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Abstract

Diffusion magnetic resonance imaging (dMRI) is an imaging modality that
probes the diffusion characteristics of a sample via the application of mag-
netic field gradient pulses. The dMRI signal from a heterogeneous sample in-
cludes the contribution of the water proton magnetization from all spatial po-
sitions in a voxel. If the voxel can be spatially divided into different Gaussian
diffusion compartments with inter-compartment exchange governed by linear
kinetics, then the dMRI signal can be approximated using the macroscopic
Karger model, which is a system of coupled ordinary differential equations
(ODEs), under the assumption that the duration of the diffusion-encoding
gradient pulses is short compared to the diffusion time (the narrow pulse as-
sumption). Recently, a new macroscopic model of the dMRI signal, without
the narrow pulse restriction, was derived from the Bloch-Torrey partial dif-
ferential equation (PDE) using periodic homogenization techniques. When
restricted to narrow pulses, this new homogenized model has the same form
as the Karger model.

We conduct a numerical study of the new homogenized model for voxels that
are made up of periodic copies of a representative volume that contains spher-
ical and cylindrical cells of various sizes and orientations and show that the
signal predicted by the new model approaches the reference signal obtained
by solving the full Bloch-Torrey PDE in O(ε2), where ε is the ratio between
the size of the representative volume and a measure of the diffusion length.
When the narrow gradient pulse assumption is not satisfied, the new homog-
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enized model offers a much better approximation of the full PDE signal than
the Karger model. Finally, preliminary results of applying the new model to
a voxel that is not made up of periodic copies of a representative volume are
shown and discussed.

Keywords: Diffusion MRI; signal model; homogenization; effective medium;
macroscopic model; Karger model.

1. Introduction

The image contrast in water proton diffusion magnetic resonance imaging
(dMRI) comes from the differing water diffusion characteristics in the im-
aged tissue at different spatial positions [1]. A major application has been
in acute cerebral ischemia (stroke) [2, 3]. DMRI has been used to detect
and differentiate a wide range of physiological and pathological conditions,
including, in the brain, tumors [4, 5, 6], myelination abnormalities (for a
review, see [7]), as well as in the study of brain connectivity (for a review,
see [8]) and in functional imaging [9].

The signal measured by the MRI scanner is a mean-value measurement in a
physical volume, called a voxel, whose size is much larger than the scale of
the microscopic variations of the cellular structure. The resolution of dMRI
is on the order of 1 mm3, meaning the dMRI signal averages the diffusion
characteristics of a tissue volume (voxel) of 1 mm3. This is very large com-
pared to cell features, which vary from sub-µm (diameter of neurites) to tens
of µm (diameter of neuronal bodies and glial cells) in the brain. In other
words, dMRI is used to show the averaged characteristics of the microscopic
structure on a macroscopic scale. Another very important spatial scale to
consider is the diffusion displacement of water molecules during the measured
diffusion time. At physically realistic dMRI diffusion times of 10-100 ms, the
average diffusion displacement is, assuming a mean diffusivity of 10−3mm2/s,
between 8-25 µm. Thus, from the point of view of diffusing water molecules,
their diffusion displacement is large with respect to some cell features (di-
ameter of neurites) but not with respect to others (diameter of neuronal
bodies and glial cells). In addition, due to the presence of cell membranes,
which hinder the movement of water, the diffusion displacements of water
molecules may be very strongly dependent on their positions (whether in the
neurites, in the neuronal bodies or glial cells, or in the extra-cellular space)
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within the voxel. An additional difficulty in understanding the dMRI signal
is that even though the cell membranes hinder the movement of water across
them, there may still be significant water exchange across the membranes
that contributes to the dMRI signal. In fact, assigning a diffusional perme-
ability coefficient to the cell membranes is challenging (see [10] and references
therein).

There have been many proposed macroscopic models of the dMRI signal in
tissue, ranging from simple to complicated, each valid under a certain set of
assumptions.

A simple model is the Gaussian model, where the entire voxel is described
as a macroscopically Gaussian diffusion environment, and the dMRI signal
is described by a decaying exponential, associated to an effective diffusion
tensor. If the voxel is assumed to be made up of periodic copies of a repre-
sentative volume, the effective diffusion tensor for general cell shapes can be
obtained by solving a set of Laplace PDEs [11]. For simple geometries such
as cubes and spheres, analytical formulae for the effective diffusion tensor
can be found in [12, 13, 14, 15]. A recent review of theoretical models for the
dMRI signal can be found in [16], including references to many additional
works on Gaussian models that we do not mention here.

Unfortunately, there is ample experimental evidence that the diffusion in
brain tissue at diffusion times relevant to dMRI is not macroscopically Gaus-
sian: the dMRI signal has been fitted as multiple compartmental Gaus-
sian [17, 18, 19, 20], or by including a Kurtosis term to quantify the non-
Gaussianness [21, 22], or by fitting with fractional order diffusion [23].

To generalize beyond macroscopically Gaussian models, we mention the sta-
tistical model of [24], where the spin packets are divided into groups and
each group is assumed to undergo macroscopic Gaussian diffusion with a dif-
ferent effective diffusion tensor. These groups are not explicitly defined but
are assumed to be distributed according to some peaked distribution func-
tion. There is also the work of [25] where the expansion of the dMRI signal
around a perturbation of the mean diffusivity is considered. In [26] the time
dependence of the average diffusion distance in the presence of compact cells
and permeable membranes is considered. These models have the advantages
of being rather general descriptions of the dMRI signal, however, they do
not provide explicit links between the dMRI signal and biological quantities
such as the volume fraction of neurites, neuronal bodies and glial cells, and
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the cell membrane permeability. At least, making more explicit connections
between these models and the above biological quantities would require fur-
ther analysis. We also mention a recent work [27] that studies diffusion in
both ordered as well as different types of disordered systems that has the
membrane permeability and surface to volume as parameters.

Next, there are models that explicitly define tissue compartments. For exam-
ple, the models of [28, 29, 30] separate the cylindrical-shaped neurites from
the space outside them to make two diffusion compartments and assume
there is no water exchange between them. When there is no water exchange
between the diffusion compartments, the total dMRI signal is just the sum
of the signals from each of the compartments. We note that in these no-
exchange models, one can in fact easily allow non-Gaussian diffusion in each
compartment, and this flexibility may potentially result in the applicability
of the models at shorter diffusion times.

Since it is not clear whether the non-Gaussian nature of the dMRI sig-
nal is due to the non-Gaussian nature of the diffusion in the different tis-
sue compartments, or the water exchange between the compartments, or
both, it is also useful to examine signal models that take into account inter-
compartmental exchange. A multiple compartment macroscopic model for
dMRI that allows exchange between the compartments is the Karger model
[31], which was originally developed for micro-porous crystallites. The Karger
model is obtained by supposing multiple Gaussian diffusion compartments,
each of which covers R

d, where d is the space dimension, and where the
spin exchange between the compartments is described by simple constant
rate terms that can be added to the diffusion terms. These assumptions en-
able the formulation of a system of coupled ODEs that describes the time
evolution of the signals in the different compartments. The dMRI signal of
the Karger model is the sum of all the components of the unknowns of the
ODE system at the diffusion time and the ODE system, which has constant
coefficients, is easy to solve.

The Karger model was obtained on the basis of phenomenological modeling
of the experimentally obtained signal curves and is valid under the narrow

pulse assumption: meaning the duration of the gradient pulses should be
short compared to the diffusion time.

Recently, a new macroscopic model for the dMRI signal was formulated in
[32] using periodic homogenization techniques on the Bloch-Torrey PDE in
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heterogeneous domains. Periodic homogenization supposes that the macro-
scopic domain Ω, of the spatial scale L, is made up of periodic copies of a
representative volume C (for simplicity, a cube), of side length l. Starting
from a PDE defined on Ω, using homogenization techniques, a related, ho-

mogenized, PDE can be formulated whose solution is close to the solution
of the original PDE. In [32] the resulting homogenized PDE was solved to
obtain a coupled ODE system that describes the time evolution of the mag-
netization in each tissue compartment. The compartments are defined from
the outset as the biological cells and the extra-cellular space. There is no
ambiguity as to the meaning of the different compartments. Like the Karger
model, the dMRI signal is obtained after solving a system of ODEs, but the
ODEs have time-dependent coefficients and not constant coefficients like the
Karger model. The main advantage of this new macroscopic model is that
it is not subject to the narrow pulse restriction. The gradient pulses can be
long in duration and can have an arbitrary shape. In the following, we will
call this new macroscopic model the Finite Pulse Karger (FPK) model for
the dMRI signal. In the narrow pulse limit, the FPK model has the same
form as the Karger model.

Because of the focus of [32] is on the mathematical derivation of the FPK
model, only very simple numerical simulations (in two dimensions, with circu-
lar cells) were performed. In the current paper, we conduct a more thorough
numerical study of the FPK model. First, we will assume that the voxel is
made up of periodic copies of a representative volume C. This is the as-
sumption underlying periodic homogenization. We construct representative
volumes C containing spheres and long cylinders of various sizes and ori-
entations so as to have a variety of diffusion characteristics in the different
compartments. As a reference solution, we solve the Bloch-Torrey equation
on the heterogeneous domains. We show numerically that the FPK signal
approaches the reference signal in O(ε2), where ε is the homogenization pa-
rameter that we defined as the ratio between the size of the representative
volume and a measure of the diffusion length. We also show when the nar-
row pulse assumption is not satisfied, the FPK model offers a much better
approximation of the reference signal than the Karger model. Finally, we
show and discuss preliminary results of applying the FPK model to a voxel
that is not made up of periodic copies of a representative volume.

The main practical interest in having a valid macroscopic model for the
dMRI signal is that the parameter estimation problem of determining model
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parameters from the experimental signal would be relatively easily solvable
and it is hoped that the macroscopic model parameters can give useful in-
sights into the underlying tissue structure. For example, the macroscopic
model parameters of the FPK model are the effective diffusivities and the
volume fractions of the different diffusion compartments, as well as the inter-
compartmental exchange times. Ideally, the diffusion compartments would be
able to be identified to physical tissue compartments such as a compartment
comprised of neurites, a compartment comprised of cells of non-elongated
shapes, a compartment comprised of the extra-cellular space. In this case,
the effective diffusivities could be potentially related to geometrical proper-
ties of the compartments, such as cell shape and arrangement. Similarly, it
is hoped that the exchange times could be related to membrane permeability
and the surface to volume ratio of the compartments. In summary, once a
valid macroscopic model has been found, two steps to make use of it are 1.
estimating the macroscopic model parameters that best fit the experimental
signal, subject to noise (for example, by solving a least squares problem); 2.
interpreting the macroscopic model parameters in terms of tissue properties
(which is itself a difficult problem requiring further analysis or numerical
simulations).

Whether the FPK model is or can be generalized to a valid macroscopic model
for brain tissue dMRI is a difficult question to answer at this point. The fact
that the FPK model was derived in [32] using periodic homogenization does
not necessarily limit its use to periodic domains. A simple identification of
the macroscopic model parameters of the FPK model to that of the Karger
model can be done, and in this way we obtain a generation of the Karger
model to non-narrow pulse sequences. At the very least, if the Karger model
is not limited to periodic domains, then the FPK is not either, once the re-
interpretation or re-definition of the macroscopic model coefficients is done.
We cite the non-periodic homogenization approach in porous media [33, 34],
where the difference between the periodic and the non-periodic cases is in the
definition and interpretation of the macroscopic model coefficients. Further
study is needed to evaluate the PFK model beyond periodic domains to test
its validity in realistic geometries of brain tissue.

The more relevant issue is that even though the Karger model has already
been used in biological tissue dMRI to invert for model parameters in [35,
36, 37, 38, 10, 39, 40, 41, 42], the validity of the Karger model to biological
tissue, which is certainly not a periodic medium, would benefit from further
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investigation. In [43] it was stated that for the Karger model to be applicable,
there are three conditions:

• The diffusion is Gaussian in each compartment separately;

• The diffusion length exceeds the cell packing correlation length;

• The exchange between the compartments is slow compared to the char-
acteristic time to traverse the correlation length of the cell packing.

These statements are quite difficult to interpret and verify, for example, even
when considering a reasonable geometrical model of brain tissue such as a
voxel-sized domain containing densely packed dendrite trees and cylindrical
axons with some orientation distribution and spherical cells modeling soma
and glia cells. Hence we consider numerical simulations on voxel-sized (three
dimensional) domains that contain densely packed, randomly placed and
oriented cells of spherical and cylindrical geometries (and tree structures)
to verify the above statemetns an extremely useful future direction. We
illustrate this by showing preliminary results of applying the FPK model to a
two dimensional voxel-sized non-periodic domain in Section 5. In this paper,
we study the FPK model for periodic domains because the macroscopic model
parameters can be defined rigorously for periodic domains, and we are able
to show the convergence of the FPK model to the microscopic model in the
homogenization parameter ε in a clear way. We hope that these results can
then guide us improving and generalizing macroscopic models to brain tissue
dMRI.

2. Theory

2.1. Tissue model

We define a simplified geometrical model of brain tissue that consists of
spheres and/or long cylinders of various orientations embedded in the extra-
cellular space. The spheres will represent the neuronal bodies and the glial
cells, and the cylinders will represent the neurites. We will assume that the
water exchange between the neuronal body and the neurites attached to it
to be small enough to be negligible, because the intersection of the neuronal
body with the attached neurites has a small surface area.
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Let V be the voxel of interest. We assume that V is made up of periodic
copies of a representative volume that is, for simplicity, a cube C = [− l

2
, l

2
]3,

such that
V =

⋃

m,n,j∈{··· ,−1,0,1,··· }

C + (ml, nl, jl).

We will not be concerned with the effect of the neighboring voxels on V
because the diffusion distance in brain dMRI, around tens of µm, is much
smaller than the side lengths of the voxel (on the order of 1 mm). This
justifies the simplification that we will border V by identical copies of itself
instead of its true neighbors. Thus, from the point of view of water molecules
starting in C, the spatial domain is made up of copies of C during the
diffusion-encoding sequence. Obviously, if we want to place long cylindrical
cells in the voxel, we must construct the cylinders so that they are oriented
in such a way that when C is periodically repeated, the cylinders are not
“broken” at the faces of C.

2.2. Reference dMRI signal computed from Bloch-Torrey PDE

The reference (microscopic) model against which we will compare the FPK
and Karger macroscopic models is the multiple compartment Bloch-Torrey
partial differential equation (PDE) [44, 45]. In the following we do not in-
clude the dependence of the MRI signal on the imaging gradients and the
T2 relaxation so we can simplify the presentation. For the same reason, we
also make the intrinsic diffusion coefficient the same in all the compartments,
denoting it by D0, the permeability the same on all the membranes, denoting
it by κ, and the spin density the same in all compartments.

The representative volume C will be our computational domain. Inside C,
there will be an extra-cellular compartment Ωe. For simplicity, we assume Ωe

is connected (otherwise, it needs to be broken into connected components). In
C there also will be sphere compartments, Ωsj , j = 1, · · · , where each Ωsj is a
sphere, and cylinder compartments, Ωck , k = 1, · · · , where each Ωck is a (part
of a long) cylinder. The union of the compartments is C =

⋃

p={e,{sj},{ck}}
Ωp.

Since C is periodically repeated, obviously, so are the Ωp’s. Finally, we note
that one could also have membrane compartments, consisting of a thick layer
of space around the surfaces of the cylinders and the spheres.

For the macroscopic models to be discussed later, we can also group all cells
with similar diffusion characteristics into a single compartment to simplify
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things. For example, if we do not want to distinguish between spheres of
different radii, then we can define the union of all the spheres as one com-
partment in the macroscopic model. This redefinition makes no difference
for the microscopic PDE model since each sphere is always distinct from the
others but it is notationally convenient when we want to compare the PDE
model and the macroscopic models compartment by compartment.

The complex transverse water proton magnetization Mp(x, t|g) in each com-
partment Ωp satisfies the Bloch-Torrey PDE [44]:

∂Mp(x, t|g)

∂t
= −If(t)(γg · x) Mp(x, t|g) + ∇ · (D0∇Mp(x, t|g)), ∀ p,

(1)

where we denote the amplitude and direction of the diffusion-encoding gra-
dient by g = (g1, g2, g3) and its time profile by f(t), I is the imaginary unit,
γ = 42.576 MHz/Tesla is the gyromagnetic ratio of the water proton.

For the pulsed gradient spin echo (PGSE) sequence[46], with two rectangular
pulses of duration δ, separated by a time interval ∆ − δ, the profile f(t) is

f(t) =











1, t1 ≤ t ≤ t1 + δ,

−1, t1 + ∆ < t ≤ t1 + ∆ + δ,

0, otherwise,

(2)

where t1 is the starting time of the first gradient pulse, with t1 +∆ > TE/2,
the TE is the echo time.

We supplement the PDE in (1) with interface conditions where Ωp and Ωn

come in contact. We denote the interface between Ωp and Ωn by Γpn. One
interface condition is the continuity of flux:

D0 (∇Mp(y, t|g) · np(y)) = −D0 (∇Mn(y, t|g) · nn(y)) ,y ∈ Γpn, (3)

where np(y) and nn(y) are the outward-point normals to Ωp and Ωn at y, so
in fact np(y) = −nn(y). This ensures the conservation of the magnetization.
The second interface condition is:

D0 (∇Mp(y, t|g) · np(y)) = κ (Mp(y, t|g) − Mn(y, t|g)) ,y ∈ Γpn. (4)

This incorporates a permeability coefficient κ across Γpn and models the ease
with which water crosses the interface. The larger the κ, the easier the
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passage of water. Now we add the initial condition:

M(x, 0|g) = ρ, x ∈ Ωp, ∀ p, (5)

where we assumed the same spin density ρ in all the Ωp’s. Then, same as
[47], to mimic the effect of a diffusion domain that contains periodic copies
of C = [− l

2
, l

2
]3, the boundary conditions to impose on ∂C are:

M(x, t|g)|xk=− l
2

= M(x, t|g)|xk= l
2

eI θk(t), k = 1, 2, 3, (6)

∂M(x, t|g)

∂xk

∣

∣

∣

∣

xk=− l
2

=
∂M(x, t|g)

∂xk

∣

∣

∣

∣

xk= l
2

eI θk(t), k = 1, 2, 3, (7)

for each of the faces perpendicular to the three coordinate axes, where x =
(x1, x2, x3) and g = (g1, g2, g3), and

θk(t) = γ gk l

t
∫

0

f(s) ds.

Thus, the complete mathematical problem of the microscopic multiple com-
partment Bloch-Torrey PDE for a representative volume C consists of the
PDE (Eq. 1), the interface conditions (Eq. 3, Eq. 4), the initial condition
(Eq. 5), and the boundary conditions (Eq. 6, Eq. 7).

Now we will make the very important definition of the compartment magne-
tizations of the PDE model as the integral of the magnetization in Ωp:

M
p

PDE(b, t) :=

∫

x∈Ωp

Mp(x, t|g) dx, 0 ≤ t ≤ TE, (8)

where, following convention, the independent variable b, the b-value, is de-
fined as:

b(g) = γ2‖g‖2

∫ TE

0

du

(
∫ u

0

f(s)ds

)2

. (9)

We emphasize that the compartment magnetizations depend on t and the
compartment index p. The dMRI signal measured in experiments (without
the imaging gradients and T2 effects) corresponds to

SPDE(b) :=
∑

p

M
p

PDE(b, TE) =
∑

p

∫

x∈Ωp

Mp(x, TE|g) dx. (10)
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Because C is assumed to be periodically repeated in the voxel V , the above
integrals of the magnetization can be taken over C only. The signal is the
same as if the magnetization is taken over V (and correctly normalized).

We note that even though the total magnetization (and hence the dMRI
signal SPDE(b)) can be measured only at the echo time and combines the
contributions from all the compartments, the compartment magnetizations
M

p

PDE(b, t) defined in Eq. 8, are meaningful mathematically for all t ≤ TE
and all p. By computing the compartment magnetizations we gain insight
about the time evolution of the magnetizations in the different compartments
and how they mix.

In a dMRI experiment, the TE and sequence f(t) are usually fixed while g is
varied in amplitude and in direction to obtain the signal at different b-values.
From the acquired signal at some b-values, a quantity called the “Apparent
Diffusion Coefficient” can be computed for each voxel. This quantity corre-
ponds in our notation to

ADC0 := −
∂

∂b
log

SPDE(b)

SPDE(0)

∣

∣

∣

∣

b=0

, (11)

where we denoted the quantity by ADC0 to emphasize that the analytical
derivative of log S(b) is taken at b = 0. In the narrow pulse limit, the ADC0

gives the mean squared distance traveled by water molecules, averaged over
all starting positions.

In the following, we will set the spin density to ρ = 1
|C|

, so that SPDE(b = 0) =

1 and M
p

PDE(b, t = 0) = |Ωp|
|C|

:= vp, where |Ωp| is the volume of Ωp, |C| is the

volume of C, and vp is the volume fraction of Ωp. Then the signal SPDE(b)
will be automatically normalized and it is also the signal attenuation.

2.3. Karger model

In the formulation of the Karger model [48], one starts with a system of
PDEs for the concentration, up(x, t), where x is the macroscopic spatial
variable, of water in W Gaussian diffusion compartments: p = 1, · · · , W .
The governing equations for the diffusion within and the exchange between

11



the compartments are:

∂u1(x, t)

∂t
= ∇D

1

eff∇u1(x, t) −
u1(x, t)

ω1
+

∑

p=2,··· ,W

up(x, t)

τ 1p
,

...

∂uW (x, t)

∂t
= ∇D

W

eff∇uW (x, t) −
uW (x, t)

ωW
+

∑

p=1,··· ,W−1

up(x, t)

τWp
,

(12)

where x ∈ R
3, τpn is the exchange time between the compartment p and n,

and D
p

eff , when using the Karger model in biological tissue dMRI applica-
tions, is the effective diffusion tensor of compartment p. We note here that
the best way to define the effective diffusion tensors D

p

eff , p = 1 · · ·W , for
realistic geometries of brain tissue is in fact a very difficult problem that
requires further investigation (see a preliminary discussion in Sec 5). From
the mass conservation, if we assume that the spin density is the same in all
the compartments, then ω1, · · · , ωW , must satisfy:

1

ωn
=

1

vn

W
∑

p=1, p 6=n

vp

τnp
, n = 1, · · · , W, (13)

where vp is the volume fraction of compartment p. The system of PDEs in
(12) are subject to initial conditions:

up(x, 0) = vpδ̃(x), p = 1, · · · , W, (14)

where δ̃(x) is the Dirac delta distribution at x = 0. We used the notation δ̃ to
distinguish it from the width of the gradient pulse δ in the PGSE sequence.

In the Karger model, the compartment magnetization M
p

KAR(b, t), arising
from compartment p, under the narrow pulse approximation for the PGSE
sequence, δ ≪ ∆, has the following form:

M
p

KAR(b, t) =

∫

x∈R3

eIγδg·xup(x, t)dx. (15)

We note that the region of integration in Eq. 15 is R
3. Taking the time

derivative of M
p

KAR in Eq. 15 and using Green’s identity, the Karger model
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can be obtained:

dM
n

KAR(b, t)

dt
= −

(

δ2γ2gT D
n

effg +
1

vn

W
∑

p=1, p 6=n

vp

τnp

)

M
n

KAR(b, t)

+
W
∑

p=1, p 6=n

1

τnp
M

p

KAR(b, t), n = 1, · · · , W.

(16)

It is a system of coupled ODEs, subject to the initial conditions:

M
p

KAR(b, 0) = vp, p = 1, · · · , W. (17)

The analytical solution of (16) can be obtained if the W ×W matrix on the
right hand side of Eq. 16 has an eigen-decomposition.

In the original Karger model, the dMRI signal is the sum of the M
p

KAR’s
from all the compartments at t = ∆:

W
∑

p=1

M
p

KAR(b, ∆).

To best compensate for a finite width δ, we evaluate the Karger model at
t = ∆ − δ/3 to obtain

SKAR(b) =

W
∑

p=1

M
p

KAR(b, ∆ − δ/3), (18)

for the Karger signal when comparing the Karger model with the FPK model
to be described next. The reasoning is similar to that for a homogeneous sys-
tem with diffusion tensor D, where the dMRI signal is eγ2δ2

g
T Dg(∆−δ/3), which

“looks like” a “diffusion time” of (∆− δ/3) is being evaluated to compensate
for the finite pulse. The form of the Karger model suggests the evaluation at
t = ∆ − δ/3 because the ODE system in Eq. 16 imposes the instantaneous
phase accumulation γδg, as can be seen by the term δ2γ2gT D

n

effg. To have
the Karger model in Eq. 16 give the correct signal for the homogeneous case,
the evaluation time point of the ODE system should be t = ∆ − δ/3 (in
contrast to t = ∆ + δ, for example). The ADC0 of the Karger model is

ADCKAR
0 =

W
∑

p=1

vp
gT D

p

effg

‖g‖2
. (19)
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2.4. Finite Pulse Karger model

The derivation of the finite pulse Karger model[32] starts with the multiple
compartment Bloch-Torrey PDE (Eqs. 1-7) and uses periodic homogeniza-
tion theory [49], where the voxel was assumed to be a periodic repetition of
a representative volume C (see Appendix for details). The final form of the
model obtained in [32] is a set of ODEs governing the time evolution of the
compartment magnetizations defined in Eq. 8:

dM
m

FPK(b, t)

dt
= −

(

c(t)γ2gT D
m

effg +
1

vm

W
∑

p=1, p 6=m

vp

τml
FPK

)

M
m

FPK(b, t)

+
W
∑

p=1, p 6=m

1

τml
FPK

M
p

FPK(b, t), m = 1, · · · , W,

(20)

where the time-dependent coefficient function c(t) is:

c(t) ≡

(
∫ t

0

f(s)ds

)2

, (21)

and if each Ωp ∈ C is connnected, then

1

τml
FPK

:= κ
|Γml|

|Ωp|
, l 6= m, (22)

where |Γml| is the surface area between Ωm and Ωp, and |Ωp| is the vol-
ume of Ωp. The effective diffusion tensors under the assumption of periodic
homogenization are shown to be steady-state values

D
m

eff = D
m

ss, (23)

defined as:

(

D
m

ss

)

j,k
≡

1

vm

∫

Ωm

D0∇Mss
j (x) · ek dx, j, k = 1, · · · , 3, (24)

where ek is the unit vector in the kth direction, after solving three Laplace
(state-state) PDEs in C for the steady-state functions Mss

1 , Mss
2 , Mss

3 :

∇ ·
(

D0∇Mss
j (x)

)

= 0, x ∈ Ωm, j = 1, 2, 3, (25)

14



subject to impermeable boundary condition on ∂Ωm:

∇Mss
j (y) · n(y) = 0, y ∈ ∂Ωm, j = 1, 2, 3, (26)

and boundary conditions on ∂C:

Mss
j (x)

∣

∣

xk=−l/2
= Mss

j (x)
∣

∣

xk=l/2
− wj,kLk, k = 1, · · · , 3, (27)

∂

∂xk

Mss
j (x)

∣

∣

∣

∣

xk=−l/2

=
∂

∂xk

Mss
j (x)

∣

∣

∣

∣

xk=l/2

, k = 1, · · · , 3, (28)

where wj,k = 1 if k = j, and wj,k = 0, otherwise.

There are three important things to note:

1. The macroscopic parameter D
m

ss is the effective diffusivity in Ωm in
the infinite time limit and it can be un-ambiguously defined for a pe-
riodic domain. One may call D

m

ss the “tortuosity limit” if Ωm is an
unrestricted domain.

2. The permeability coefficient does not enter into the definition of D
m

ss.

3. D
m

ss is a physical quantity of the cellular geometry, it does not depend
on the diffusion-encoding gradient.

For a sphere compartment, it is not necessary to actually solve Eqs. 25-28.
It is easy to show that

(sphere) D
m

ss = 0. (29)

We note that the above is true for any geometry of finite size (in all direc-
tions). For the cylinder compartments, we will construct the computational
domain C so that when it is periodically repeated, the Ωm that corresponds
to a cylinder becomes infinitely long along its longitudinal direction. In this
case, we again do not need to actually solve Eqs. 25-28. It is easy to show

(cylinder) D
m

ss = aT D0a, (30)

where a is the normalized (‖a‖ = 1) vector parallel to the axis of the cylinder.
So the only compartment where we actually solve Eqs. 25-28 for D

m

ss is the
extra-cellular compartment:

(extra-cellular compartment) D
m

ss from solution of Eqs. 25-28. (31)

We note that the expressions in Eq. 22, Eq. 29, Eq. 30 have been used in
previous works (for example, in [43]) for the Karger model.
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The mathematical derivation of the function c(t) from the multiple compart-
ment Bloch-Torrey PDE can be found in [32]. To see this more intuitively,
we can look at the ODE satisfied by the integral of the solution of the Bloch-
Torrey PDE in a homogeneous medium with the constant diffusion tensor

D
0
. It is easy to show for a general gradient time profile f(s), by the use

of the Laplace transform, that the integral of the magnetization satisfies, for
any point in [0, TE]:

M
hom

(b, t) :=

∫

R3

m(x, t|g)dx = e−g
T D

0
gγ2

R t

0
du(

R u

0
f(s)ds)

2

, 0 ≤ t ≤ TE,

where the term in the exponential contains the b-value, defined for example,
in [50]. We note that the above equation is valid for any t ∈ [0, TE], not just
at the echo time TE. Then it is easy to show c(t) satisfies

c(t) ≡

(
∫ t

0

f(s)ds

)2

=
−∂M

hom
(b,t)

∂t

gTD
0
gγ2M

hom
(b, t)

,

for any profile f .

For the pulsed gradient spin echo (PGSE) sequence[46],

c(t) =











(t − t1)
2, t1 ≤ t ≤ t1 + δ,

δ2, t1 + δ < t ≤ t1 + ∆,

(t − t1 − ∆ − δ)2, t1 + ∆ < t ≤ t1 + ∆ + δ.

(32)

In the narrow pulse regime, δ ≪ ∆, we can see that (32) becomes one interval
and on that interval we obtain the coefficient δ2 of the Karger model.

The initial condition of the FPK model is the same as for the Karger model,
namely, Eq. 17, and the dMRI signal for the FPK model is

SFPK(b) =

W
∑

p=1

M
p

FPK(b, TE). (33)

The ADC0 of the FPK model is

ADCFPK
0 =

W
∑

p=1

vpg
T D

p

ssg

‖g‖2
. (34)
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3. Method

We solved the multiple compartment Bloch-Torrey PDE in the represen-
tative volume C containing different cellular configurations using the finite
elements method described in [51]. We generated the finite elements mesh
in the computational domain C using the mesh generation platform Salome
(http://www.salome-platform.org/). The computational domain C contains
a configuration of spheres and cylinders. The angles of the cylinders were cho-
sen so that when C is periodically repeated, the cylinders become infinitely
long in the longitudinal direction.

We set the intrinsic diffusion coefficient in all the compartments to be D0 =
3× 10−3mm2/s. The spin density was set to 1

|C|
for all the compartments to

normalize the dMRI signals to 1 at b = 0. For simplicity, for the PGSE se-
quence, we set t1 = 0 and TE to be immediately after the diffusion-encoding
sequence.

We used the same macroscopic parameters for both the FPK and Karger
models, in other words, the exchange times and the (steady-state) effective
diffusion tensors defined by Eq. 22, Eq. 29, Eq. 30, Eq. 31.

We also computed two limit cases. If there is no exchange between any of
the compartments the dMRI signal is

SNOEX(b) =

W
∑

p=1

vp exp

(

−
gT D

p

effg

‖g‖2
b

)

. (35)

If the exchange between the compartments is complete the dMRI signal is:

SCOMPEX(b) = exp

(

−

(

W
∑

p=1

vp
gT D

p

effg

‖g‖2

)

b

)

. (36)

There are many references on the size of the cells found in brain tissue,
and these references are listed, for example, in [16]. We chose the sizes of
the cells in our simulations to be within the physically reasonable range for
the neurites when defining the cylinder compartments and in the range of
the neuronal bodies and glial cells when defining the spheres compartments.
The cell membrane permeabilities were chosen so the dMRI signal curves
fall visually somewhere between the no exchange and the complete exchange
curves.
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We computed the dMRI signal at 20 b-values between 0 and 4000s/mm2. We
will compare the following 5 models of the dMRI signal:

1. “PDE”: The (microscopic) multiple compartment Bloch-Torrey PDE.
2. “FPK”: The (macroscopic) FPK model.
3. “KAR”: The (macroscopic) Karger model.
4. “NO EX”: The (macroscopic) No Exchange signal.
5. “COMP EX”: The (macroscopic) Complete Exchange signal.

The signals will be labeled as the above in the figures. We also computed
the compartment magnetizations, M

p

PDE(b, t), M
p

FPK(b, t) and M
p

KAR(b, t),
for the different compartments as a function of time.

The simulations were performed on a Dell PRECISION M4700 worksta-
tion (Intel(R) Core(TM)i7 CPU 3740QM@2.70GB). The solution of the mi-
croscopic Bloch-Torrey PDE took anywhere between 4 seconds to 37 min-
utes, per b-value, depending on the cellular configuration and the diffusion-
encoding sequence. The memory usage was between 28Mbytes to 409Mbytes.
Table 1 shows the details of the simulation time and the memory usage. The
FPK model was solved using the Matlab command “ode45”. The solution of
the ODE took a few seconds per b-value. The memory usage was negligible.

Domain Memory (NFE)
Computational time

δ = ∆ = 5ms δ = ∆ = 40ms
1 Sphere 36MB (8000) 15 seconds 38 seconds

76 spheres 409MB (277000) 15 minutes 37 minutes
Slanted parallel cylinders 36MB (8000) 15 seconds 37 seconds
3-compartment cylinder 28MB (3000) 4 seconds 10 seconds

Cylinders + spheres 227MB (71000) 8 minutes 22 minutes

Table 1: Memory usage and average computational time per b-value to solve the Bloch-
Torrey PDE for the various simulations. The number in the parenthesis after the memory
usage is the number of finite elements (NFE) rounded to the nearest thousand.

4. Numerical study of the FPK model

In this section, we will first illustrate the convergence properties of the FPK
model on a simple cellular configuration where C contains a single sphere.
Then we put more complex cellular configurations inside C.
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4.1. Periodic lattice of spheres

To show the convergence of the FPK model signal to the reference signal, we
put a single sphere inside the representative volume C = [− l

2
, l

2
]. From the

point of view of the FPK model, this domain contains two compartments: the
extra-cellular compartment Ωe and the sphere compartment Ωs. The radius
of the sphere was chosen to correspond to volume fractions of ve = 0.51 and
vs = 0.49.

The effective diffusion tensor of Ωs is D
s
= 0. We computed the steady-state

effective diffusion tensor of Ωe from Eq. 24 to be:

D
e

ss =





2.32 0.00 0.00
0.00 2.32 0.00
0.00 0.00 2.32



× 10−3mm2/s.

This value is independent of l.

We defined the macroscopic length to be:

L ≡
√

2 max
p∈{s,e}

(

gTD
p

ssg
)

(∆ + δ), (37)

the mean squared displacement of the fastest diffusing compartment in the
diffusion-encoding direction at the steady-state value during the time interval
[0, ∆ + δ].

The scaling of the permeability coefficient in the derivation of the FPK model
is linear in ε = l

L
, and we chose to scale κ with l:

1. l = 2.5µm, κ = κ0,

2. l = 5µm, κ = 2κ0,

3. l = 10µm, κ = 4κ0,

4. l = 20µm, κ = 8κ0,

for four different values of l, while fixing κ0 as well as the δ and ∆ of the
PGSE sequence. For this set of four l’s, we simulated three values of κ0:

1. κ0 = 0.5 × 10−5m/s (labeled “low κ”),

2. κ0 = 1 × 10−5m/s (labeled “mid κ”),

3. κ0 = 2 × 10−5m/s (labeled “high κ”),

and three PGSE sequences (two narrow-pulse, and one non-narrow pulse):
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1. δ = 3ms, ∆ = 40ms,

2. δ = 3ms, ∆ = 80ms,

3. δ = 40ms, ∆ = 40ms.

In Fig. 1(a) we show the convergence of |SPDE(b) − SFPK(b)| with the non-
dimensional parameter,

ε := l/L, (38)

for a range of κ0, δ and ∆, at a single b-value, b = 4000s/mm2. We see that
the convergence rate is

|SPDE(b) − SFPK(b)| = O(εα),

where α is about 2. The convergence rate of α = 2 is quite clear for κ0 =
0.5×105m/s and κ0 = 1×105m/s and this rate is not attained at the highest
set of permeabilities, κ0 = 2 × 105m/s. For the non-narrow pulse PGSE
sequence, δ = 40ms, ∆ = 40ms, on C = [−2.5µm, 2.5µm]3, κ = 10−5m/s, we
see that the SFPK(b) is very close to SPDE(b), whereas SKAR(b) is further
away (Fig. 1(b)). We also show the compartment magnetizations in Ωe and
Ωs from t = 0ms to t = 80ms at b = 2000s/mm2 (Fig. 1(c) and Fig. 1(d)).
We see that M

e

FPK(2000, t) and M
s

FPK(2000, t) follow the time evolution of
M

e

PDE(2000, t) and M
s

PDE(2000, t), whereas the Karger model compartment
magnetizations M

e

KAR(2000, t) and M
s

KAR(2000, t) do not.
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(a) Second order convergence in ε, b =

4000s/mm
2
.

(b) S(b)

(c) M
e
(2000, t) (d) M

s
(2000, t)

Figure 1: (a) The FPK model signal converges to the reference signal with second or-
der convergence in ε = l/L, where l is the side length of the representative volume
C and L is a measure of the diffusion displacement. (b) DMRI signals: SPDE(b),
SFPK(b), SKAR(b), SNOEX(b), SCOMPEX(b). Simulation parameters: sphere radius
Rs = 2.45µm, D0 = 3 × 10−3mm2/s, κ = 10−5m/s, PGSE sequence with δ = 40ms,
∆ = 40ms. (c) Compartment magnetization in the extra-cellular compartment at b =

2000s/mm
2
: M

e

PDE(2000, t), M
e

FPK(2000, t), M
e

KAR(2000, t), same simulation parame-

ters as b). (d) Compartment magnetization in the sphere compartment at b = 2000s/mm2:
M

s

PDE(2000, t), M
s

FPK(2000, t), M
s

KAR(2000, t), same simulation parameters as b).

4.2. Simulation on complex geometries

We constructed the representative volume C = [−5µm, 5µm]3 in Fig. 2(a)
containing 76 spherical cells with a range of radii between 0.6µm and 2.55µm.
In theory one would have to make the 76 spheres 76 different compart-
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ments, each with its volume fraction and surface-to-volume ratio. How-
ever, we just combine the 76 spheres to form one compartment Ωs. The
extra-cellular space forms a second compartment Ωe. The corresponding vol-
ume fractions are vs = 0.65 and ve = 0.35. The surface to volume ratio is
|Γse|/|Ωs| = 1.85µm−1. We note that we are assuming that |Γse|/|Ωs| gives
a good approximation of the average surface-to-volume ratios of all the 76
spheres. Certainly, the approximation is exact if all the spheres have the
same radii. We then computed

D
e

=





2.20 0.00 0.00
0.00 2.25 0.00
0.00 0.00 2.24



× 10−3mm2/s.

We see in Fig. 2(b) that using the two-compartment FPK model still gives
a good approximation to the signal of the full PDE if we use the average
surface-to-volume ratio of the 76 spheres. The homogenization parameter ε =
10µm/

√

2 × 2.2 × 10−3mm2/s × (50ms) = 0.67, translating into a diffusion
displacement that is 1.5 times the side length of C.

(a) Finite elements mesh of C (b) DMRI signals

Figure 2: (a) The computational domain C = [−5µm, 5µm]3 contains 76 spheres with
radii between 0.6µm and 2.55µm. The volume fraction of the spheres is vs = 0.65, and
of the extra-cellular space is ve = 0.35. We set κ = 10−5m/s, D0 = 3 × 10−3mm2/s.
(b) The dMRI signals: SPDE(b), SFPK(b), SKAR(b), SNOEX(b), SCOMPEX(b). The
diffusion-encoding sequence is PGSE: δ = ∆ = 25ms.

Now, to test whether the FPK model works properly for anisotropic diffu-
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sion, we construct a computational domain C = [−2.89, 2.89]× [−2.5, 2.5]×
[−5, 5]µm3 containing slanted cylinders that all lie parallel to g1 = (0.5, 0, 0.87)
and have a radius of Rc = 2.35µm (Fig. 3(a)). We consider the domain to
be made up of two compartments, one is Ωc, the compartment of all the
cylinders, vc = 0.69, the other is the extra-cellular space, Ωe, ve = 0.31.
The volumes and surface areas are |Ωe| = 91µm3, |Ωc| = 198µm3, and
|Γce| = 170µm2. We computed from Eq. 30:

D
c
=





0.75 0.00 1.30
0.00 0.00 0.00
1.30 0.00 2.25



× 10−3mm2/s,

and from Eq. 24:

D
e

=





1.88 0.00 0.65
0.00 2.52 0.00
0.65 0.00 2.63



× 10−3mm2/s.

We set κ = 10−5m/s, and for the PGSE sequence, δ = ∆ = 80ms. The
simulation was done for three different gradient directions (parallel, perpen-
dicular and 45 degrees from axes of the cylinders). We show in Fig. 3(b)
that SPDE(b) and SFPK(b) are close in all three gradient directions. In the
direction perpendicular to the cyinders, the homogenization parameter is
ε = 0.23, corresponding to a diffusion displacement that is 4.4 times the
distance between cylinder centers.
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(a) Left. mesh of C. Right. peri-
odic extension.

(b) DMRI signals

Figure 3: (a) Left: finite elements mesh of C = [−2.89, 2.89] × [−2.5, 2.5] × [−5, 5]µm3.
Right: when periodically extended, the cylinders are infinitely long. (b): The signals
SPDE(b) and SFPK(b). Simulation parameters: κ = 10−5m/s, D0 = 3 × 10−3mm2/s; the
sequence is PGSE, δ = ∆ = 80ms; the cylinders have radius Rc = 2.35µm. The gradient
directions are g1 = (0.5, 0, 0.87) and g2 = (0.87, 0,−0.5), corresponding to parallel and
perpendicular directions to the axis of the cylinders, respectively, and g3 = (0.97, 0, 0.26),
lying in the middle of g1 and g2.

Next, we constructed a computational domain C = [−2.75, 2.75]2×[−0.5, 0.5]µm3

with a cell membrane compartment (Fig. 4(a)). The computational do-
main C contains a cylinder (Rc = 2.0µm) with a thick membrane layer
(thickness h = 0.45µm) outside it. We consider C to be made up of three
compartments, the extra-cellular space Ωe (|Ωe| = 11.5µm3), the mem-
brane compartment Ωm (|Ωm| = 6.3µm3), and the cylinder compartment
Ωc (|Ωc| = 12.5µm3), with the corresponding surfaces Γem (|Γem| = 15.4µm2)
and Γmc (|Γmc| = 12.5µm2) (|Γec| = 0, obviously). We know D

c
and D

m

from Eq. 30 and Eq. 29. We computed

D
e

=





1.70 0.00 0.00
0.00 1.70 0.00
0.00 0.00 3.00



× 10−3mm2/s.

We would like to know if the membrane compartment can be detected in
the dMRI signal. For this reason, we constructed a second computational
domain C, with two compartments: a combined cylinder and membrane
compartment, Ωm+c, with no impedence to diffusion between Ωm and Ωc

(|Ωm+c| = 18.8µm3), and the same extra-cellular compartment Ωe as the
three compartment domain. In the two compartment domain, there is only
one surface Γe(m+c) (|Γe(m+c)| = 15.4µm2).
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With permeability κme = 10−5m/s, Fig. 4(b) shows SPDE(b) and SFPK(b) in
the gradient direction perpendicular with the cylinder axis for both domains.
SPDE(b) and SFPK(b) are close to each other in both cases. The difference
in the signals from the two domains can be seen in the Fig. 4(b) but it
is not clear whether the difference is large enough to be useful in detecting
the membrane compartment in experimental settings. The homogenization
parameter is ε = 0.24 for both cases.

(a) Two and three compartment do-
mains.

(b) DMRI signals

Figure 4: (a) Finite elements meshes. Left: a two compartment domain (Ωe and Ωc+m).
Right: a three compartment domain (Ωe and Ωc and Ωm). (b) The signals SPDE(b) and
SFPK(b) of the 3-compartments domain and the 2-compartments domain. Simulation
parameters: C = [−2.75, 2.75]2 × [−0.5, 0.5]µm3; the cylinder has radius Rc = 2.0µm,
the membrane layer has thickness h = 0.45µm; the two compartment domain combines
the cylinder and the membrane layer compartments into one; D0 = 3 × 10−3mm2/s,
κ = 10−5m/s, the sequence is PGSE, δ = ∆ = 80ms, in the gradient direction g = (1, 0, 0),
perpendicular to the axis of cylinder.

Finally, we constructed a domain of 5 layers of cylinders lying parallel to
the x − y plane and 4 layers of spherical cells, all embedded in the extra-
cellular space, see Fig 5(a). The five layers of cylindrical cells are composed
of parallel cylinders that are oriented at 0, 26.5, 45, 63.5 and 90 degrees,
respectively, from the x-axis (cylinder radius Rc = 1.0µm). The 4 layers of
16 spherical cells (sphere radius Rs = 1.375µm) are inserted between the 5
layers of cylindrical cells. When the spheres overlapped with the cylinders,
the latter were deformed slightly. In particular, some spheres and cylinders
have joint interfaces. Because the cylinders are only slighlty deformed, we
still use Eq. (30) for computing the effective diffusion tensor.
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In summary, we consider this domain to have 7 compartments: the extra-
cellular space (Ωe), the compartment of the 4 layers of 16 spherical cells (Ωs),
and 5 compartments consisting of the cylinders with the same orientation
(Ωc1, · · · , Ωc5). In each layer of cylinders, the orientations of the cylinders are
the same. We note that the spheres can be combined into one compartment
because they have the same effective diffusion tensor (the zero tensor). On
the other hand, the effective diffusion tensors of the 5 layers of cylinders are
not the same due to their differing orientations, so each layer needs to be
considered as a separate compartment.

For the 7 compartments, the volumes are: |Ωe| = 383µm3, |Ωs| = 167µm3,
|Ωc1| = 46µm3, |Ωc2 | = 47µm3, |Ωc3| = 55µm3, |Ωc4 | = 47µm3 and |Ωc5| =
46µm3. The surface areas are: |Γes| = 291µm2, |Γec1| = 93µm2, |Γec2| =
85µm2, |Γec3| = 98µm2, |Γec4| = 85µm2, |Γec5| = 93µm2, |Γsc1| = 0, |Γsc2| =
21µm2, |Γsc3| = 37µm2, |Γsc4| = 21µm2, |Γsc5| = 0. The cylinders have
different volumes and surface areas because they are deformed differently
by the intervening spheres. The cellular permeability for both cylinders
and spheres is set to κ = 10−5m/s. The computational domain is C =
[−3.75, 3.75]×[−7.03, 7.03]×[−3.75, 3.75]µm3. The computed effective extra-
cellular diffusion tensor is:

D
e

=





2.29 0.00 0.11
0.00 2.05 0.00
0.11 0.00 2.29



× 10−3mm2/s.

We computed the signals SPDE(b) and SFPK(b) in three gradient directions:
g1 = (1, 0, 0), g2 = (1, 0, 1), and g3 = (1, 1, 1), for the PGSE sequence with
δ = ∆ = 40ms. Figure 5(b) shows that the FPK and the PDE signals are
almost indistinguishable. In the direction g1 = (1, 0, 0), the homogenization
parameter is ε = 7.5µm/

√

2 × 2.29 × 10−3mm2/s × 80ms = 0.39.
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(a) Finite elements mesh of C. (b) DMRI signals

Figure 5: (a) Finite elements mesh of C = [−3.75, 3.75]× [−7.03, 7.03]× [−3.75, 3.75]µm3

containing 5 layers of cylinders and 4 layers of spheres. In each layer, the cylinders have the
same orientation. (b) The signals SPDE(b) and SFPK(b). Simulation parameters: D0 =
3×10−3mm2/s, κ = 10−5m/s; the gradient directions are g1 = (1, 0, 0), g2 = (1, 0, 1), and
g3 = (1, 1, 1); the pulse sequence is PGSE, with δ = ∆ = 40ms.

5. Preliminary results of applying the FPK model to voxel level

dMRI signal

In this section, we show some preliminary numerical results in two dimensions
of applying the FPK model to the voxel level dMRI signal. We construct
a two dimensional voxel V = [−500µm, 500µm]2 by placing 14000 circular
biological cells in V whose centers are uniformly randomly distributed in
V . The radii of the circles were chosen randomly with uniform distribution
between 1 and 5 µm. The cellular volume fraction is 0.42. See Figure 6(a) for
the voxel V . We will assume that V is bordered by neighboring voxels that
are identical to V . Since the dMRI diffusion displacement is much smaller
than the side length of V , this assumption does not limit the generality of
this example. We set the intrinsic diffusion coefficient to be 3 × 10−3mm2/s
inside and outside the biological cells. and the diffusion-encoding direction
to be g = [1, 0].

We set up the FPK model using 2 compartments, one is the ensemble of
cells, Ωc, one is the extra-cellular space, Ωe. The total circumference of all
the circles is Γ = 263550µm. The total volume is 1 mm2.

We will attempt to apply the FPK model to this example for two PGSE
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sequences: δ = 3ms and ∆ = 17ms, δ = 3ms and ∆ = 77ms. First we test if
the diffusion is approximately Gaussian in the extra-cellular space by solving
the Bloch-Torrey PDE where water molecules are placed initially only inside
Ωe and setting κ = 0 to prevent the water molecules from ever entering Ωc.
We show in Figure 6(b) the resulting dMRI signal contributions from Ωe, for
the two PGSE sequences: δ = 3ms, ∆ = 17ms, and δ = 3ms, ∆ = 77ms. It
is clear for both sequences, the diffusion is not Gaussian in Ωe. We computed
the slope of the log of the signals to obtain a slope of 1.6 × 10−3mm2/s for
δ = 3ms, ∆ = 17ms, and a slope of 1.3×10−3mm2/s for δ = 3ms, ∆ = 77ms.
In the same Figure 6(b) we also draw the Gaussian approximations with
these two values of the slope. We can see that the signals derivate from the
Gaussian approximations already at b = 1000s/mm2.

Given that the diffusion is not Gaussian in Ωe for the two sequences, we ask
now what happens if we set gT D

e

effg in the FPK model to be the slopes
we computed in Figure 6(b): 1.6 × 10−3mm2/s for δ = 3ms, ∆ = 17ms,
and a slope of 1.3 × 10−3mm2/s for δ = 3ms, ∆ = 77ms. We solve the
Bloch-Torrey PDE while placing water molecules in both Ωe and Ωe. To
only measure the effect of the non-Gaussianness, without the effect of inter-
compartment exchange, we set the κ = 0. Thus, the FPK signal is actually
the no-exchange limit for this case. We show the results in Figure 6(c). We
see, as expected, the PDE signals have more curvature than the no-exchange
limit FPK signals, due to the non-Gaussianness of Ωe. We note that this
extra curvature of the signal is not related to the inter-compartment exchange
because we set κ = 0 for both the PDE and the FPK signals.

Given that the dMRI displacement is between 8−25µm, it is possible that a
voxel of brain tissue cannot be considered macroscopically homogeneous in
the various tissue compartments. We showed in this section an example of
a non-Gaussian extra-cellular compartment. In addition, if a dendrite tree
of a neuron is to be considered a diffusion compartment in a macroscopic
model, it is possible that the tree structure may cause non-Gaussianness at
physically relevant dMRI diffusion times. Thus, we believe a more general
macroscopic model that allows some form of non-Gaussianness in the various
compartments while still allowing inter-compartment exchange to be a useful
direction of future work. It is possible that such a model may be obtained by
considering a mathematical homogenization approach that was used obtain
the FPK model.
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(a) A voxel in two dimensions (b) From extra-cellular domain

(c) DMRI Signal

Figure 6: (a) The voxel is V = [−500µm, 500µm]. There are 14000 circular biological cells
in V whose centers are uniformly randomly distributed in V . The radii of the circles were
chosen randomly with uniform distribution between 1 and 5 µm. The cellular volume
fraction is 0.42. (b) The dMRI signal contributions from the extra-cellular space, Ωe,
only, for two PGSE sequences: δ = 3ms, ∆ = 17ms, and δ = 3ms, ∆ = 77ms. The
permeability is set to κ = 0m/s to stop the water molecules, initially placed in Ωe only,
from ever entering Ωe. The intrinsic diffusion coefficient is D0 = 3 × 10−3mm2/s. The

signal contributions are not Gaussian after b = 1000s/mm
2
. We computed the slopes of

the signals to be 1.6 × 10−3mm2/s for δ = 3ms, ∆ = 17ms, and 1.3 × 10−3mm2/s for
δ = 3ms, ∆ = 77ms. We include the Gaussian approximations of the signals using these
slopes on the plot. (c) The dMRI signals from the entire voxel V for the PGSE sequences,
δ = 3ms, ∆ = 17ms, and δ = 3ms, ∆ = 77ms. The permeability is set to κ = 0m/s and
water molecules, initially placed in both Ωe and Ωc, do not moved between Ωe and Ωc.
The PDE signal shows more curvature than the FPK signal for both PGSE sequences due
to the non-Gaussianness of the diffusion in Ωe. The FPK signal were obtained by setting
g

T D
e

effg to be the slopes we computed in Figure 6(b): 1.6 × 10−3mm2/s for δ = 3ms,
∆ = 17ms, and 1.3 × 10−3mm2/s for δ = 3ms, ∆ = 77ms.
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6. Conclusions

We conducted a numerical study of the macroscopic Homogenized ODE
(FPK) model of the dMRI signal in voxels made up of periodic copies of
a representative volume C that contains spheres and long cylinders of var-
ious sizes and orientations. We showed numerically that the FPK signal
approaches the reference signal computed by solving the Bloch-Torrey equa-
tion in O(ε2), where ε is the ratio between the size of the representative
volume and a measure of the diffusion length. We also show that when the
narrow pulse assumption is not satisfied, the FPK model offers a much bet-
ter approximation of the reference signal than the Karger model. Finaly we
showed preliminary results of applying the FPK model to a voxel that is not
made up of periodic copies of a representative volume and discussed potential
issues that may arise. More work remains to be done to improve macroscopic
dMRI signal models so that they are applicable to brain tissue dMRI.

Appendix

The derivation of the finite pulse Karger model[32] starts with the multiple
compartment Bloch-Torrey PDE (Eqs. 1-7) and uses periodic homogeniza-
tion theory [49], where the voxel was assumed to be a periodic repetition of a
representative volume C The magnetization is written as a separate two-scale
asymptotic expansion, in x and x/ε, in each compartment p,

M1(x, t|g) = M1
0

(

x,
x

ε
, t|g

)

+ εM1
1

(

x,
x

ε
, t|g

)

+ ε2M1
2

(

x,
x

ε
, t|g

)

+ · · · ,

...

Mp(x, t|g) = Mp
0
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)
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1

(
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)

+ ε2MW
2

(

x,
x

ε
, t|g

)

+ · · ·

(39)

where x is the macroscopic spatial variable and x/ε is the microscopic spatial
variable. The homogenization scaling parameter is ε = l/L, where l is the
side length of C and L is the macroscopic length scale.
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The idea of homogenization is that, assuming ε is small, the mean value of
the order zero term in ε, Mp

0 , with respect to microscopic variable would
provide an approximation of Mp. By matching terms in powers of ε, one can
derive a problem for these mean values where only the macroscopic variable
x appears. Before proceeding with the asymptotic matching, the scaling of
the permeability coefficient κ with ε must be chosen. The relevant scaling to
obtain the FPK model is:

κ = O(
σ

µ
ε), (40)

where σ (in the cell membranes) has the unit of diffusivity and µ (width in
the cell membranes) has the unit of length. Other choices of the behavior of
κ as a function of ε, for example,

κ = O(
σ

µ
εm), m 6= 1, (41)

can be made and will give different macroscopic models. This is the subject
of future work.
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