach are in fact possible in real life, and can be solved correctly if a pressure-driven approach is followed. [START_REF] Deuerlein | Hydraulic Simulation of Water Supply Networks Under Control[END_REF] proposed a method based on Nash Equilibrium to determine the correct settings of pressure control valves. The valve head losses were taken as optimization variables and were estimated with a gradient-based algorithm that minimizes the corresponding convex variational problem. This method simultaneously solves as many constrained convex minimization problems as the number of pressure regulating valves plus one. The derived system is composed of the steady state equations (reduced to the loop energy balances) with one additional equation for each pressure regulating valve and complementary slackness condition. This system employs nonnegative Lagrange multipliers and its Jacobian is non-symmetrical, which may lead to a reduced solving efficiency. This reflects the fact that the system is not derived from a single optimization problem. It is worth
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Moreover, the authors described some simple examples for which no solutions or no unique solutions could be found.

Another method to handle flow control and check valves was proposed by [START_REF] Deuerlein | Modeling the Behavior of Flow Regulating Devices in Water Distribution Systems Using Constrained Nonlinear Programming[END_REF]. They use the content and co-content theory to define conditions that guarantee the Author-produced version of the article published in J. Hydraul. Eng. , 2014, 140(11), p. 04014052-1-04014052-9
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HYDRAULIC MODEL

Hydraulic equations. Equations describing the hydraulics of water distribution systems are based on the principles of conservation of mass and energy for an incompressible fluid. These equations are solved to obtain the unknown flow rates in pipes, and hydraulic heads at nodes.

The hydraulic network equations are described by:

AQ * + d = 0 nu h * -A T H * -A f T H f = 0 np h * = h(Q * ,r ) ì í ï î ï ï (11) 
Where Q * is the vector of link flowrates with size np (number of links), d the vector of nodal demands with size nu (number of unknown-head nodes), A an nu x np incidence matrix representing unknown-head node connectivity, A f an nf (number of fixed-head nodes) x np incidence matrix of fixed-head nodes, H * the vector of hydraulic heads for the unknown-head nodes, H f the vector of hydraulic heads for the fixed-head nodes, h * is a vector of link head losses. A ij = +1 if the pipe j leaves node i and i is an unknown head node; A ij = -1 if it enters node i and i is an unknown head node; and Aij = 0 otherwise. The same definition applies to A f but with i a fixed head node. The first two equations describe the conservation of mass and energy respectively, and are linear. The last is a nonlinear equation that describes the relationship between the link flow rates and head losses, typically based on the Darcy-Weisbach or still Hazen-Williams formulae.
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Author-produced version of the article published in J. Hydraul. Eng. , 2014, 140(11) Solving the hydraulic equations. Various methods have been proposed for solving water distribution system hydraulics. The first Loop method proposed by [START_REF] Cross | Analysis of Flow in Networks of Conduits or Conductors[END_REF] updates the value of loop flow rates for the corresponding loop energy equation subject while fixing all other flow rates (a similar Node method was also proposed by Cross). It can be shown [START_REF] Piller | Modeling the behavior of a network -Hydraulic analysis and sampling procedures for parameter estimation[END_REF] that the Hardy Cross Loop method corresponds to a cyclic relaxation for the minimization of an energy function. The convergence of the latter can be drastically improved by simultaneously considering all the loops and nodes.

Subsequently, several Newton-Raphson based algorithms have been proposed. These algorithms may be classified as:

• Nodal methods, which are based on the nodal mass balances and describe the system state with head variables, e.g. [START_REF] Chandrashekar | Sparsity Oriented Analysis of Large Pipe Networks[END_REF][START_REF] Lam | Computer Analysis of Water Distribution Systems: Part II -Numerical Solution[END_REF][START_REF] Martin | The Application of Newton's Method to Network Analysis by Digital Computer[END_REF].

• Loop or simultaneous path methods, which are based on loop energy balances and describe the system state with loop flow rate variables, e.g. [START_REF] Carpentier | Water Network Equilibrium, Variational Formulation and Comparison of Numerical Algorithms[END_REF][START_REF] Epp | Efficient Code for Steady-State Flows in Networks[END_REF].

• The Linear method proposed by [START_REF] Wood | Hydraulic Network Analysis Using Linear Theory[END_REF], which is based on mass and energy balances and describes the system with link flow rate variables.

• Hybrid methods, which are based on mass and energy balances and describe the system with both link flow rates and nodal head variables, e.g. [START_REF] Carpentier | Water Network Equilibrium, Variational Formulation and Comparison of Numerical Algorithms[END_REF][START_REF] Todini | A Gradient Projection Algorithm for the Analysis of Pipe Networks[END_REF][START_REF] Piller | Modeling the behavior of a network -Hydraulic analysis and sampling procedures for parameter estimation[END_REF].

The Loop, Linear and Hybrid method classes result in equations that are the best conditioned for fast convergence (they converge in the same number of iterations from the same starting
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The original publication is available at http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29HY.1943-7900.0000920 doi : 10.1061/(ASCE)HY.1943-7900.0000920 , 04014052 point), but the Hybrid method generally has fewer computational overheads than the other two methods, and is thus preferred. The Global Gradient Algorithm method by [START_REF] Todini | A Gradient Projection Algorithm for the Analysis of Pipe Networks[END_REF] was implemented in the public domain Epanet software [START_REF] Rossman | EPANET User's manual[END_REF], which has become the standard method used in research and industry. Alternative Hybrid formulations are employed in software packages such as Piccolo (2013) and Porteau (2013).

A problem with the Newton-Raphson based algorithms is that the global convergence of the method is only guaranteed if the initial solution is sufficiently close to the final solution (see e.g. the global damped Newton theorem in [START_REF] Ortega | Iterative solution of nonlinear equations in several variables[END_REF]1970).

For global convergence to be guaranteed, it is necessary to adopt an optimization approach.

Such formulations were proposed by [START_REF] Collins | Solving the Pipe Network Analysis Problem using Optimization Techniques[END_REF], [START_REF] Carpentier | Water Network Equilibrium, Variational Formulation and Comparison of Numerical Algorithms[END_REF] and [START_REF] Piller | Modeling the behavior of a network -Hydraulic analysis and sampling procedures for parameter estimation[END_REF]. An optimization approach allows correction made to the solution at each iteration to be tested for effectiveness, thus allowing numerical instabilities to be avoided. In addition, the existence and uniqueness of a solution to the equations can be proven, and thus convergence on a unique solution is guaranteed.

The proposed hydraulic solver is derived from the Content formulation by Collins, which describes the principle of least action for the hydraulic network, and can be written as:

min Q f (Q) = Q T h(Q) -Q T A f T H f subject to -AQ -d = 0 nu (22)
Where f(Q) is called the Content function of the system. The units of the Content function are that of power per unit weight. It is expressed as the sum of two terms with the first term representing the power dissipated in the network to reach the final steady state and the second the external power available to the system. Q is a vector of the link flowrates that complies
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with the conservation of mass, but not necessarily with the conservation of energy (i.e. the link flowrates in the solver before convergence has been achieved). h is the vector of average headlosses between flowrates of zero to Q and its i th component is:

0 ( ) (1/ ) ( ), Q 0 i i i i i Q i h Q Q h u = ¹ ò and (0) 0 i h =
Q * is used for the correct values of the flowrates after convergence (that complies with both mass and energy balance). Thus

f(Q) is at a minimum when Q = Q * .
Moreover, the headloss vector function h is modified near zero to ensure that f(Q) is strongly convex and twice continuously differentiable. The modification is required to ensure that the first derivative of the headloss function does not become zero at a flowrate of zerofor details, see [START_REF] Piller | Modeling the behavior of a network -Hydraulic analysis and sampling procedures for parameter estimation[END_REF]. This smoothing process is not necessary to guarantee the existence and uniqueness of the solution, but avoids numerical problems experienced by hydraulic solvers when flows in pipes are close to zero (all solver algorithms have to deal with this problem in some way).

The Content model minimization problem ( 2) is solved with a Lagrange-Newton method that is obtained by applying a Newton method to find a saddle point of the problem Lagrangian.

At each iteration, updated heads and flowrates, as well as the Content function are calculated.

If the descent criterion (similar to the Wolfe conditions) is not satisfied (i.e. the Content function does not decrease sufficiently), the flowrate adjustment is diminished by a factor r k to ensure that global minimum of the Content function is found. At each iteration, the updated heads and flowrates are calculated by:

( ) { } { } 1 1 1 1 1 1 1 ( ) ( ) k T k T k k k f f k k k T T k k k f f r - + - - + - + é ù = - - + ë û é ù = - - - ë û H AD A AD h Q A H AQ d Q Q D h Q A H A H (33) with D k = D(Q k ) = ¶ Q h(Q k ) the Jacobian matrix of h in Q k and 1 T k - AD A is a symmetric,
positive definite Jacobian matrix associated to the unknown head update.

A convergence criterion on the energy balance on the pipes is used by stopping when

( ) { } 1 max ( ) , i=1, , n k T T k f f p i i e + - - £ h Q A H A H L
, with ε a small value.

PROPOSED MODEL FOR FLOW AND PRESSURE REGULATING DEVICES

In this study, the optimization approach used in the hydraulic solver was expanded to handle 

Flow Regulating Devices

Flow regulating valves include flow control valves that prevent the flow rate through the valve exceeding the target value, and non-return or check valves that allow flow to occur in only one direction. Flow control valves are modeled as part of existing links in the model, since this results in a simpler model and avoids numerical problems in valves with very small head losses.

In the proposed approach, the problem is not solved with hard inequality constraints (like in [START_REF] Deuerlein | Modeling the Behavior of Flow Regulating Devices in Water Distribution Systems Using Constrained Nonlinear Programming[END_REF] but by adding penalties to the Content function. This exterior penalty method facilitates the satisfaction of constraints while being robust and simple to implement.

The hydraulic solver used is based on an optimization approach, and this facilitates the simultaneous handling of system links and flow control valves. The modified Content optimization problem (2) now becomes:

Where J FVC is the index set of pipes with a flow control valve; the r j are positive resistance coefficients; and the last term penalizes violations of flow control valve settings. In general the penalty function method requires that is minimized for a sequence of r k until a suitable solution is found. However, for this application it was found good results are obtained with a large identical scalar r max value. The corresponding headloss penalty is obtained as:

( )

2 2 max max 0 ( , ) max 0, max 0, set j j FCV set j j j j Q Q h Q r r Q Q h Q ae ö - = - = ç ÷ ç ÷ D è ø (44) 
With h 0 the headloss penalty for a flow rate violation of DQ; Q j is the flowrate in the pipe j;

set j
Q is the setting value; and h FCV , the headloss penalty function of Q, is the gradient of the additional term to the Content function. The penalized headloss function for a flow control valve is a smooth quadratic function whose general form is presented in Figure 1Figure 1. ( )

2 2 max max 0 ( , ) max 0, max 0, CV k k k k Q h Q r r Q h Q ae ö - = - - = - ç ÷ D è ø (55) 
The corresponding curve is described in Figure 2Figure 2. Piller and Van Zyl (2009) used dummy pressure sustaining valves as a modeling trick to correct hydraulic predictions for network section supplied via a high-lying node experiencing negative pressure. This may occur if the normal supply pipe to the network section has failed. In practice, air will enter the system at the elevated node (e.g. through air valves, leaks or open taps), and thus the supply to the network section will likely be interrupted.

Just like flow control valves, pressure regulating devices (PRDs) are modeled as part of existing links with a given target pressure on the downstream (i D ) or upstream (i U ) PRD sides.

Thus for a PRV:

D D set i i H H £
and for a PSV:

U U set i i H H ³
If S is the selection matrix of the nt nodes with pressure setting targets, the complete set of constraints can be written in matrix form as:

set £ SH H
When in use, PRVs and PSVs create local headlosses to get the network pressures as close as possible to the head set point vector H set (target pressure + ground level). These local headlosses are added to the total headlosses h(Q) for links with such devices: Where r i is the secondary resistance factor of the pipe with K i the dimensionless corresponding secondary headloss coefficient, D i the diameter of the pipe i; C is the diagonal matrix of element ( )

( , ) ( ) PRD = h Q r B Q r with ( ) T = Q B Q CS , 2 4 8 , 1, , i i i K r i nt g D p = = L (77)
2 max 0, ii i C Q =
and S Q is the matrix of size nt x np for identifying the pipes with PRVs. Control valves only act in one direction -depending on how they are defined, these valves will either stop flow reversal, or, if negative flow is allowed, behave as pipes with known secondary headloss coefficients.

Pressure regulating devices are handled with a function that penalizes deviations from the target settings, as described by the first term in this function:

( ) ( ) ( ) ( ) 1 1 0 0 2 2 max min ( ) ( ) ( )
subject to:

T T set set nt nt c m r + + = - - + - - £ £ r r SH r H I SH r H r r I r r 0 r 1 (8) 
The second term in the equation is a Tikhonov regularization term used to ensure that numerical problems are avoided in converging to a unique solution. The value of r max is the same as that used for flow control valves: r max = h 0 /DQ 2 in Figs. 1 and2. I + is the indicator matrix to implement the pressure control valve behavior for positive flowrates only, r 0 is the value of r from the previous iteration (or an initial estimate), and m is the Tikhonov factor used to control the convexity of the function. The Tikhonov regularization term is only included when the function has insufficient convexity, and in our experience it is mostly equal to zero.

The function c is not differentiable at r i such as Q i (r i ) = 0. However, since control valves are active in a very small positive range of Q i , and is either open or closed outside this range, it wasn't necessary to modify the I + term.
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greater than or equal to 45 m, the valve status is 'open' and the unconstrained minimum occurs in the second (negative) quadrant. The solution of ( 8) for an open valve is K = 0. Note that the four curves are smooth, they each have no more than one minimum in the feasible set. From Figure 3Figure 3, it is clear that the criterion described by Eq. ( 8) without a regularization term (i.e., m taken at zero) may be concave and its curve may possess inflexion points.

Optimality Criteria to determine the correct status of PRD valves With the convexity and the differentiability of the least-squares criterion c, it is possible to define necessary and sufficient optimality conditions that are the associated Karush, Kuhn and Tucker (KKT) equations (a generalization of Lagrange condition for inequality constraints). These optimality conditions are useful to determine the correct status of the valves (rather than the valve settings). Once correct statuses of the PRD valves are determined, a second-stage least-squares problem Eq. ( 8) should be formulated with only the deviations from the target settings for PRDs that are active to determine the exact local head losses created by the control valves in order to meet the pressure targets.

To solve the KKT equations, the gradient of c has to be determined. Using the implicit function theorem, we can show that y = H(r) is a continuous differentiable function with regards to the r variables. This gives an expression for the gradient of c:

( ) ( ) 0 ( ) ( ) T set c m Ñ = - + - r J SH r H r r (9) 
Where

J = S ¶ r H = S AD -1 A T ( ) -1 AD -1 B
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is the Jacobian matrix of the H function at PRD target nodes with respect to the r coefficients, B is the same as in Eq. ( 7) and D is the derivative of h with respect to the flow rate Q. The total headloss function h(Q,r) includes friction losses, FCVs, CVs and PRDs.

The calculation of the gradient of c is immediate, as the matrix to be inverted is very sparse and its Cholesky decomposition is known from the current hydraulic solution of system (Eq.

1) with the previous values of r.

Since c is continuously differentiable, and the constraints are linear, the first order KKT optimality conditions are met (e.g., see [START_REF] Bazaraa | Nonlinear Programming -Theory and Algorithms[END_REF]. Therefore there exist two positive multiplier vectors M 1 and M 2 ≥ 0 nt such that:

1 2 ( ) c Ñ = - r M M (10) 
This consists of the Dual Feasibility conditions while

M 1 ( ) T r = 0 and M 2 ( ) T r -r max 1 nt ( ) = 0 (11)
are the Complementary Slackness conditions with being the optimal solution. The dual feasibility condition states that the gradient is no longer sign-constrained.

These two conditions are used to check whether the KKT conditions have been met, i.e.

whether the correct solution for valve status has been found.

If r i = 0 (the i th pressure control valve status is open), then by ( 11) it is necessary that 2 0 i M = and Eq. ( 10) indicates that the i th component of the gradient must be positive or zero. In identical manner, if r i = r max (the i th pressure control valve status is closed), then 1 0 i M = and the corresponding gradient component must be negative or zero. Finally, if 0 < r i < r max (the i th r
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pressure control valve is active), then necessarily

1 2 0 i i M M = =
and the i th gradient component should be zero.

Projected Levenberg-Marquardt Solution Algorithm

The solution method used is a slight modification of the Levenberg-Marquardt (LM)

algorithm that accounts for all the constraints.

At the start of the solution algorithm, initial control valve statuses are obtained from the previous solution or initial settings. The system hydraulics is then solved, and the control valve r resistances estimated with the iterative formula:

r i +1 = r i -P i J i T J i + mI nt + e i diag J i T J i ( ) é ë ù û -1 Ñc i (12)
Where e i is the LM damping factor, P i is the projection matrix for bounded primary constraints in (8) (i.e. valves that have fixed 'closed' or 'open' statuses). The value of e i is increased if the primal feasibility conditions (PF) are not complied with, if J i T J i is an illconditioned matrix or if there is no descent. In each step i, the hydraulic system is solved to determine Q(r i ) and H(r i ). The operation of the pressure regulating devices is modeled by adjusting the local head loss coefficients to satisfy the optimality of a least squares problem.

The algorithm (Eq. ( 12)), which is a projected method on the box constraints of Eq. ( 8), will not change valves with status 'open' or 'closed' during iterations. A valve that is initially

'active' may becomes 'open' if K i ≤ 1E-3 and 'closed' if r i ≥ r max -1E-3*r max .
The KKT conditions (Eqs. ( 10) and ( 11)) are checked after the iterative scheme Eq. ( 12) has converged. If all the Lagrange multipliers are non-negative, the KKT conditions are satisfied
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Once the statuses of the PRD valves have been determined, a second-stage least-squares problem (Eq. ( 8)) is solved with the same constraints, but with deviations from the target settings only for 'active' PRDs in the objective function: this is done to determine the exact local head losses created by active control valves in order to meet the pressure targets. This second-stage of the solution has to be done to remove any biases that fully open or closed valves have introduced in the solution.

VALIDATION TESTS

The proposed method was applied to a number of example networks:

-A simple network with a pressure-reducing valve on a pipeline between two tanks. This example was provided to illustrate the good convergence of the method when there is no interaction between valves.

-A simple network consisting of a flow control valve and a pressure-reducing valve in series on a pipeline between two tanks. This network posed a problem for early versions of Epanet.

-A simple network consisting of pressure-sustaining and pressure-reducing valves in series.

This network poses a problem for the current version of Epanet.

-A simple network consisting of two valves in parallel that strongly interacts with each other.

The simulations results are discussed with an emphasis on the convergence characteristics of the method.
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2,000 L/s) with a setting far in excess of the gravity flow rate. The PRV is operating and yields a local headloss of 20 m with a dimensionless coefficient K * = 131.7. The flow rate is 339 L/s. For the three pipes the diameter is 500 mm and the Hazen-Williams coefficient is 100. All the elevations at unknown head nodes are set to zero. The main reason why previous versions of Epanet (e.g., version 2.00.10) may fail to converge or converge to an incorrect solution, for this simple configuration with control valves is that the algorithm may fail to determine the correct statuses of the valves. In the proposed method, a continuous approach is used for both FCVs and PRDs. A flow control valve is modeled as a local headloss that penalizes all violation of the flow set point. With this approach a FCV and a PRV in series will pose no problem. The Table 1Table 1 summarizes the iterations of the Levenberg-Marquardt method for estimating the pressure valve settings.

With CV-Count is the number of pressure control valve components that has converged; RSS is the residual sum of squares i.e., c(K i ) with m=0 ; GRAD/SD is the norm of the gradient along the search direction; LM factor e i is the Levenberg-Marquardt damping factor; and the last column give the dimensionless friction factor that creates the local headloss 0.5 K* V 2 /g.
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A PSV and a PRV in series

The third example network consists of two separate PSV and PRV in series as shown in Author-produced version of the article published in J. Hydraul. Eng. , 2014, 140(11), p. 04014052-1-04014052-9

The original publication is available at http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29HY.1943-7900.0000920 doi : 10.1061/(ASCE) HY.1943-7900.0000920 , 04014052 valve simultaneously controls the pressure on both sides, maintaining a certain minimum pressure on the upstream side and another (lower) maximum pressure on the downstream side. Both settings cannot be satisfied simultaneously and are active at different times of the day. The initial level in the tank is zero. All elevations at junction nodes are zero. This simple layout poses a problem in the latest version of Epanet (2.00.12). There is no convergence and several warning are generated, such as "valve PSV causes ill conditioning" and "PSV open but cannot deliver pressure at 0:00:00". 75 m (5 m below the setting). The pressure downstream the PRV is 25 m. The PRV is active with a pressure constraint that is satisfied. This situation is not physically correct but can be explained with the fact that the 2 valves interact strongly with each other. To move the solution away from the local minimum solution, the recommended method is to penalize the least-squares criterion with a Tikhonov term (Eqs. 8 and 12, m > 0 and r 0 = 0 for the PRV). In addition the following rule is applied: after convergence, if a situation with active or closed valve, but satisfied constraint occurs the valve with the highest residual is opened. This applies with combined PSV/PRV valves but also to other valve configurations with strong interaction.

The 6 first iterations are then followed by 6 further iterations with the PRV open as shown in Table 3Table 3. The algorithm converges to the correct valve status solution (active PSV and open PRV).

In addition, the solution at iteration 12 is equivalent to the solution at iteration 6: not only the criterion cost RSS = 25 m 2 but also the hydraulic grade line with 75 m upstream the PSV, and 25 m downstream the PRV. The head loss of the PSV is 50 m with a dimensionless coefficient K = 318.6, which is equal to the sum of the head losses in iteration 6. However, the algorithm has to continue to the second stage to determine the correct setting of the PSV.

The RSS contribution for the PRV is removed from the total RSS as the valve is open. These iterations are summarized in Table 4Table 4. The exact setting of the PSV (K* = 486.5) is obtained after 6 additional iterations. Two PRVs in parallel.

The fourth example network consists of two PRVs in parallel as shown in Figure 9Figure 9.

The system uses a tank or a pumping station to supply consumers at node JCons. When the pumps are operating the tank is filling through a top inlet. When the pumps are switched off, the tank supplies water to the system. The latter situation is represented in Figure 9Figure 9. It may be seen than the 2 PRVs influence each other to the same extent and when one of PRVs experiences a small change, a similar change is expected in the other valve.

CONCLUSION

A new method is presented for handling control valves (including check valves) in hydraulic network modeling. In this method, the behavior of check and control valves are described by continuous functions rather than the mixed discrete-continuous formulation commonly used.

In this method, flow control valves are handled by imposing a penalty on the valve's headloss Author-produced version of the article published in J. Hydraul. Eng. , 2014, 140(11), p. 04014052-1-04014052-9 The original publication is available at http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29HY.1943-7900.0000920 doi : 10.1061/(ASCE) HY.1943-7900.0000920 , 04014052 
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  control valves. Different approaches are used for the modeling of flow and pressure control valves. The headloss function of a flow control valve is adjusted by adding a penalty when the valve setting is violated. This modified headloss function is then treated like any other link in the hydraulic solver. Check valves are handled as special flow control valves with a minimum flow rate setting of zero. Pressure control valves are solved externally to the hydraulic solver by employing a Newton Projection Minimization algorithm, for which global convergence is guaranteed. The target flowrates and heads are subjected to constraints in the form of the conservation laws and the hydraulic behavior of elements in the system.

Figure 1 .

 1 Figure 1. Headloss modeling of a flow control valve by external penalty. Check valves can be modeled by considering them as a special type of flow control valve with the constraint that 0 k Q ³ . The penalty function for check valve is described by:

Figure 2 .

 2 Figure 2. Headloss modeling of a check valve by external penalty. The generalized Content minimization problem for handling FCVs and CVs is then:

Figure 66 .

 66 Figure 66. Network 2 with a FCV and a PRV in series between two tanks.

  The row iteration 0 corresponds to an initialization with K = 0, with the PRV assumed fully open. The head at node 2 is H 2 (K=0) = 45 m, which is 10 m above the set point. The RSS is 50 m 2 . The reductions of the RSS and of the Gradient are quadratic. The damping factor e i decreases by 60 % at each iteration. Since there is no open or closed pressure control valve, there is no need to solve the second-stage problem. Moreover, modeling flow control valves with Eq. (4), penalizing the head loss if the flow setting is violated, requires no special treatment for an open FVC. This is a clear advantage.

Figure 7Figure 7 .

 7 Figure 7Figure 7. Water flows from a reservoir to a Tank for a distance of 2 km. Halfway between the reservoir and tank are two separate devices in series configured to model a combination of pressure sustaining and pressure reducing (PSV/PRV) valves. The PSV/PRV

Figure 77 .

 77 Figure 77. Network 3 with a PSV and a PRV in series between a reservoir and a tank. At the end of the simulation run, the solution should be as shown in the Figure 7Figure 7. The PSV is active and yields a local headloss of 60 m with a dimensionless coefficient K * = 486.5. The PRV is open and the pressure at the downstream end of the valve is 10 m below its setting. The flow rate is 48.9 L/s.

Figure 8Figure 8

 8 Figure 8Figure 8 shows the nodal heads for the 9 first hours. The tank is cylindrical with 20 m for the maximum level and 10 m for the diameter. J1 is a junction node just upstream the PSV and J3 another one just downstream the PRV. The tank level was updated every hour

Figure 88 .

 88 Figure 88. Head time series for selected nodes in network 3.

  Water flows from the tank to node J1. Then, the flow separates in two different paths with a PRV on each. The PRVs are situated 1 km upstream the node JCons. The pressure settings are 50 m for both PRVs. All node elevations are 200 m. The level in the Tank is 3m above its bottom level of 292 m. The lengths of all three pipes are 1,000 m and their Hazen-Williams coefficients are 95. The demand at JCons is 8.5 L/s. Mis en forme : Anglais (États Unis)
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Table 11 . Convergence for the network with one FCV and one PRV in series.

 11 

	Iteration # CV_Count	RSS	GRAD/SD	LM factor e i	K PRV
	0	0	50.00000 1881507.19753004	0.00010	0.00000
	1	0	8.58045 269899.11571403	0.00004	40.19445
	2	0	0.89534	40111.55927071	0.00002	88.28532
	3	0	0.02955	4884.57232911	0.00000	122.05247
	4	0	0.00006	206.63313520	0.00000	131.20525
	5	0	0.00000	0.48852255	0.00000	131.67368
	6	0	0.00000	0.00000380	0.00000	131.67480
	7	1	0.00000	0.00000007	0.00000	131.67480

Table 2Table 2

 2Table summarizes the iterations of the method (Eq. 12). It converges in 6 iterations to a local minimum solution that is not the correct solution -the two valves both have head losses of 25 m. The flow rate is 55.12 L/s, which is too high. Any additional simultaneous valve closure will raise locally the least-squares criterion c. The pressure upstream the PSV is

Mis en forme : Anglais (États Unis)

Table 22 .

 22 Initial convergence for the network with one PSV and one PRV in series.

	Iteration	CV_Count	RSS	GRAD/SD	LM	K PSV	K PRV
	#				factor e i		
	0	0	649.75005 227019.02185376	0.00010	0.00000	0.00000
	1	0	100.36013	33791.61183555	0.00004 75.35540 75.35540
	2	0	28.46590	4479.20812686	0.00002 136.42557 136.42557
	3	0	25.01620	265.86395946	0.00000 157.61510 157.61510
	4	0	25.00000	1.40547468	0.00000 159.28421 159.28421
	5	0	25.00000	0.00004447	0.00000 159.29323 159.29323
	6	2	25.00000	0.00000079	0.00000 159.29323 159.29323

Table 33 .

 33 Valve status solution for the network with one PSV and one PRV in series.

	Iteration	CV_Count	RSS	GRAD/SD	LM	K PSV	K PRV
	#				factor e i		
	7	0	90.32851 30282.48742520	0.00010	159.29323	0.00000
	8	1	27.76165	3935.48041489	0.00004	277.43718	0.00000
	9	1	25.01060	214.55220639	0.00002	315.86958	0.00000
	10	1	25.00000	0.92318209	0.00000	318.57460	0.00000
	11	1	25.00000	0.00002352	0.00000	318.58644	0.00000
	12	2	25.00000	0.00002352	0.00000	318.58644	0.00000

Table 44 .

 44 Second-stage solving for the network with one PSV and one PRV in series.

	Iteration	CV_Count RESID_SS	GRAD/SD	LM	K PSV
	#				factor e i	
	13	1	12.50000	3652.53528151	0.00010	318.58644
	14	1	0.37937	434.37774607	0.00004	451.11238
	15	1	0.00068	16.82032793	0.00002	484.93499
	16	1	0.00000	0.03264390	0.00000	486.49091
	17	1	0.00000	0.00000033	0.00000	486.49396
	18	2	0.00000	0.00000033	0.00000	486.49396

Table 55 .

 55 Convergence for the network with two PRVs in parallel.

	Iteration	CV_Count	RSS		GRAD/SD	LM	K PRV1	K PRV2
	#					factor e i
	0	0 1988.96816 1185.48303586 0.00010	0.00000	0.00000
	1	0	0.01086		0.26839385 0.00004 13517.19639 17036.82993
	2	0	0.17871		0.26839385 0.00040 13517.19639 17036.82993
	3	0	0.04189		0.26839385 0.00400 13517.19639 17036.82993
	4	0	0.00772		0.32911957 0.00160 13763.48414 16695.22089
	5	0	0.00463		0.89014765 0.00064 14189.38031 16134.05340
	¯						
	12		0.00000		0.00000000 0.00000 15164.07956 15083.08428
	The residual Jacobian matrix J at iteration 10 is as follows:	
			J	ae = ç è	163.1268 163.0637 163.0637 163.2535	ö ÷ ø
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Figure 55. Algorithm performance at each iteration.

A FCV and a PRV in series.

The second example network shown in Figure 6Figure 6 was also proposed by Simpson (1999). This network consists of a flow control valve (FCV) and a pressure-reducing valve in series between two tanks. The tank T1 fills the tank T2 by gravity only. For non-valve configurations (or equivalently the two control valves both inactive and having no minor head losses), the flow rate and the piezometric head at the middle of the path would be approximately 614 l/s and 45 m respectively. The FCV is made inactive (the flow set point is Mis en forme : Anglais (États Unis) Mis en forme : Anglais (États Unis) Mis en forme : Anglais (États Unis) Code de champ modifié Mis en forme : Anglais (États Unis) Mis en forme : Anglais (États Unis) Mis en forme : Anglais (États Unis) Mis en forme : Anglais (États Unis)
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For different pressure settings of a single PRV, Figure 3Figure For the four curves shown, the objective function c has a horizontal asymptote and a finite limit when K tends to infinity. There is a head setting H set , below which the objective c does not have a minimum, in Figure 3Figure 3 when H set ≤ 30 m. In such cases, the solution of ( 8)

is K max if m = 0 and correspondingly the valve status is 'closed'. For intermediary head settings between 30 and 45 m, a minimum global solution exists in the first (positive)
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This example network is shown in Figure 4Figure 4 and was originally proposed by [START_REF] Simpson | Modeling of Pressure Regulating Devices: The last major Problem to be Solved in hydraulic Simulation[END_REF]. Situation a): the initial solution is K 0 = 0. Next, K 1 = -46 does not satisfy the non-negativity constraint, therefore the damping parameter e 1 in Eq. ( 12) is increased; the step size is reduced and, for k = 4, K 4 is close to zero and the algorithm stops; gradient in Eq. ( 9) is positive and has a value of (0) c Ñ = 2,547,090; the Karush Kuhn and Tucker equations ( 10) and ( 11) are satisfied.
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governing equations are solved using a standard solver algorithm. In this work, a Lagrange-Newton-type algorithm by [START_REF] Piller | Modeling the behavior of a network -Hydraulic analysis and sampling procedures for parameter estimation[END_REF] was used.

Pressure control valves (such as pressure reducing and pressure sustaining valves) are handled externally to the hydraulic solver through an optimization routine. The goal of the optimization is to find the secondary loss coefficients of the pressure control valves that will minimize the differences between the nodal and the target pressures.

The proposed method has several benefits compared to the current discrete-continuous formulation. The derivatives of the heads in relation to the input parameters can be written explicitly as functions of the flow rates, and the gradients of the functions with respect to the optimization variables can be obtained analytically. This, in conjunction with the fact that only linear constraints are required in the optimization process, provides good conditions for fast convergence of the method. The robustness of the optimization is ensured by using a Levenberg-Marquardt projection minimization algorithm, for which global convergence is guaranteed.

It is shown with several case studies than the method finds interesting solutions to control valve problems without resorting to 'modeling tricks'. It is proved to be efficient on problematic case studies.

While only control valves were considered in this paper, variable speed pumps and handling of high-lying nodes with negative pressures [START_REF] Piller | Computing and Control in the Water Industry 2009 'Integrating Water Systems[END_REF] can also be included in the proposed algorithm.

Author-produced version of the article published in J. Hydraul. Eng. , 2014, 140(11), p. 04014052-1-04014052-9

The original publication is available at http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29HY.1943-7900.0000920 doi : 10.1061/(ASCE)HY.1943-7900.0000920 , 04014052

LIST OF FIGURE CAPTIONS