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Modeling Control Valves in Water Distribution Systems Using a 1 

Continuous State Formulation 2 

by Olivier Piller1 and Jakobus E. van Zyl2 M.ASCE 3 

 4 

ABSTRACT 5 

Control valves are commonly used for the operation of water distribution systems.  Modeling 6 

these devices typically requires that their operating states are known, or that a 7 

computationally expensive search is undertaken over all possible operating states.  This paper 8 

presents a novel method of modeling control valves (including flow control, pressure 9 

sustaining, pressure reducing and check valves) in extended-period simulations of water 10 

distribution systems.  Instead of the normal discrete control problem formulation, it is 11 

approached with the Karush-Kuhn-Tucker equations for an optimization problem with 12 

constraints. 13 

 14 

The proposed method does not pre-require the operating state (open, closed, active) of each 15 

valve to be determined, as this is done implicitly. Pipe and valve flow rates and nodal heads 16 

are determined by (1) minimizing deviations from targets at control valves and (2) satisfy the 17 

state equations (conservation of mass and energy) by solving a constrained least-square 18 

problem. 19 

 20 

                                                

1 Research Scientist, Networks, water treatment and water quality Research Unit, Irstea, Bordeaux regional 

center, F-33612 Cestas France, email: olivier.piller@irstea.fr 
2 Associate Professor, Department of Civil Engineering, University of Cape Town, South Africa, email: 

kobus.vanzyl@uct.ac.za 

Author-produced version of the article published in  J. Hydraul. Eng. , 2014, 140(11), p. 04014052-1- 04014052-9 
The original publication is available at http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29HY.1943-7900.0000920 

doi : 10.1061/(ASCE)HY.1943-7900.0000920 , 04014052



 

 
2

Sensitivity equations with respect to the control variables (valve settings) are derived from 21 

the state equations, and the control variables are updated using Levenberg-Marquardt 22 

iterations.  The results of simple problems and case studies are presented to demonstrate the 23 

effectiveness of the approach. 24 

Keywords: Water distribution systems; Hydraulic models; Control valves; Algorithms; 25 

Least-squares optimization; Penalty method; Flow control; Pressure control 26 

 27 

INTRODUCTION 28 

Water distribution systems have to provide a high level of service under widely varying 29 

conditions. To achieve this, engineers often employ control valves to manage flows and 30 

pressures. Control valves can operate mechanically (such as check valves) or through 31 

hydraulic circuits (such as flow control and pressure regulating valves), and can be controlled 32 

by local conditions or an external signal.   33 

 34 

The common algorithms used for modeling the hydraulics of a water distribution system do 35 

not model the time-varying behavior of the system continuously, but calculate ‘snapshots’ of 36 

the system’s hydraulic state at certain points in the simulation period. At each time step, the 37 

snapshot solver has to solve the hydraulic network equations while simultaneously 38 

calculating the settings of all the control valves in the system. Tank levels are updated 39 

between snapshot simulations using a simple Euler integration scheme.  40 

 41 

The commonly used open source software, Epanet (Rossman, 2000), uses a set of control 42 

rules to calculate control valve settings.  Although the Epanet method works well in practice 43 

and is widely accepted in the hydraulic modeling community, there is no guarantee that its 44 

heuristic algorithm will be able to find the correct control valve settings in all cases. In fact, 45 
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Simpson (1999) illustrated this through a number of control valve problems for which the 46 

Epanet hydraulic engine could not find a solution, or produced incorrect results. 47 

 48 

Alternative methods for modeling control valves have developed in recent years. Piller and 49 

Bremond (2001) proposed a least-squares global optimization approach to determine the 50 

control valve state by minimizing the differences between the target settings and calculated 51 

values.  Piller et al. (2005) applied the same optimization framework with an attempt to 52 

model time-varying behavior of the system continuously using slow transients (or rigid 53 

column without water hammer).  This allowed them to model the continuous changes in the 54 

system state until an equilibrium (steady) state is achieved. The reaction speed of the control 55 

valve can be incorporated in the calculations by adding a constraint in the optimization 56 

solver. The authors noted that certain solutions that are infeasible using a demand-driven 57 

approach are in fact possible in real life, and can be solved correctly if a pressure-driven 58 

approach is followed.  59 

 60 

Deuerlein et al. (2005) proposed a method based on Nash Equilibrium to determine the 61 

correct settings of pressure control valves. The valve head losses were taken as optimization 62 

variables and were estimated with a gradient-based algorithm that minimizes the 63 

corresponding convex variational problem. This method simultaneously solves as many 64 

constrained convex minimization problems as the number of pressure regulating valves plus 65 

one. The derived system is composed of the steady state equations (reduced to the loop 66 

energy balances) with one additional equation for each pressure regulating valve and 67 

complementary slackness condition. This system employs nonnegative Lagrange multipliers 68 

and its Jacobian is non-symmetrical, which may lead to a reduced solving efficiency. This 69 

reflects the fact that the system is not derived from a single optimization problem.  It is worth 70 
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noting that the authors found their method to be robust and to produce good results based on 71 

several example problems. In a further paper, Deuerlein et al. (2008) used the same approach, 72 

but with the residual squared between the predicted value and the target value. This 73 

represents a more direct objective function similar to that used by Piller and Bremond (2001). 74 

Moreover, the authors described some simple examples for which no solutions or no unique 75 

solutions could be found.  76 

 77 

Another method to handle flow control and check valves was proposed by Deuerlein et al. 78 

(2009). They use the content and co-content theory to define conditions that guarantee the 79 

existence and uniqueness of the solution before simultaneously solving the network 80 

hydraulics and valve settings. Subdifferential analysis is used to deal with the non-81 

differentiable flow versus headloss relationships of flow control and check valves, and the 82 

combined equations are solved as a constrained nonlinear programming problem. An 83 

interesting result was the interpretation of the flow rate inequality multiplier as the head loss 84 

over the flow control valve. 85 

 86 

In this study, different approaches are used to solve flow and pressure control valves in a 87 

hydraulic network. Flow control valves are handled by applying an external penalty function 88 

to the valve’s headloss equation in the vicinity of the valve setting. Check valves are handled 89 

as special flow control valves with a minimum flow rate setting of zero. The flow control 90 

valves are then solved with the other network hydraulic equations using a standard network 91 

solver.  Pressure control valves are solved externally to the hydraulic solver by employing a 92 

Newton Projection Minimization algorithm, for which global convergence is guaranteed.  93 

 94 
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An overview of the snapshot hydraulic equations is presented before describing the proposed 95 

algorithms for handling flow and pressure control valves.  The proposed method is illustrated 96 

on a number of example problems for which Epanet is not currently able to find correct 97 

solutions. 98 

 99 

HYDRAULIC MODEL 100 

Hydraulic equations. Equations describing the hydraulics of water distribution systems are 101 

based on the principles of conservation of mass and energy for an incompressible fluid. These 102 

equations are solved to obtain the unknown flow rates in pipes, and hydraulic heads at nodes. 103 

The hydraulic network equations are described by:  104 

 

   

AQ* + d = 0nu

h* − ATH* − A f
TH f = 0np

h* = h(Q*,r )










 (11) 105 

Where Q* is the vector of link flowrates with size np (number of links),  d the vector of nodal 106 

demands with size nu (number of unknown-head nodes), A an nu x np incidence matrix 107 

representing unknown-head node connectivity, Af  an nf (number of fixed-head nodes) x np 108 

incidence matrix of fixed-head nodes, H* the vector of hydraulic heads for the unknown-head 109 

nodes, Hf the vector of hydraulic heads for the fixed-head nodes, h* is a vector of link head 110 

losses. Aij = +1 if the pipe j leaves node i and i is an unknown head node; Aij = -1 if it enters 111 

node i and i is an unknown head node; and Aij = 0 otherwise. The same definition applies to 112 

Af but with i a fixed head node. The first two equations describe the conservation of mass and 113 

energy respectively, and are linear. The last is a nonlinear equation that describes the 114 

relationship between the link flow rates and head losses, typically based on the Darcy-115 

Weisbach or still Hazen-Williams formulae. 116 
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 117 

Solving the hydraulic equations. Various methods have been proposed for solving water 118 

distribution system hydraulics. The first Loop method proposed by Cross (1936) updates the 119 

value of loop flow rates for the corresponding loop energy equation subject while fixing all 120 

other flow rates (a similar Node method was also proposed by Cross).  It can be shown 121 

(Piller, 1995) that the Hardy Cross Loop method corresponds to a cyclic relaxation for the 122 

minimization of an energy function. The convergence of the latter can be drastically 123 

improved by simultaneously considering all the loops and nodes. 124 

 125 

Subsequently, several Newton-Raphson based algorithms have been proposed. These 126 

algorithms may be classified as: 127 

• Nodal methods, which are based on the nodal mass balances and describe the system 128 

state with head variables, e.g. (Chandrashekar and Stewart 1975; Lam and Wolla 129 

1972; Martin and Peters 1963). 130 

• Loop or simultaneous path methods, which are based on loop energy balances and 131 

describe the system state with loop flow rate variables, e.g. (Carpentier et al., 1985; 132 

Epp and Fowler 1970). 133 

• The Linear method proposed by Wood and Charles (1972), which is based on mass 134 

and energy balances and describes the system with link flow rate variables. 135 

• Hybrid methods, which are based on mass and energy balances and describe the 136 

system with both link flow rates and nodal head variables, e.g. (Carpentier et al., 137 

1985; Todini and Pilati, 1988; Piller 1995). 138 

 139 

The Loop, Linear and Hybrid method classes result in equations that are the best conditioned 140 

for fast convergence (they converge in the same number of iterations from the same starting 141 
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point), but the Hybrid method generally has fewer computational overheads than the other 142 

two methods, and is thus preferred. The Global Gradient Algorithm method by Todini and 143 

Pilati (1988) was implemented in the public domain Epanet software (Rossman 2000), which 144 

has become the standard method used in research and industry.  Alternative Hybrid 145 

formulations are employed in software packages such as Piccolo (2013) and Porteau (2013). 146 

A problem with the Newton-Raphson based algorithms is that the global convergence of the 147 

method is only guaranteed if the initial solution is sufficiently close to the final solution (see 148 

e.g. the global damped Newton theorem in Ortega and Rheinboldt; 1970). 149 

 150 

For global convergence to be guaranteed, it is necessary to adopt an optimization approach.  151 

Such formulations were proposed by Collins et al. (1978), Carpentier et al. (1985) and Piller 152 

(1995).  An optimization approach allows correction made to the solution at each iteration to 153 

be tested for effectiveness, thus allowing numerical instabilities to be avoided. In addition, 154 

the existence and uniqueness of a solution to the equations can be proven, and thus 155 

convergence on a unique solution is guaranteed. 156 

 157 

The proposed hydraulic solver is derived from the Content formulation by Collins, which 158 

describes the principle of least action for the hydraulic network, and can be written as:  159 

 

   

min
Q

 f (Q) = QTh(Q) − QTA f
TH f

subject to − AQ − d = 0nu

 (22) 160 

Where f(Q) is called the Content function of the system.  The units of the Content function 161 

are that of power per unit weight. It is expressed as the sum of two terms with the first term 162 

representing the power dissipated in the network to reach the final steady state and the second 163 

the external power available to the system. Q is a vector of the link flowrates that complies 164 
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with the conservation of mass, but not necessarily with the conservation of energy (i.e. the 165 

link flowrates in the solver before convergence has been achieved). h  is the vector of 166 

average headlosses between flowrates of zero to Q and its ith component is:   167 

0
( ) (1/ ) ( ),  Q 0i

i i i i

Q

ih Q Q h u= ≠∫  and (0) 0ih =  168 

Q* is used for the correct values of the flowrates after convergence (that complies with both 169 

mass and energy balance).  Thus f(Q) is at a minimum when Q = Q*.  170 

 171 

Moreover, the headloss vector function h is modified near zero to ensure that f(Q) is strongly 172 

convex and twice continuously differentiable. The modification is required to ensure that the 173 

first derivative of the headloss function does not become zero at a flowrate of zero – for 174 

details, see Piller (1995).  This smoothing process is not necessary to guarantee the existence 175 

and uniqueness of the solution, but avoids numerical problems experienced by hydraulic 176 

solvers when flows in pipes are close to zero (all solver algorithms have to deal with this 177 

problem in some way).  178 

 179 

The Content model minimization problem (2) is solved with a Lagrange-Newton method that 180 

is obtained by applying a Newton method to find a saddle point of the problem Lagrangian. 181 

At each iteration, updated heads and flowrates, as well as the Content function are calculated. 182 

If the descent criterion (similar to the Wolfe conditions) is not satisfied (i.e. the Content 183 

function does not decrease sufficiently), the flowrate adjustment is diminished by a factor ρk 184 

to ensure that global minimum of the Content function is found. At each iteration, the 185 

updated heads and flowrates are calculated by: 186 
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( ) { } { }11 1 1

1 1 1

( )

( )

k T k T k
k k f f

k k k T T k
k k f fρ

−+ − −

+ − +

 = − − + 
 = − − − 

H AD A AD h Q A H AQ d

Q Q D h Q A H A H
 (33) 187 

with 
   Dk = D(Qk ) = ∂Qh(Qk )  the Jacobian matrix of h in Qk and 1 T

k
−AD A  is a symmetric, 188 

positive definite Jacobian matrix associated to the unknown head update.  189 

 190 

A convergence criterion on the energy balance on the pipes is used by stopping when 191 

( ){ }1max ( ) ,  i=1, , nk T T k
f f pii

ε+− − ≤h Q A H A H L , with ε a small value. 192 

 193 

PROPOSED MODEL FOR FLOW AND PRESSURE REGULATING DEVICES 194 

In this study, the optimization approach used in the hydraulic solver was expanded to handle 195 

control valves. Different approaches are used for the modeling of flow and pressure control 196 

valves. The headloss function of a flow control valve is adjusted by adding a penalty when 197 

the valve setting is violated. This modified headloss function is then treated like any other 198 

link in the hydraulic solver. Check valves are handled as special flow control valves with a 199 

minimum flow rate setting of zero. Pressure control valves are solved externally to the 200 

hydraulic solver by employing a Newton Projection Minimization algorithm, for which 201 

global convergence is guaranteed. The target flowrates and heads are subjected to constraints 202 

in the form of the conservation laws and the hydraulic behavior of elements in the system. 203 

  204 

Flow Regulating Devices 205 

Flow regulating valves include flow control valves that prevent the flow rate through the 206 

valve exceeding the target value, and non-return or check valves that allow flow to occur in 207 

only one direction.  Flow control valves are modeled as part of existing links in the model, 208 
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since this results in a simpler model and avoids numerical problems in valves with very small 209 

head losses.    210 

 211 

In the proposed approach, the problem is not solved with hard inequality constraints (like in 212 

Deuerlein et al., 2009) but by adding penalties to the Content function. This exterior penalty 213 

method facilitates the satisfaction of constraints while being robust and simple to implement. 214 

The hydraulic solver used is based on an optimization approach, and this facilitates the 215 

simultaneous handling of system links and flow control valves. The modified Content 216 

optimization problem (2) now becomes:  217 

  218 

Where JFVC is the index set of pipes with a flow control valve; the rj are positive resistance 219 

coefficients; and the last term penalizes violations of flow control valve settings.  In general 220 

the penalty function method requires that  is minimized for a sequence of rk until a 221 

suitable solution is found. However, for this application it was found good results are 222 

obtained with a large identical scalar rmax value. The corresponding headloss penalty is 223 

obtained as:  224 

 ( )
2

2

max max 0( , ) max 0, max 0,
set

j jFCV set
j j j j

Q Q
h Q r r Q Q h

Q
 −

= − =   ∆ 
 (44) 225 

With h0 the headloss penalty for a flow rate violation of ∆Q; Qj is the flowrate in the pipe j; 226 

set
jQ  is the setting value; and hFCV, the headloss penalty function of Q, is the gradient of the 227 

additional term to the Content function. 228 

 229 
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The penalized headloss function for a flow control valve is a smooth quadratic function 230 

whose general form is presented in Figure 1Figure 1.  231 

 232 

Figure 1. Headloss modeling of a flow control valve by external penalty. 233 

Check valves can be modeled by considering them as a special type of flow control valve 234 

with the constraint that 0kQ ≥ . The penalty function for check valve is described by: 235 

 ( )
2

2
max max 0( , ) max 0, max 0,CV k

k k k
Qh Q r r Q h
Q

 −
= − − = −  ∆ 

 (55) 236 

The corresponding curve is described in Figure 2Figure 2. 237 
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 238 

Figure 2. Headloss modeling of a check valve by external penalty. 239 

The generalized Content minimization problem for handling FCVs and CVs is then:  240 

  

(66) 241 

 242 

Pressure Regulating Devices (PRDs) 243 

Formulation 244 

A pressure-reducing valve (PRV) aims to maintain a certain maximum pressure on the 245 

downstream side of the valve. PRVs are often used at the supply points of pressure zones to 246 

ensure that pipes are not overloaded and leakage is minimized. On the other hand, a pressure-247 

sustaining valve (PSV) is used to maintain a minimum pressure on the upstream side of the 248 

valve.   249 
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 250 

Piller and Van Zyl (2009) used dummy pressure sustaining valves as a modeling trick to 251 

correct hydraulic predictions for network section supplied via a high-lying node experiencing 252 

negative pressure.  This may occur if the normal supply pipe to the network section has 253 

failed. In practice, air will enter the system at the elevated node (e.g. through air valves, leaks 254 

or open taps), and thus the supply to the network section will likely be interrupted. 255 

 256 

Just like flow control valves, pressure regulating devices (PRDs) are modeled as part of 257 

existing links with a given target pressure on the downstream (iD) or upstream (iU) PRD sides. 258 

Thus for a PRV: 259 

 
D D

set
i iH H≤   260 

and for a PSV:  261 

 
U U

set
i iH H≥   262 

If S is the selection matrix of the nt nodes with pressure setting targets, the complete set of 263 

constraints can be written in matrix form as:  264 

 set≤SH H   265 

When in use, PRVs and PSVs create local headlosses to get the network pressures as close as 266 

possible to the head set point vector Hset (target pressure + ground level). These local 267 

headlosses are added to the total headlosses h(Q) for links with such devices:  268 

 ( , ) ( )PRD =h Q r B Q r  with ( ) T= QB Q CS , 2 4

8 ,  1, ,i
i

i

Kr i nt
g Dπ

= = L   (77) 269 
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Where ri is the secondary resistance factor of the pipe with Ki the dimensionless 270 

corresponding secondary headloss coefficient, Di the diameter of the pipe i; C is the diagonal 271 

matrix of element ( )2max 0,ii iC Q=  and SQ is the matrix of size nt x np for identifying the 272 

pipes with PRVs. Control valves only act in one direction - depending on how they are 273 

defined, these valves will either stop flow reversal, or, if negative flow is allowed, behave as 274 

pipes with known secondary headloss coefficients. 275 

 276 

Pressure regulating devices are handled with a function that penalizes deviations from the 277 

target settings, as described by the first term in this function:  278 

 
( ) ( ) ( ) ( )1 1

0 02 2

max

min ( ) ( ) ( )

subject to: 

T Tset set

nt nt

c m

r

+ += − − + − −

≤ ≤
r

r SH r H I SH r H r r I r r

0 r 1
 (8) 279 

The second term in the equation is a Tikhonov regularization term used to ensure that 280 

numerical problems are avoided in converging to a unique solution. The value of rmax is the 281 

same as that used for flow control valves: rmax = h0/∆Q2 in Figs. 1 and 2.  I+ is the indicator 282 

matrix to implement the pressure control valve behavior for positive flowrates only, r0 is the 283 

value of r from the previous iteration (or an initial estimate), and m is the Tikhonov factor 284 

used to control the convexity of the function. The Tikhonov regularization term is only 285 

included when the function has insufficient convexity, and in our experience it is mostly 286 

equal to zero.   287 

 288 

The function c is not differentiable at ri such as Qi(ri) = 0. However, since control valves are 289 

active in a very small positive range of Qi, and is either open or closed outside this range, it 290 

wasn’t necessary to modify the I+ term. 291 

 292 
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According to the Weierstrass theorem, there exists a solution for the problem by continuity of 293 

c on a non-empty compact (closed and bounded) constraint set.  Because of a suitable m 294 

coefficient, the strict convexity of c guarantees the uniqueness of the solution. 295 

 296 

For different pressure settings of a single PRV, Figure 3Figure 3 illustrates general form, in 297 

relation to the K  (dimensionless) coefficients, of the sum of squares of the residuals that are 298 

obtained: 299 

 300 

Figure 33.  General form of criterion c(Κ) to be minimized with m taken at zero. 301 

For the four curves shown, the objective function c has a horizontal asymptote and a finite 302 

limit when K tends to infinity.  There is a head setting Hset, below which the objective c does 303 

not have a minimum, in Figure 3Figure 3 when Hset ≤ 30 m. In such cases, the solution of (8) 304 

is Kmax if m = 0 and correspondingly the valve status is ‘closed’. For intermediary head 305 

settings between 30 and 45 m, a minimum global solution exists in the first (positive) 306 

quadrant, and the valve will be active if the strict inequality holds. For head setting values 307 
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greater than or equal to 45 m, the valve status is ‘open’ and the unconstrained minimum 308 

occurs in the second (negative) quadrant. The solution of (8) for an open valve is K = 0. Note 309 

that the four curves are smooth, they each have no more than one minimum in the feasible 310 

set. From Figure 3Figure 3, it is clear that the criterion described by Eq. (8) without a 311 

regularization term (i.e., m taken at zero) may be concave and its curve may possess inflexion 312 

points. 313 

 314 

Optimality Criteria to determine the correct status of PRD valves 315 

With the convexity and the differentiability of the least-squares criterion c, it is possible to 316 

define necessary and sufficient optimality conditions that are the associated Karush, Kuhn 317 

and Tucker (KKT) equations (a generalization of Lagrange condition for inequality 318 

constraints).  These optimality conditions are useful to determine the correct status of the 319 

valves (rather than the valve settings). Once correct statuses of the PRD valves are 320 

determined, a second-stage least-squares problem Eq. (8) should be formulated with only the 321 

deviations from the target settings for PRDs that are active to determine the exact local head 322 

losses created by the control valves in order to meet the pressure targets. 323 

 324 

To solve the KKT equations, the gradient of c has to be determined. Using the implicit 325 

function theorem, we can show that y = H(r) is a continuous differentiable function with 326 

regards to the r variables. This gives an expression for the gradient of c: 327 

 ( ) ( )0( ) ( )T setc m∇ = − + −r J SH r H r r  (9) 328 

Where 329 

 
   J = S∂r H = S AD−1AT( )−1

AD−1B  330 
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is the Jacobian matrix of the H function at PRD target nodes with respect to the r 331 

coefficients, B is the same as in Eq. (7) and D is the derivative of h with respect to the flow 332 

rate Q. The total headloss function h(Q,r) includes friction losses, FCVs, CVs and PRDs. 333 

The calculation of the gradient of c is immediate, as the matrix to be inverted is very sparse 334 

and its Cholesky decomposition is known from the current hydraulic solution of system (Eq. 335 

1) with the previous values of r. 336 

Since c is continuously differentiable, and the constraints are linear, the first order KKT 337 

optimality conditions are met (e.g., see Bazaraa, 1993). Therefore there exist two positive 338 

multiplier vectors M1 and M2 ≥ 0nt  such that:  339 

 1 2ˆ( )c∇ = −r M M  (10) 340 

This consists of the Dual Feasibility conditions while 341 

 
   M 1( )T

r̂ = 0
 
and

    M 2( )T
r̂ − rmax1nt( ) = 0 (11) 342 

are the Complementary Slackness conditions with  being the optimal solution. The dual 343 

feasibility condition states that the gradient is no longer sign-constrained. 344 

 345 

These two conditions are used to check whether the KKT conditions have been met, i.e. 346 

whether the correct solution for valve status has been found.  347 

 348 

If ri = 0 (the ith pressure control valve status is open), then by (11) it is necessary that 2 0iM =  349 

and Eq. (10) indicates that the ith component of the gradient must be positive or zero. In 350 

identical manner, if ri = rmax (the ith pressure control valve status is closed), then 1 0iM =  and 351 

the corresponding gradient component must be negative or zero. Finally, if 0 < ri < rmax (the ith 352 

  ̂r
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pressure control valve is active), then necessarily 1 2 0i iM M= =   and the ith gradient 353 

component should be zero. 354 

 355 

Projected Levenberg-Marquardt Solution Algorithm 356 

The solution method used is a slight modification of the Levenberg-Marquardt (LM) 357 

algorithm that accounts for all the constraints. 358 

 359 

At the start of the solution algorithm, initial control valve statuses are obtained from the 360 

previous solution or initial settings. The system hydraulics is then solved, and the control 361 

valve r resistances estimated with the iterative formula: 362 

 
   
r i+1 = r i − Pi Ji

TJi + mI nt + eidiag Ji
TJi( )





−1
∇ci  (12) 363 

Where ei is the LM damping factor, Pi is the projection matrix for bounded primary 364 

constraints in (8) (i.e. valves that have fixed ‘closed’ or ‘open’ statuses). The value of ei is 365 

increased if the primal feasibility conditions (PF) are not complied with, if Ji
TJi is an ill-366 

conditioned matrix or if there is no descent. In each step i, the hydraulic system is solved to 367 

determine Q(ri) and H(ri). The operation of the pressure regulating devices is modeled by 368 

adjusting the local head loss coefficients to satisfy the optimality of a least squares problem.  369 

 370 

The algorithm (Eq. (12)), which is a projected method on the box constraints of Eq. (8), will 371 

not change valves with status ‘open’ or ‘closed’ during iterations. A valve that is initially 372 

‘active’ may becomes ‘open’ if  Ki ≤ 1E-3 and ‘closed’ if ri ≥ rmax – 1E-3*rmax. 373 

The KKT conditions (Eqs. (10) and (11)) are checked after the iterative scheme Eq. (12) has 374 

converged. If all the Lagrange multipliers are non-negative, the KKT conditions are satisfied 375 
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and the first-step optimization of (8) can be terminated. If the KKT optimality conditions are 376 

not met, the pressure control valve with the most negative KKT multiplier is released, i.e. its 377 

status is changed from ‘non-active’ (either ‘open’ or ’closed’) to ‘active’. 378 

 379 

Once the statuses of the PRD valves have been determined, a second-stage least-squares 380 

problem (Eq. (8)) is solved with the same constraints, but with deviations from the target 381 

settings only for ‘active’ PRDs in the objective function: this is done to determine the exact 382 

local head losses created by active control valves in order to meet the pressure targets.  This 383 

second-stage of the solution has to be done to remove any biases that fully open or closed 384 

valves have introduced in the solution. 385 

 386 

VALIDATION TESTS 387 

The proposed method was applied to a number of example networks: 388 

- A simple network with a pressure-reducing valve on a pipeline between two tanks. This 389 

example was provided to illustrate the good convergence of the method when there is no 390 

interaction between valves. 391 

- A simple network consisting of a flow control valve and a pressure-reducing valve in series 392 

on a pipeline between two tanks. This network posed a problem for early versions of Epanet. 393 

- A simple network consisting of pressure-sustaining and pressure-reducing valves in series. 394 

This network poses a problem for the current version of Epanet.   395 

- A simple network consisting of two valves in parallel that strongly interacts with each other.  396 

 397 

The simulations results are discussed with an emphasis on the convergence characteristics of 398 

the method.  399 

 400 
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A PRV between two tanks.  401 

This example network is shown in Figure 4Figure 4 and was originally proposed by Simpson 402 

(1999). 403 

 404 

Figure 44. Network 1 with 1 PRV between two tanks. 405 

The ground levels of nodes 1 and 2 are zero. Three target heads on node 2 were tested: Hset = 406 

a) 60 m, b) 40 m and c) 20 m. They correspond to the following three situations: a) valve 407 

open and impossible to achieve the valve target setting because it is unrealistic for the 408 

hydraulic grade line, b) device active (an equivalent local head loss is created with coefficient 409 

Κ∗ = 34.5), c) valve closed, target too low to achieve due to presence of tank R2. The three 410 

situations are presented in Figure 5Figure 5. In all cases, the algorithm converges in no more 411 

than 6 iterations.  412 

Situation a): the initial solution is Κ0 = 0. Next, Κ1 = -46 does not satisfy the non-negativity 413 

constraint, therefore the damping parameter e1 in Eq. (12) is increased; the step size is 414 

reduced and, for k = 4, Κ4 is close to zero and the algorithm stops; gradient in Eq. (9) is 415 

positive and has a value of (0)c∇  = 2,547,090; the Karush Kuhn and Tucker equations (10) 416 

and (11) are satisfied. 417 
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Situation b): As it is shown in Figure 5Figure 5, the algorithm is stabilized rapidly near the 418 

true value; here, the direction of Levenberg-Marquardt is equivalent to the direction of the 419 

Newton-Raphson method; ei tends rapidly towards zero; the gradient is cancelled out.  420 

Situation c): the PRV is gradually closed to achieve the equivalent head loss of coefficient 421 

Κ* = 483,738,332 in 5 iterations; the gradient is cancelled out at this point, showing that it is 422 

asymptotic on the x-axis at c(Κ). 423 

 424 

Figure 55. Algorithm performance at each iteration. 425 

A FCV and a PRV in series. 426 

The second example network shown in Figure 6Figure 6 was also proposed by Simpson 427 

(1999). This network consists of a flow control valve (FCV) and a pressure-reducing valve in 428 

series between two tanks. The tank T1 fills the tank T2 by gravity only. For non-valve 429 

configurations (or equivalently the two control valves both inactive and having no minor 430 

head losses), the flow rate and the piezometric head at the middle of the path would be 431 

approximately 614 l/s and 45 m respectively. The FCV is made inactive (the flow set point is 432 
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2,000 L/s) with a setting far in excess of the gravity flow rate. The PRV is operating and 433 

yields a local headloss of 20 m with a dimensionless coefficient K* = 131.7. The flow rate is 434 

339 L/s. For the three pipes the diameter is 500 mm and the Hazen-Williams coefficient is 435 

100. All the elevations at unknown head nodes are set to zero. 436 

 437 

Figure 66. Network 2 with a FCV and a PRV in series between two tanks. 438 

The main reason why previous versions of Epanet (e.g., version 2.00.10) may fail to converge 439 

or converge to an incorrect solution, for this simple configuration with control valves is that 440 

the algorithm may fail to determine the correct statuses of the valves. In the proposed 441 

method, a continuous approach is used for both FCVs and PRDs. A flow control valve is 442 

modeled as a local headloss that penalizes all violation of the flow set point. With this 443 

approach a FCV and a PRV in series will pose no problem. The Table 1Table 1 summarizes 444 

the iterations of the Levenberg-Marquardt method for estimating the pressure valve settings. 445 

With CV-Count is the number of pressure control valve components that has converged; RSS 446 

is the residual sum of squares i.e., c(Ki) with m=0 ; GRAD/SD is the norm of the gradient 447 

along the search direction; LM factor ei is the Levenberg-Marquardt damping factor; and the 448 

last column give the dimensionless friction factor that creates the local headloss 0.5 K* V2/g. 449 

 450 
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 451 

 452 

Table 11. Convergence for the network with one FCV and one PRV in series. 453 

Iteration # CV_Count RSS GRAD/SD LM factor ei K PRV 

0 0 50.00000      1881507.19753004 0.00010 0.00000 

1 0 8.58045      269899.11571403 0.00004 40.19445 

2 0 0.89534 40111.55927071 0.00002 88.28532 

3 0 0.02955 4884.57232911 0.00000 122.05247 

4 0 0.00006 206.63313520 0.00000 131.20525 

5 0 0.00000 0.48852255 0.00000 131.67368 

6 0 0.00000 0.00000380 0.00000 131.67480 

7 1 0.00000 0.00000007 0.00000 131.67480 

 454 

The row iteration 0 corresponds to an initialization with K = 0, with the PRV assumed fully 455 

open. The head at node 2 is H2(K=0) = 45 m, which is 10 m above the set point. The RSS is 456 

50 m2. The reductions of the RSS and of the Gradient are quadratic. The damping factor ei 457 

decreases by 60 % at each iteration. Since there is no open or closed pressure control valve, 458 

there is no need to solve the second-stage problem. Moreover, modeling flow control valves 459 

with Eq. (4), penalizing the head loss if the flow setting is violated, requires no special 460 

treatment for an open FVC. This is a clear advantage. 461 

 462 

A PSV and a PRV in series 463 

The third example network consists of two separate PSV and PRV in series as shown in 464 

Figure 7Figure 7. Water flows from a reservoir to a Tank for a distance of 2 km. Halfway 465 

between the reservoir and tank are two separate devices in series configured to model a 466 

combination of pressure sustaining and pressure reducing (PSV/PRV) valves. The PSV/PRV 467 
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valve simultaneously controls the pressure on both sides, maintaining a certain minimum 468 

pressure on the upstream side and another (lower) maximum pressure on the downstream 469 

side. Both settings cannot be satisfied simultaneously and are active at different times of the 470 

day. The initial level in the tank is zero. All elevations at junction nodes are zero. This simple 471 

layout poses a problem in the latest version of Epanet (2.00.12). There is no convergence and 472 

several warning are generated, such as “valve PSV causes ill conditioning” and “PSV open 473 

but cannot deliver pressure at 0:00:00”. 474 

 475 

Figure 77.  Network 3 with a PSV and a PRV in series between a reservoir and a tank. 476 

At the end of the simulation run, the solution should be as shown in the Figure 7Figure 7. The 477 

PSV is active and yields a local headloss of 60 m with a dimensionless coefficient K* = 478 

486.5. The PRV is open and the pressure at the downstream end of the valve is 10 m below 479 

its setting. The flow rate is 48.9 L/s.  480 

Table 2Table 2 summarizes the iterations of the method (Eq. 12). It converges in 6 iterations 481 

to a local minimum solution that is not the correct solution - the two valves both have head 482 

losses of 25 m. The flow rate is 55.12 L/s, which is too high. Any additional simultaneous 483 

valve closure will raise locally the least-squares criterion c. The pressure upstream the PSV is 484 
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75 m (5 m below the setting). The pressure downstream the PRV is 25 m. The PRV is active 485 

with a pressure constraint that is satisfied. This situation is not physically correct but can be 486 

explained with the fact that the 2 valves interact strongly with each other. 487 

Table 22. Initial convergence for the network with one PSV and one PRV in series. 488 

Iteration 

# 

CV_Count RSS GRAD/SD LM 

factor ei 

K PSV K PRV 

0 0 649.75005      227019.02185376 0.00010 0.00000 0.00000 

1 0 100.36013 33791.61183555 0.00004 75.35540 75.35540 

2 0 28.46590 4479.20812686 0.00002 136.42557 136.42557 

3 0 25.01620 265.86395946 0.00000 157.61510 157.61510 

4 0 25.00000 1.40547468 0.00000 159.28421 159.28421 

5 0 25.00000 0.00004447 0.00000 159.29323 159.29323 

6 2 25.00000 0.00000079 0.00000 159.29323 159.29323 

 489 

To move the solution away from the local minimum solution, the recommended method is to 490 

penalize the least-squares criterion with a Tikhonov term (Eqs. 8 and 12, m > 0 and r0 = 0 for 491 

the PRV). In addition the following rule is applied: after convergence, if a situation with 492 

active or closed valve, but satisfied constraint occurs the valve with the highest residual is 493 

opened. This applies with combined PSV/PRV valves but also to other valve configurations 494 

with strong interaction. 495 

 496 

The 6 first iterations are then followed by 6 further iterations with the PRV open as shown in 497 

Table 3Table 3. The algorithm converges to the correct valve status solution (active PSV and 498 

open PRV).  499 

 500 

In addition, the solution at iteration 12 is equivalent to the solution at iteration 6: not only the 501 

criterion cost RSS = 25 m2 but also the hydraulic grade line with 75 m upstream the PSV, and 502 
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25 m downstream the PRV. The head loss of the PSV is 50 m with a dimensionless 503 

coefficient K = 318.6, which is equal to the sum of the head losses in iteration 6. However, 504 

the algorithm has to continue to the second stage to determine the correct setting of the PSV. 505 

The RSS contribution for the PRV is removed from the total RSS as the valve is open. These 506 

iterations are summarized in Table 4Table 4. 507 

Table 33. Valve status solution for the network with one PSV and one PRV in series. 508 

Iteration 

# 

CV_Count RSS GRAD/SD LM 

factor ei 

K PSV K PRV 

7 0  90.32851 30282.48742520 0.00010 159.29323 0.00000 

8 1  27.76165 3935.48041489 0.00004 277.43718 0.00000 

9 1  25.01060 214.55220639 0.00002 315.86958 0.00000 

10 1  25.00000   0.92318209 0.00000 318.57460 0.00000 

11 1  25.00000   0.00002352 0.00000 318.58644 0.00000 

12 2  25.00000   0.00002352 0.00000 318.58644 0.00000 

 509 

The exact setting of the PSV (K* = 486.5) is obtained after 6 additional iterations. 510 

Table 44. Second-stage solving for the network with one PSV and one PRV in series. 511 

Iteration 

# 

CV_Count RESID_SS GRAD/SD LM 

factor ei 

K PSV 

 13  1  12.50000  3652.53528151 0.00010  318.58644 

 14  1   0.37937   434.37774607 0.00004  451.11238 

 15  1   0.00068    16.82032793 0.00002  484.93499 

 16  1   0.00000     0.03264390 0.00000  486.49091 

 17  1   0.00000     0.00000033 0.00000  486.49396 

 18  2   0.00000     0.00000033 0.00000  486.49396 

 512 

Figure 8Figure 8 shows the nodal heads for the 9 first hours. The tank is cylindrical with 20 513 

m for the maximum level and 10 m for the diameter. J1 is a junction node just upstream the 514 

PSV and J3 another one just downstream the PRV. The tank level was updated every hour 515 
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using the forward Euler method. It may be seen than for the first 4 hours the PSV is operating 516 

and the PRV is open. Then, starting from time = 5 h the PSV is open and the PRV is active. 517 

The 9-hour simulation requires a total of 112 iterations. 518 

 519 

Figure 88.  Head time series for selected nodes in network 3. 520 

Two PRVs in parallel. 521 

The fourth example network consists of two PRVs in parallel as shown in Figure 9Figure 9. 522 

The system uses a tank or a pumping station to supply consumers at node JCons. When the 523 

pumps are operating the tank is filling through a top inlet. When the pumps are switched off, 524 

the tank supplies water to the system. The latter situation is represented in Figure 9Figure 9. 525 

Water flows from the tank to node J1. Then, the flow separates in two different paths with a 526 

PRV on each. The PRVs are situated 1 km upstream the node JCons. The pressure settings 527 

are 50 m for both PRVs. All node elevations are 200 m. The level in the Tank is 3m above its 528 

bottom level of 292 m. The lengths of all three pipes are 1,000 m and their Hazen-Williams 529 

coefficients are 95. The demand at JCons is 8.5 L/s.  530 
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 531 

Figure 99.  Network 4 with two PRVs in parallel. 532 

The Table 5Table 5 summarizes the iterations of the Levenberg-Marquardt method. It 533 

converges in 12 iterations to a global optimum (RSS = 0.). It may be seen that at iterations 2 534 

and 3 the damping factor ei has been multiplied by ten. This was done to correct the search 535 

direction in order to have an effective descent for the RSS criterion. The two valves are 536 

operating and produce a local head loss of 44.71 m for PRV1, and 44.47 m for PRV2. The 537 

difference 0.24 m corresponds to the linear head loss of the 1 km long pipe J1/JPumping. A 538 

flow rate of 4.25 L/s flows through this pipe. The dimensionless coefficients are relatively 539 

large: K*PRV1 = 15,164 and K*PRV2 = 15,083. These two valves are strongly linked, which 540 

plays a role for the weaker, linear convergence rate.  541 

 542 

 543 

 544 

 545 
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Table 55. Convergence for the network with two PRVs in parallel. 546 

Iteration 

# 

CV_Count RSS GRAD/SD LM 

factor ei 

K PRV1 K PRV2 

  0  0 1988.96816 1185.48303586  0.00010       0.00000       0.00000 

  1  0    0.01086    0.26839385  0.00004   13517.19639   17036.82993 

  2  0    0.17871    0.26839385  0.00040   13517.19639   17036.82993 

  3  0    0.04189    0.26839385  0.00400   13517.19639   17036.82993 

  4  0    0.00772    0.32911957  0.00160   13763.48414   16695.22089 

  5  0    0.00463    0.89014765  0.00064   14189.38031   16134.05340 

↓       

12  0.00000 0.00000000 0.00000 15164.07956 15083.08428 

 547 

The residual Jacobian matrix J at iteration 10 is as follows: 548 

 
163.1268 163.0637
163.0637 163.2535

 
=  

 
J   549 

It may be seen than the 2 PRVs influence each other to the same extent and when one of 550 

PRVs experiences a small change, a similar change is expected in the other valve. 551 

 552 

CONCLUSION 553 

A new method is presented for handling control valves (including check valves) in hydraulic 554 

network modeling. In this method, the behavior of check and control valves are described by 555 

continuous functions rather than the mixed discrete-continuous formulation commonly used. 556 

 557 

In this method, flow control valves are handled by imposing a penalty on the valve’s headloss 558 

function when the flow setting is violated.  Check valves are modeled as special flow control 559 

valves with a minimum flow rate setting of zero. The modified headloss functions for flow 560 

control valves are incorporated into the hydraulic network equations and the resulting 561 
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governing equations are solved using a standard solver algorithm. In this work, a Lagrange-562 

Newton-type algorithm by Piller (1995) was used. 563 

 564 

Pressure control valves (such as pressure reducing and pressure sustaining valves) are 565 

handled externally to the hydraulic solver through an optimization routine. The goal of the 566 

optimization is to find the secondary loss coefficients of the pressure control valves that will 567 

minimize the differences between the nodal and the target pressures.  568 

 569 

The proposed method has several benefits compared to the current discrete-continuous 570 

formulation. The derivatives of the heads in relation to the input parameters can be written 571 

explicitly as functions of the flow rates, and the gradients of the functions with respect to the 572 

optimization variables can be obtained analytically. This, in conjunction with the fact that 573 

only linear constraints are required in the optimization process, provides good conditions for 574 

fast convergence of the method. The robustness of the optimization is ensured by using a 575 

Levenberg-Marquardt projection minimization algorithm, for which global convergence is 576 

guaranteed. 577 

 578 

It is shown with several case studies than the method finds interesting solutions to control 579 

valve problems without resorting to ‘modeling tricks’. It is proved to be efficient on 580 

problematic case studies. 581 

 582 

While only control valves were considered in this paper, variable speed pumps and handling 583 

of high-lying nodes with negative pressures (Piller and Van Zyl 2009) can also be included in 584 

the proposed algorithm.  585 

 586 
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