
Proving Reachability Properties on
Term Rewriting Systems with Strategies

Thomas Genet and Yann Salmon

IRISA, INRIA and Université Rennes 1, France

Abstract. We aim at defining regular over-approximation of sets of
reachable terms for term rewriting systems applied with a strategy. In this
ongoing work, we focus on innermost strategies which are the evaluation
strategy of most functional programming languages. Having an accurate
over-approximation of reachable terms for functional programming lan-
guages would permit to prove richer unreachability properties, i.e. safety
properties on such programs.

1 Introduction

Term rewriting systems [BN98], TRS for short, are a convenient way of repre-
senting computer programs: a term represents the current stage of the compu-
tation and rewriting rules represent allowed steps from one stage to another.
We are interested in computing the set of terms reachable by rewriting, i.e. the
set R∗(L0) =

{
term t

∣∣∣ ∃s ∈ L0, s→∗R t
}
, for a given finite term rewriting system

R and a set of so-called initial terms L0. Reachability properties on the TRS
can be proven using a computable representation of this set or of an approxi-
mation thereof. This technique can be applied to Java programs thanks to the
translation in [Boi+07] and is used in [GK00] to assess the security of some
cryptographic systems. In this paper, we take much simpler examples for the
sake of readability.

For example, using an appropriate signature Σ, let R be a term rewriting
system defining the natural integers with constant 0 and successor S, the usual
arithmetical operations sum and mult as well as the factorial. Let L0 be the
initial language, i.e. the set of ground terms that we consider as the starting
point of our program. Continuing our example, let L0 be the set of terms of the
form factorial(S(S... S(0)...)). Verifying that the factorial of a natural
is never zero using our formalism amounts to checking that the term 0 is not
reachable from terms in L0 by arbitrary applications of the rules in R, that is
R∗(L0)∩ {0} = ∅.

The general TRS (un)reachability problem, “Does R∗(L0)∩ Lb = ∅?”, where
Lb is a set of terms considered bad, is obviously not decidable, due to the
Turing-completeness of the TRS formalism. Circumventing this is usually done
by working with regular languages [Com+08], for which computing the inter-
section and checking emptiness can be done in polynomial time. Restricting



to regular initial (L0) and bad languages (Lb) is not enough: this does not en-
sure that R∗(L0) is regular. The regularity-preservation property of TRS is in
turn undecidable [GT95]; it has been proven true for some restricted classes of
TRS. For instance, Réty [RV05] computes R∗strat(L0), the set of descendants of
terms in L0 obtained by applications of rules in R using the strategy strat, for
the restricted class of TRS called constructor-based and several strat.

Instead of restricting the TRS classes, we focus on tree automaton com-
pletion, stemming form the work of [Gen98], and more precisely on equa-
tional completion [GR10] (or just “completion” for short). This technique aims
at computing a sufficiently precise regular over-approximation K of R∗(L0).
Since K ⊇ R∗(L0), from K ∩ Lb = ∅ follows R∗(L0) ∩ Lb = ∅. This procedure
can be applied to any left-linear TRS, but does not always terminate. Over-
approximating eases termination, but it needs to be precise enough to prove
unreachability properties: if K is too large then we may have K∩Lb , ∅ though
R∗(L0) ∩ Lb = ∅. Recently, many techniques for building accurate approxima-
tions have been studied: declarative language (equations) for defining approx-
imations [GR10] and automatic approximation refinement [Bou+06; Boi+10].
However, none of those approaches takes the strategy used to apply the rules
of the TRS into account: they over-approximate R∗(L0) which is itself an over-
approximation of R∗strat(L0).

This causes imprecisions when over-approximating the set of reachable
terms for functional programming languages, such as OCaml [Ler+12] or those
used in proof assistants like Coq [BC04] or Isabelle/HOL [NPW02]. Such func-
tional programs can be encoded by TRS applied with a leftmost innermost strat-
egy. Our overall objective is to take into account strat in the over-approximation
of R∗strat(L0). This work, which is a first step in this direction, aims at taking into
account the innermost part of the strategy. We want to refine the equational
completion procedure of [GR10] in order to have a better precision in the over-
approximation of R∗in(L0), the set of descendants of terms in L0 obtained by
applications of rules in R using an innermost strategy. At the end of the paper,
we will see that the technique presented here is likely to be adapted to cover
the leftmost part of the strategy, but this is ongoing work. A precise approxi-
mation of terms reachable by leftmost innermost rewriting would be a simple
and elegant alternative to Higher Order Recursive Schemes used for the static
analysis of functional programs [OR11].

2 Innermost strategies

In our example TRS R, the term mult(S(0), plus(S(0), S(0))) has more
than one reducible expression, or redex: it can be rewritten in one step ei-
ther to the term plus(mult(0, plus(S(0), S(0))), plus(S(0), S(0))), us-
ing the rule mult(S(x),y)→plus(mult(x, y), y) at the root, or to the term
mult(S(0), S(plus(0, S(0)))), using the rule plus(S(x), y)→S(plus(x, y))



in the appropriate subterm plus(S(0), S(0)). To consistently decide which
redex to reduce, implementations of TRS can use a strategy.

Innermost strategies consist in reducing a redex only when none of its
strict subterms is a redex itself; in our example, this is the latter reduction.
Due to some reductions being disallowed, R∗in(L0) ⊆ R∗(L0), and very often,
R∗in(L0) ⊂ R∗(L0). Note that given a term t, checking that each subterm of t at
depth 1 is R-irreducible is sufficient to ensure that a rewriting step may be ap-
plied to t under an innermost strategy.

We want to build a correct and reasonably precise over-approximation
of R∗in(L0). As exposed later, the current equational completion procedure
is not strategy-aware. This does not hinder correctness: K ⊇ R∗(L0) implies
K ⊇ R∗in(L0). However, the process introduces a potentially great number of
terms in K that are irrelevant when we are interested in R∗in(L0).

3 Usual completion procedure

Given a left linear TRS R over signature Σ, the automaton completion proce-
dure takes an automaton A0 recognising the initial language L0 and iteratively
adds transitions to it to incorporate R-descendants of already recognised terms.
It stops when (if) a fixpoint is reached: the language recognised by the pro-
duced automaton A∗, L (A∗)1, is a superset of L0 and is R-closed, thus L (A∗)
is a superset of R∗(L0). Transitions, and possibly new states, are added to the
automaton Ai , where i is some step of the completion process, by resolving so-
called critical pairs (CP ): a rule `→ r ∈ R instantiated into configurations of Ai
as `σ → rσ , where σ is an arbitrary map from variables of Σ to states of A, ex-
tended to terms like a traditional substitution andAi recognises `σ into a state
q, but not rσ . The resolution amounts to adding valid (normalised) transitions
and the needed states to let the completed automaton Ai+1 recognise rσ into q
as well.

The procedure does not always terminate, because resolution can create new
critical pairs. Merging states of the automaton counters this at the cost of preci-
sion. This can be parametrised by linear equations between terms as in [GR10].
An equation t = s instantiated into configurations of A as tσ = sσ is said to be
applicable if there exist two distinct states q1 and q2 such that A recognises tσ
into q1 and sσ into q2. In this case, the states q1 and q2 are “merged”. Therefore,
the equational completion procedure takes as input not only R and A0, but a
set E of such equations as well, and, in case of termination, outputs a fixpoint
automaton A∗R,E .

For example, take signature Σ = {f : 1, g : 1, a : 0,b : 0, c : 0} and set of
variables {x}, R = {f (x) → g(x), a → b}, L0 = {f (a), f (c)} and E = ∅. Note that

1 Given an automatonA and a state q ofA, we note L (A,q) the set of terms recognised
by A into state q.



g(a) ∈ R∗(L0) r R∗in(L0). A reasonable automaton to recognise L0 is A0 consist-
ing of states qa, qc, qf a, qf c and transitions a� qa, c � qc, f (qa) � qf a and
f (qc) � qf c. We have a critical pair CP1 = (f (x) → g(x),σ = {x 7→ qa},qf a):
A0 recognises f (qa) into qf a but not g(qa). Resolving CP1 builds a new au-
tomaton A1 from A0 by addition of state q1 and transitions g(qa) � q1 and
q1 � qf a. This is shown in figure 1. The epsilon transition q1 � qf a reads no
input and is oriented in this way to ensure that the right-hand side of the rule
is recognised into the same state as the left-hand side was previously recog-
nised. We also solve CP2 = (a→ b,σ = ∅,qa) by adding q2 and b� q2, q2 � qa
and CP3 = (f (x) → g(x),σ = {x 7→ qc},qf c) by adding q3 and g(qc) � q3 and
q3 � qf c. In this example, there are no more critical pairs and the procedure
terminates with A∗R,E = A3. Assuming the same final states as in A0, we have
indeed L (A3) = R∗(L0).

(a) CP1

f (qa) g(qa)

qf a q1

R

A0 ∗ A1∗

A1

(b) CP2

a b

qa q2

R

A1 ∗ A2∗

A2

(c) CP3

f (qc) g(qc)

qf c q3

R

A2 ∗ A3∗

A3

Fig. 1. Resolving critical pairs

The correctness theorem of [GR10] states that under the aforementioned
hypotheses, L (A∗R,E) ⊇ R∗(L (A0)). The precision theorem of the same states
that under the supplementary hypothesis that A0 is consistent with R and E,
which merely means that the language recognised in each state of A0 is a sub-
set of some equivalence class of the congruence relation induced by E, and
has a common antecedent by R/E, the “R modulo E” rewrite relation, we have
L (A∗R,E) ⊆ (R/E)∗(L (A0)). Our current research aims at designing a procedure
to build an automaton A∗Rin,E

such that L (A∗Rin,E
) ⊆ (Rin/E)∗(L (A0)).

Left-linearity of R is required for correctness: take Σ = {h : 2, g : 1, a : 0},
R = {h(x,x)→ g(x)}, ie. a non left-linear TRS due to the presence of twice the
same variable x in the left-hand side of a rule, and take A0 with transitions
a� q1, a� q2 and h(q1,q2)� qf . This last transition should intuitively give
rise to a critical pair, but does not because the possible instantiations `σ of the
only rule are h(q1,q1), h(q2,q2) and h(qf ,qf ). A0 is the fix-point of the comple-
tion procedure, but g(a) <L (A0) while g(a) ∈ R({f (a,a)}).



4 Current investigations

The completion of some critical pairs corresponds to rewriting steps that do not
conform to innermost strategies. In the example of section 3, we do not want
to solve CP1, at least not before CP2, and even when we do, we would like to
distinguish between a and b being recognised into qa when dealing with g(qa).
How to determine with certainty that every term recognised in a given state is
reducible by R? Indeed, if we abstain from solving a critical pair that involves
a state representing at least one irreducible term, we risk missing some terms
in R∗in(L0) and loosing correctness.

A first approach uses the fact that because R is left-linear, IRR(R), the
set of R-normal forms, is regular [GT95, Theorem 4]. We define the fibre
of a configuration c of automaton A, F (A, c), inductively: if c is a state,
F (A, c) = L (A, c); if c is a constant, F (A, c) = {c}; else c = f (c1, . . . , ck) and
F (A, c) = {f (α1, . . . ,αk) | ∀i ∈ J1 ; kK,αi ∈F (A, ci)}. It is a regular language. We
define a new notion of critical pair CP = (` → r,σ ,q) by adding the following
restriction: if `σ is of the form f (c1, . . . , ck) where c1, . . . , ck are configurations,
then for all i ∈ J1 ; kK, we must have F (A, ci)∩IRR(R) , ∅. The fixpoint automa-
ton that this new procedure produces (if any) recognises a Rin-closed language
which contains L0, and therefore contains R∗in(L0). The proof can be derived
from the one of theorem 45 in [GR10]: both are based on the ability to build a
critical pair from any valid rewriting step.

However, since building an automaton recognising IRR(R) can be exponen-
tial in the size of R, we are also exploring a second approach that would not
require IRR(R). The structure of the completed automaton can be used to dis-
tinguish between normal forms and reducible terms. On the previous example,
we can infer from the automaton that a is not a normal form since it is recog-
nised by qa and there is an epsilon transition q2� qa. According to completion,
this epsilon transition denotes that a is reducible and we can thus mark the
path a� qa as “forbidden” w.r.t. an innermost completion. It might be possi-
ble to check if a critical pair is innermost-compatible by carefully inspecting the
recognising path of lσ � q. In our example, the path a� qa would be forbid-
den after completion of CP2. Since the path g(qa)� q1 � qf a results from the
completion of some critical pair (CP1), a� qa would not be taken into account,
thereby excluding g(a) from the recognised language and keeping g(b). On the
other hand, the path f (qa) � qf a does not result from a completion step, so
a� qa would still be available in this case, causing f (a) to be recognised. This
is not surprising, since it belongs to L0, a subset of R∗in(L0). Furthermore, if a
state has only forbidden paths pointing thereto, it could be completely avoided
as a value when enumerating the possible σ .

This approach might be useful for leftmost-innermost strategies as well,
where one only reduces an innermost redex when there is no redex at
its left. With Σ = {h : 2, a : 0,b : 0, c : 0,d : 0}, R = {a → b,c → d},
A = {a� qa, c� qc,h(qa,qc)� qh}, usual completion adds epsilon transitions
qb� qa and qd � qc that cause h(a,d)� h(qa,d)� h(qa,qd)� h(qa,qc)� qh.



Indeed, h(a,d) ∈ R({h(a,c)}), but this stems from a non-leftmost rewriting. Mark-
ing a� qa and c� qc as “forbidden” like before would allow us to disregard
the aforementioned derivation, because qa appears to the left of qc in the con-
figuration and the paths leading to each of them are “forbidden”. On the other
hand, we would retain h(b,d)� h(qb,d)� h(qb,qd)� h(qb,qc)� qh because
qb, appearing to the left of qc, has a non-forbidden path from b to it. This re-
quires more investigation, though.

5 Conclusion and perspectives

We sketched a general way of refining equational completion to adapt it to in-
nermost strategies. We have to give a precise and efficient algorithm to compute
the fibre of a configuration that cleverly takes into account the fact that each
completion step can modify the fibres. We also plan to assess whether our sec-
ond approach is correct and to compare its efficiency with the first one, and
maybe interleave them.

We have to quantify the gain in precision granted by our proposed proce-
dure and balance it with its supplementary computational cost. It should also
be noted that due to our proposed strategy-aware completion procedure resolv-
ing less critical pairs than the usual one, its termination is easier to achieve. We
want to explore whether this gain is marginal or not.

Finally, we want to adapt the usual completion procedure to different and
more expressive strategies so as to build precise over-approximation of reach-
able terms for other programming languages. Target strategies are the outer-
most strategy, used for example by Haskell [Has], and declarative strategies
like the one used in Tom [Bal+07].

References

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and
Program Development. Coq’Art: The Calculus of Inductive Construc-
tions. Texts in Theoretical Computer Science. Springer Verlag,
2004.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That.
Cambridge University Press, 1998.

[Bal+07] E. Balland et al. “Tom: Piggybacking Rewriting on Java”. In:
RTA’07. LNCS. Springer, 2007, pp. 36–47.

[Boi+07] Yohan Boichut et al. “Rewriting Approximations for Fast Prototyp-
ing of Static Analyzers”. In: RTA. Vol. 4533. LNCS. Springer, 2007,
pp. 48–62.

[Boi+10] Y. Boichut et al. Fast Equational Abstraction Refinement for Regular
Tree Model Checking. Technical Report. INRIA, 2010. url: http:
//hal.inria.fr/inria-00501487.



[Bou+06] A. Bouajjani et al. “Abstract Regular Tree Model Checking”. In:
ENTCS 149.1 (2006), pp. 37–48.

[Com+08] Hubert Comon et al. Tree Automata Techniques and Applications.
2008.

[GK00] Thomas Genet and Francis Klay. Rewriting for Cryptographic Pro-
tocol Verification (extended version). Technical Report 3921. INRIA,
2000.

[GR10] Thomas Genet and Vlad Rusu. “Equational Tree Automata Com-
pletion”. In: Journal of Symbolic Computation 45 (2010), pp. 574–
597.

[GT95] Rémy Gilleron and Sophie Tison. “Regular Tree Languages and
Rewrite Systems”. In: Fundamenta informaticae 24 (1995), pp. 157–
175.

[Gen98] Thomas Genet. “Decidable Approximations of Sets of Descen-
dants and Sets of Normal Forms”. In: Proc. 9th RTA Conf., Tsukuba
(Japan), volume 1379 of LNCS. Springer-Verlag, 1998, pp. 151–165.

[Has] The Haskell Programming Language. http : / / www . haskell . org.
2012.

[Ler+12] X. Leroy et al. The Objective Caml system release 3.12 – Documenta-
tion and user’s manual. INRIA. http://caml.inria.fr/ocaml/. 2012.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL — A Proof Assistant for Higher-Order Logic. Vol. 2283.
LNCS. Springer, 2002.

[OR11] L. Ong and S. Ramsay. “Verifying higher-order functional pro-
grams with pattern-matching algebraic data types”. In: POPL’11.
2011.

[RV05] Pierre Réty and Julie Vuotto. “Tree automata for rewrite strate-
gies”. In: J. Symb. Comput. 40.1 (July 2005), pp. 749–794. issn:
0747-7171.


