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A Probabilistic Multi-class Classifier for Structural Health 

Monitoring 

Nazih Mechbal 1, Juan Sebastian Uribe 2
 and Marc Rébillat 3 

1,2,3
Processes and Engineering in Mechanics and Materials Laboratory 

PIMM, UMR CNRS 8006, Arts et Métiers ParisTech (ENSAM) 

151, Boulevard de l'Hôpital 75013, Paris, France 

Abstract. In this paper, a probabilistic multi-class pattern recognition algorithm is developed for damage 

detection, localization, and quantification in smart mechanical structures. As these structures can face damages 

of different severities located at various positions, multi-class classifiers are naturally needed in that context. 

Furthermore, because of the lack of available data in the damaged state and of environmental effects, the 

experimentally obtained damage sensitive features may differ from those learned offline by the classifier. A multiclass 

classifier that provides probabilities associated with each damage severity and location instead of a binary decision is 

thus greatly desirable in that context. To tackle this issue, we propose an original support vector machine (SVM) 

multi-class clustering algorithm that is based on a probabilistic decision tree (PDT) and that produces a posteriori 

probabilities associated with damage existence, location, and severity. Furthermore, the PDT is here built by 

iteratively subdividing the surface of the structure and thus takes into account the actual structure geometry. The 

proposed algorithm is very appealing as it combines both the computational efficiency of tree architectures and the 

classification accuracy of SVMs. The effectiveness of this algorithm is illustrated experimentally on a composite 

plate instrumented with piezoelectric elements on which damages are simulated using added masses. Damage 

sensitive features are computed using an active approach based on the permanent emission of non-resonant Lamb 

waves into the structure and on the recognition of amplitude disturbed diffraction patterns. On the basis of these 

damage-sensitive features, the proposed multi-class probabilistic classifier generates decisions that are in excellent 

agreement with the actual severities and locations of the simulated damages. 

Keywords:  Structural health monitoring; Support vector machine; Probabilistic decision tree; Pattern 

recognition; Wave diffraction patterns; Piezoelectric elements. 
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1 Introduction 

Structural health monitoring (SHM) is an emerging technology designed to automate the 

inspection process undertaken to assess the health condition of structures. In a smart structure, 

SHM systems may automatically process data, state regarding structural conditions, and highlight 

any need for human intervention [1]. The output of any SHM process should provide information 

regarding the type, the location, and the severity of the damage. Thereby, the SHM process is 

classically decomposed into four sequential steps: detection, localization, quantification, and 

prognosis. SHM involves many disciplinary fields (material science, structural analysis, signal 

processing, data mining, fracture mechanics, fatigue life analysis…) and has been the topic of 

extensive research efforts over the last thirty years. This technology is now progressing toward 

operational service and recent surveys have shown that even reluctant industry areas are now 

convinced that SHM is the key technology that will enable the transition from schedule-driven 

maintenance to condition-based maintenance [2]. Rresearchers are now exploring ways to adapt 

information technologies in order to reduce system monitoring costs while simultaneously 

broadening their functional capabilities. In this paper, we address the detection, localization and 

quantification steps of the SHM process. 

1.1 Damage-sensitive features generated using Amplitude Disturbed Diffraction Pattern 

SHM system operational results can be classified into four different sequential levels: detection, 

localization, quantification, and prognosis [1]. Several different techniques that depend on the 

structure’s material, on the technology used for acting and sensing, on the position, size, and 

nature of damage may be employed to perform SHM [3]. They could be sorted in two main 

categories: global or local.  

Among others global SHM methods, we can highlight vibration based approaches [4, 5]. These 

methods are categorized based on the type and nature of measured data. Significant examples 

include: model updating [6]; statistical time series and modal analysis [4]. In those approaches we 

seek to track changes in global structural parameters (mass, stiffness, flexibility, damping) and 

modal parameters (modal frequencies, associated damping values and mode shapes) by analyzing 

changes induced in the global dynamic behavior of a structure. Experimental identification of 

these dynamic properties indeed gives insight on the structural damage conditions, see [7, 8, 9] and 

references therein. Multivariate techniques have been also used in global vibration-based SHM: 

examples are the PCA (Principal Components Analysis) [10] and ICA [11]. In the case of nonlinear 

damage, specific vibration-based approaches have also been developed recently by the authors 

using cascade Hammerstein models [12]. An extensive overview of nonlinear global vibration-

based SHM methods can be found in [13].  

For local inspection, we can employ electro-mechanical impedance or displacement/strain as 

features indicating the presence of damage [3]. As these methods are local, their sensibility is 

strongly linked to the position of the sensors. In that category, we can also highlight acoustic 

emission or high frequency wave-based approaches that have the advantage to be sensitive to very 

small damages and offer the capability of propagation over a significant distance [14]. Evaluation 

of wave propagation on solids is one of the most successful techniques for damage monitoring 

[15]. One piezoelectric actuator emits periodic burst pulses exciting Lamb waves in the structure 

under inspection, and a set of sensors records signals, representing the respective structural 

responses. These signals are processed in order to extract damage related information such as 



location, size, orientation, type among others [14]. One of the outstanding advantages of using 

Lamb waves for SHM is that such waves can travel over relatively long distance and can be used 

to monitor various types of damage (as delamination, disbonds, fiber breaking, impact,...) [16].  

To construct measurements that are sensitive to the damage, we use in this work an active SHM 

approach based upon a correlation technique that relies on wave diffraction patterns recognition. 

Damage-sensitive features are generated thanks to the Amplitude Disturbed Diffraction Pattern 

(ADDP) phenomenon observed using permanent emission of selected non-resonant Lamb waves 

in the structure. ADDP assesses the disturbances that damage brings to the acoustic wave 

propagation in the structure. These disturbances depend upon the damage severity and position as 

well as on the frequency of the exciting signal. With an appropriate calibration procedure, it is thus 

possible to detect, localize, and quantify the damage using ADDP. This process has already been 

successfully used as a multi-touch sensing approach to tactile sensing [17]. The formulation of this 

process as a damage location one has been presented in [18]. In this paper, the ADDP process will 

be used to generate the damage-sensitive features that will allow detecting, localizing, and 

quantifying the damage. 

1.2 The need for a probabilistic multiclass classification tool in SHM 

The extraction of damage-sensitive features from measurements is a process that is most 

powerful when it is followed by pattern recognition [19]. Indeed, in a statistical pattern recognition 

paradigm for SHM, it is usually rather difficult to obtain data from damaged structures because of 

cost and of practical constraints. However, when such data are available, a whole new range of 

algorithms can be used [19] and the problem of damage detection, localization, and quantification 

can be cast as one of classification [20, 21] .  

As the structures under study can face damages of different severities located at various 

positions, multi-class classifiers are naturally needed. Furthermore, because of the lack of available 

data in the damaged state and of the environmental effects, the experimentally obtained damage-

sensitive features may differ from those learned offline by the multi-class classifier. A multiclass 

classifier that provides probabilities associated with damage existence and with each damage 

location and severity instead of a binary decision is thus greatly desirable for SHM. With such a 

classifier, damage locations can for example be ranked from the most probable to the least one, 

thus providing helpful guidance for the inspection task. Indeed, the reliability assessment of SHM 

systems is the key issue in ensuring their successful implementation. For example in aerospace 

maintenance procedure minimizing structural teardown to access regions to be monitored is one of 

the claimed benefits in using SHM rather than classical nondestructive evaluation (NDE) systems. 

Moreover, given that the diagnosis (class assignment) will be made on the basis of measured data, 

it is important that the chosen pattern recognition algorithm is able to accommodate a degree of 

imprecision commensurate with expected levels of measurement error and noise. This requires that 

the damage detection, localization and quantification SHM outputs' have to be assorted with a 

probability. This probability is then considered as a level of the trust in the SHM systems results.  

In this work, where a statistical pattern recognition paradigm for SHM is considered, we propose 

to provide a metric helping the condition-based maintenance decisions for in-service structures. 

This is possible by capturing during the training phase a part of the effect of environmental 

variability. This will represent the probability of how likely are SHM system outputs. Moreover, to 

ease the practical implementation, by simply thresholding these a posteriori probabilities at each 

node, the soft-decision approach can be converted to the conventional hard-decision approach.  



1.3 Towards probabilistic binary decision trees 

Formally, we seek for an algorithm able to solve a multi-class data classification problem in a 

manner that produces confidence probabilities associated with each class. This algorithm should 

also ideally take into account some a-priori knowledge related to the structure (geometry, 

material…) in order to speed up the diagnostic. Moreover, in this work, we propose to use pre-

defined class hierarchy. That means that the internal (non-leaf) nodes of the structured tree are 

chosen based on data where we built the hierarchy during training and then classify new samples 

by using the hierarchical tree. 

Generally speaking, there exist two main types of classifiers: hard and soft [22]. Hard classifiers, 

such as support vector machine (SVM) [23] , build a frontier between classes. They only label new 

unknown points with the class associated to the side of the frontier in which they fall, without 

giving any idea of the certitude of the decision or the degree of membership to that class. These 

classifiers are very appealing, because in general they tend to give very accurate predictions. The 

formulation of bi-class SVMs finds the hyperplane that separates the two classes by ensuring the 

largest margin with respect to each of the class. Extending this formulation directly to more than 

two classes is generally avoided due to the complex optimization equation that it leads to. Instead, 

the multi-class SVM problem is often dealt with by using an ensemble of two-class SVMs. Various 

strategies exists to achieve such combinations, the most popular ones being "one-against-one" [24, 

25], "one-against-all" [23, 26] and Error-correcting output codes (ECOC) [27]. A less known 

approach consists in dividing the problem in a hierarchical way where classes which are more 

similar to one another are grouped together into mata-classes, resulting in a Binary Hierarchical 

Classifier [28, 29]. Regarding hierarchical classification [30] where classes are organized in tree or 

a DAG-like structures (Directed Acrylic Graph), the damage localization classification problem 

can be naturally cast as a hierarchical classification problem where the classes to be predicted are 

organized into meta-classes (for example subdividing geometric zones to be monitored) hierarchy 

as a tree.  

Considering a local classifier per node approach [30], Madzarov [31] has come up with a simple 

and intuitive method based on building a binary SVM decision tree. Actually, a class binarization 

is the mapping of a multiclass problem into several two-class problems in a way that allows the 

derivation of a prediction for the multiclass problem from the predictions of the two-class 

classifiers. By selecting specific features, such as the distance between gravity centers of the 

different classes, an automatic graph is generated where at each node a bi-class SVM is trained 

[31].. However, such multi-class hard classifiers only provide one predicted class without any 

associated score indicating the confidence of the classification. On the opposite, soft classifiers 

like Logistic Regression (LR) [32] are able to build probability estimations for the belonging of an 

incoming example to all the classes, and then with this information they choose the most likely 

class. However, their classification performances are in general poorer than the hard classifiers 

ones. We are thus interested, in a multi-class context, by the probabilities estimation offered by 

soft classifiers while keeping the hard classifiers proved performances [33]. Standard SVMs do not 

provide such probabilities, but solutions to this issue were proposed. In a bi-class context, Platt [28] 

proposed a method to compute the probabilities 𝑝(𝑐𝑙𝑎𝑠𝑠|𝑖𝑛𝑝𝑢𝑡)  from SVM outputs. The 

approach consists in training the parameters of a sigmoid function to map the SVM outputs into 

probabilities. The underlying idea of this so-called Probabilistic SVM classifier (PSVM) is that 

when the distance from an example to the frontier is large, the example will very likely belong to 

that class. However all these works were developed for the bi-class problem only. By adapting 



Platt’s method to a multi-class context by means of a binary decision tree, it is thus in principle 

possible to extract probabilities from SVMs outputs while keeping the demonstrated performances 

of hard classifiers.  

This approach has been developed previously by the authors and successfully applied to 

automotive repairing backdrop [34]. Using damage-sensitive features generated through ADDP, 

this approach is extended here to detect, localize and quantify damages. Moreover, by assuming 

that the structure has an Euclidean geometry and topology (which is not restrictive as the structure 

can be subdivided in areas that satisfied this property), we propose to construct the decision tree by 

iteratively partitioning the structure along affine hyperplanes. By doing so, each leaf of the tree, 

represent, a geometric zone of the structure. This leads to a new algorithm: SVM geometric 

probabilistic decision tree (SVM-GPDT), where a multi-class probabilistic classifier is then built 

on the basis of this decision tree. Therefore, using this topological a priori knowledge, the SVM-

GPDT will provide fast classification (logarithmic complexity) along with associated posterior 

probabilities 𝑝(𝑐𝑙𝑎𝑠𝑠|𝑖𝑛𝑝𝑢𝑡). In a SHM context, this approach is very appealing because due to 

restrictions upon actually damaging structures, few data are usually available to train the classifier, 

and few data are needed to train this one. Furthermore, it is sufficient in several applications to 

only locate the most likely damaged area. For example, in aeronautical structures, it is satisfactory 

to give the damaged panel and an estimate of damage severity and then to use precise 

nondestructive testing and evaluation procedures. This algorithm thus offers an original and 

practical way to generate probability information related to the presence and severity of damage in 

each structural zone to be monitored. 

The paper is organized as follows: Section 2 describes the original SVM based multi-class 

classification approach proposed here, including the geometric approach used to generate the 

damage decision tree. Section 3 validates the proposed approach for damage detection, localization, 

and quantification experimentally. Concluding remarks and future perspectives are drawn in the 

last sections. 

2 A probabilistic multi-class classification algorithm 

2.1 Optimized soft margins Support Vector Machines with Gaussian kernels 

Classic support vector machines (SVMs) have proved to be very effective classification methods 

[35]. They are binary linear classification techniques which search for the hyperplane (in the 

hyperspace of attributes) that separates two classes in a training set. This hyperplane is found by 

maximizing the so-called margin, which is the distance from the hyperplane to the closest points, 

denoted support vectors. A common variant of classic SVM, is called soft margin and it consists of 

admitting some misclassified points in the training set to prevent the over fitting problem. 

However, we want to avoid too many points being misclassified. Thus we impose a penalty 𝐶 

that will penalize every misclassified example. 𝐶 can take values in the range 0 < 𝐶 ≤ ∞. A high 

value of 𝐶, means a strict classifier that doesn’t admit many misclassified points. On the opposite, 

a small 𝐶 means a very flexible classifier.  

Formally, we have a training set {(𝒙𝟏, 𝒚𝟏),… , (𝒙𝒏, 𝒚𝒏)}, where every point 𝒙𝒊 = (𝒙𝒊𝟏, … , 𝒙𝒊𝒎)
has 𝑚 attributes and one of the two possible labels 𝒚𝒊 = {−1 ,1}. A soft margin SVM classifier

will label a new unknown point 𝒙𝒕 according to the decision function:



 

 𝑦(𝐱𝑡  ) = 𝑠𝑔𝑛((𝒘. 𝒙𝑡  ) + 𝑤0)   (1) 

 

where 𝒘 and 𝑤0 are the hyperplane parameters to find on the basis of a training set.  

In SVM, kernels can be used to project the data into a virtual space where it might be easier to 

separate them [23]. The main advantage of kernel functions is that the only operation needed to be 

defined in the new virtual space is the inner product  𝜅(𝒙𝑖, 𝒙𝑗) = ⟨𝒙𝑖, 𝒙𝑗⟩
 
. Applying a kernel 

function together with the soft margin, a soft margin SVM classifier will label a new unknown 

point 𝒙𝒕 according to the new decision function [36]:  

 

 𝑦(𝐱𝑡) = 𝑠𝑔𝑛(𝑓(𝒙𝒕)) (2) 

where 𝑓(𝒙) is defined as: 

 

 𝑓(𝒙) =∑𝛼𝑖𝑢𝑖𝜅(𝒙𝑖, 𝒙) +  𝑤0

𝑚

𝑖=1

 (3) 

 

The values of 𝛼i and 𝑢𝑖 are found by solving the following constrained optimization problem on 

the basis of the training examples: 

 

 

{
 
 

 
 max

𝛼𝑖
[∑ 𝛼𝑖 −

1

2
∑ 𝛼𝑖𝛼𝑗𝑢𝑖𝑢𝑗𝜅(𝒙𝒊, 𝒙𝒋) 

𝑚

𝑖,𝑗=1

𝑚

𝑖=1
]

 

 

0 ≤ 𝛼𝑖 ≤ 𝐶,   𝑖 = 1,… ,𝑚

∑ 𝛼𝑖𝑢𝑖
𝑚

𝑖=1
= 0

 (4) 

 

In the case of Gaussian kernel the only tuning parameter is  𝜎2. A small value of  𝜎2  will lead 

to curved hyperplanes and a high value will constrain the hyperplanes to be straighter. In [37] it is 

shown that for some combinations of the hyperparameters (𝐶, 𝜎2), the Gaussian kernel tends 

towards the linear kernel, which makes the Gaussian kernel the most general method and one that 

would work for a large range of datasets. The hyper parameters (𝐶, 𝜎2) have to be optimized for 

every classification problem. In this work we used Lin's approach to optimize the choice of the 

coefficients (𝐶, 𝜎2) [37]. 

2.2 Probabilistic Support Vector Machines (PSVM) 

As stated before, SVM produce a value that is not a probability. Indeed, SVM only give a class 

prediction output that will be either +1 or −1. In order to extract the associated probabilities 

from SVM outputs, several approaches have been proposed [23, 28]. We will focus on Platt’s 

approach [28] who proposed a technique that has been largely used in the literature. He builds a 

sigmoid function between the outputs 𝑓(𝒙) of the SVM and the probability of membership 

𝑝(𝑦 = 𝑖|𝒙) to a class  𝑖, given the attributes of 𝒙. A simple bi-class example is shown in Fig. 1. 

The sigmoid will have the following parametric expression: 



 

 𝑝 (𝑦 = 1|𝑓(𝒙)) =  
1

1 + 𝑒𝑎𝑓(𝒙)+𝑏
 (5) 

 

where 𝑎 and 𝑏 are parameters computed from the minimization of the negative log-likelihood 

function on a set of training examples [28], 

 

 −∑𝑡𝑖  log 𝑝(𝑓(𝒙𝒊)) + (1 − 𝑡𝑖 ) log(1 − 𝑝(𝑓(𝒙𝒊)) 

𝑖

 (6) 

 

and 𝑡𝑖 is the new label of the classes: +1 becomes 𝑡+ and −1 becomes 𝑡−.  

This relabeling procedure is conducted so that the sigmoid fitting is softer. These new labels are 

computed using: 

 

 𝑡+ =
𝑁+ + 1

𝑁+ + 2
            𝑡− =

1

𝑁− + 2
 (7) 

 

where 𝑁+ and 𝑁− are the number of points that belong to class 1 and class 2 respectively. 

 

The PSVM as proposed by Platt [28], uses first a SVM classifier that has to be trained with a 

training set s1. Then the sigmoid parameters (𝑎, 𝑏) have to be found. To do so, it is recommended 

[28] to use a second training set 𝑠2. The sigmoid fit requires the inputs 𝑓(𝒙) and the labels 𝑡𝑖. 
We use 𝑠2 as a test set for the classifier. Thus we obtain the output values 𝑓(𝑠2). Knowing the 

labels of 𝑠2 (number of positives ones and number of negatives ones) we can calculate 𝑡+ and 𝑡− 

for this sub-training set. With values (𝑓(𝑠2), 𝑡𝑖(𝑠2)) we then find (𝑎, 𝑏) by optimizing Eq. (12) 

using a Newton’s method with backtracking. After these two steps, we have built a posterior 

probability estimator for the bi-class problem. Regarding the practical implementation of the 

algorithm, we have improved Platt's method [28] by introducing modifications based on ideas 

sketched by Lin and coauthors in [38]. The new algorithm is more precise and more efficient than 

Platt’s one in terms of computational cost. 

 

 
Fig. 1: Example of SVM classification and probability estimation for a 2D binary problem 

 

 



 

2.3 From bi-class to multi-class problems 

SVM were originally designed for bi-class classification problems and the passage to multi-class 

problems is still an on-going research area [39, 40, 41, 42]. There are two major approaches to 

solve this type of problems. The first and intuitive one named "All-together", consists in 

formulating a cost function with 𝑄 (the number of classes in our problem) hyperplanes [43, 44]: 

 

 

{
 
 

 
 

min
𝒘,𝜉

 
1

2
∑(𝒘𝒎. 𝒘𝒎) + 𝐶∑ ∑ 𝜉𝑖

𝑚

𝑚≠𝑦𝑖

𝑙

𝑖=1

𝑄

𝑚=1
 

 

(𝒘𝒚𝒊 . 𝒙𝒊) + 𝑏𝑦𝑖 ≥ (𝒘𝒎. 𝒙𝒊) + 𝑏𝑚 + 2 − 𝜉𝑖
𝑚

𝜉𝑖
𝑚 ≥ 0,      𝑖 = 1,… , 𝑙     𝑚 ∈ {1,… , 𝑄}  ∖  𝑦𝑖

 
(8) 

 

This optimization problem, with so many variables, is in general difficult to solve [39, 44]. 

Therefore, an alternate approach consists in dividing the multi-class problem in several binary sub-

problems. There are numerous methods that perform this subdivision. The most popular are One 

against one [24, 25, 45], One against all [23, 26], and Error-correcting output codes (ECOC) [27, 

46].  

Yet another approach for tackling the multiclass classification problem utilizes a hierarchical 

division of the output space i.e. the classes are arranged into a hierarchical structure: Directed 

Acyclic Graph (DAG) [33], or Binary decision Trees (BDT) [31]. In the tree structure, The tree is 

created such that the classes at each parent node are divided into a number of clusters, one for each 

child node. The process continues until the leaf nodes contain only a single class. For sake of 

shortness, we will only focus on the BDT method, because it is the one we will use in the sequel. It 

is important to note that the BDT processing time is smaller than the other methods because the 

depth of the decision tree is of order log2(𝑄)  since at every level the tree eliminates 

approximately half of the remaining classes.  

 

In [31], it is proposed to build a binary decision tree in which at every node the remaining 

classes are separated in two subgroups 𝑔1 and 𝑔2. A SVM classifier decides to which subgroup 

the new point belongs to, and hence in which direction to move. In order to build the tree (the first 

step in the classification procedure) a clustering algorithm divides all the 𝑄 classes into sub-

groups 𝑔1 and 𝑔2. The algorithm calculates the gravity centers of all classes. The two classes with 

the biggest Euclidean distance from each other are assigned to each of the sub-groups. Then the 

algorithm checks the closest class to one of the sub-groups, this class is assigned to that sub-group, 

their gravity center is recalculated with the new points that have just been added. This is repeated 

until all classes have been assigned to one of the groups. For each sub-group the clustering 

algorithm is repeated until there is no more than one class per sub-group. 



 

 
Fig. 2: Example of a probability decision tree 

2.4 Probabilistic decision trees (PDT) 

In this paper, we propose to use a binary decision tree following the idea introduced by 

Madzarov [31] presented in the previous section. But instead of using a simple SVM classifier at 

each node, we use a SVM classifier associated with a sigmoid function to estimate the probability 

of membership to each sub-group in the node, as shown in Fig. 2.  

We can then build a probability function for each leaf, knowing the path that we have to follow 

to reach it. Note that there is only one way to get to a leaf. It follows that the probability functions 

are unique for a trained tree: 

 

 𝑝(𝑦 = 𝑖|𝑥) =∏𝑝𝑛𝑜𝑑𝑒 (ℎ,𝑙)

𝑙𝑒𝑎𝑓

ℎ=1

 (9) 

 

The parameter ℎ represents the level of the tree (ℎ = 1 corresponds to the root node). The 

previous expression states that the probability of membership of an element in the class 𝑖 is 

calculated as the product of the probabilities of the decisions taken in all the nodes visited until 

reaching the leaf. By 𝑛𝑜𝑑𝑒(ℎ, 𝑙) we mean the 𝑙𝑡ℎ node in the ℎ𝑡ℎ level. For a given tree, we 

know the probability functions of the 𝑄 classes. For future unknown cases, we just have to 

evaluate the 𝑄 analytical functions and then choose the class with the highest score. However, 

one of the most interesting issues of the PDT is that we can have more than one prediction for one 

example. We can have a list of all the possible classes, ordered following their plausibility, which 

is measured with the posterior probabilities estimation. 

2.5 A geometry based probabilistic decision trees (GPDT) 

The probabilistic decision tree, described previously, can be built using many different criteria 

[31]. For example using the Euclidian distance between the gravity centers, the margin obtained by 

pairwise SVM, or some physical or functionalities criteria (mechanical, geometrical, etc.). This 

degree of freedom could be very helpful, because in this way we can introduce knowledge on the 

system that might help the classification task. In the case of damage location and due to 

restrictions upon actually damaging structures, it is sufficient in several applications only to locate 

the most likely damaged area instead of having the exact damage location. We thus propose here to 

build the probabilistic decision tree by partitioning the structure in subparts and to generate 

decisions associated with each of these geometrical subparts. 



 

Let’s consider that the structure has a geometrical topology that can be partitioned iteratively 

along affine hyperplanes. Then, one can constrain the decision tree to generate decision boundaries 

following these specific axes. The method that we propose is based on a recursive division, at each 

node of the decision tree, of the upstream classes in two disjoint groups with respect to their spatial 

location. The structure will thus be subdivided into small geometric zones to be monitored and the 

groups are simply determined according to their zone membership with respect to the symmetry 

axis. This geometric tree will furthermore facilitate the training step by giving an automatic and 

systematic procedure to perform it. In summary, the decision tree is deduced here from the 

specifications of the geometric boundaries of the structures and each of its leaves will represent a 

subpart of the structure. 

2.6 Illustration of the SVM-GPDT algorithm 

The whole SVM-GPDT algorithm is illustrated within a simple example. Let’s consider a 

rectangular structure that is divided in 8 subzones to be monitored (Fig. 3(a)). In addition to the 

localization step, we also add a detection step but no quantification step in this geometric based 

probabilistic decision tree. Suppose that a database containing examples for each zone in the 

damaged and undamaged states has been constructed. 9 classes are considered: the 8 zones in 

presence of a damage (classes 1 to 8) and the undamaged class with healthy examples of all the 

zones (class 0). The first step of the tree is the detection step, where the classifier is trained to 

generate a decision with respect to the presence or not of damage. If a damage is detected, then 

decisions are taken recursively by following the symmetry axes of the structures to localize it. 

Upstream classes are divided in two groups by clustering symmetrical zones as shown in Fig. 3(a). 

The logical and geometric depiction of this tree is illustrated in Fig. 3(b). As we are dealing with 

PSVM classifier, the posterior probability of a damage to belong to each zone is also available at 

the end of the process (see Fig. 3(e) and Fig. 3(d)). 

 

 
Fig. 3: SVM-GPDT example: (𝒂) rectangular structure with 8 zones and their associated axes of 

symmetry. (𝒃) GPDT construction. (𝒄) spatial damage probability distribution for zone 2. 



 

3 Damage detection, localization, and quantification on an active composite 

plate 

3.1 Experimental setup  

The proposed damage detection, localization, and quantification method is applied to a free-free 

composite plate (300 × 400 × 2.4 𝑚𝑚) with three circular piezoelectric buzzers of diameter 

20 𝑚𝑚 bonded on its surface (Fig. 4.). These active elements can work either as actuators or 

sensors [47]. The structure is made up of 8 layers carbon epoxy material all oriented along the 

length of the plate (i.e. at 0°). The mechanical properties of the composite material are given in 

Table 1.  

 

Property 𝐸11 = 𝐸22 
(GPa) 

𝐸33 
(GPa) 

𝐺12 = 𝐺13 = 𝐺23 
(GPa) 𝜈21 

𝜌 

 (𝐾𝑔/𝑚3) 

Value 65.7 8.1 5.2 0.02 1554 

Table 1: Mechanical properties of the composite material 

 
Fig. 4: The smart structure and the test bench. 

The experimental setup and the actual smart plate are presented in Fig. 4. The piezoelectric 

elements are arbitrarily positioned (Fig. 4) but care is taken to avoid putting them on the axis of 

symmetry, which may introduce confusions in the localization process. For the present application, 

only one emitter is used.  

As we cannot impose real damage in a reversible manner, we have experimentally simulated its 

effect. In this work, local masses were added on predefined area of the structure as a mean of 

simulating damage. The justification behind that approach was that local stiffness reductions will 

reduce the natural frequencies and an alternative way of reducing the frequencies might be to 

locally increase mass. Therefore, to simulate damage at different locations and with different 

severities 𝑆1 and 𝑆2, the plate was divided into damaged zones (Fig. 5) and two calibrated masses 

(𝑆1: 𝑚1 = 20𝑔 and 𝑆2: 𝑚2 = 10𝑔 ) have been positioned on each zone. As each damage scenario 

is reversible, this also allows monitoring the repeatability of the measurements. The number of 

damaged zones has been first fixed to 16 zones. Then to test the spatial selectivity of the approach 

we have increased the number of monitored zones to 32 (Fig. 5). 



 

3.2 Features extraction  

To extract damage-sensitive features, we use an active SHM approach based on a correlation 

technique that relies on wave diffraction pattern recognition. This approach, developed by the 

authors for tactile sensing purposes [48] is diverted here to be used to generate damage-sensitive 

features. 

 

 
Fig. 5: The predefined damage zones: (𝒂) 16 damaged zones and (𝒃) 32 damaged zones with two 

levels of severity. 

 

 
Fig. 6: (𝒂) Excitation signal (𝒃) Time response (c) FFT response 



 

The strategy retained here consists in monitoring the acoustic wave propagation (or the energy 

carried out by the Lamb wave) that can be affected by impact damages. Considering that the 

energy propagation is disturbed by the presence of damage, the diffraction signal can then provide 

the information needed to locate and quantify it. Following this observation, we use an active 

damage monitoring process based on the Amplitude Disturbed Diffraction Pattern (ADDP) 

phenomenon observed using the permanent emission of selected non-resonant Lamb waves (>
20). Lamb waves at different frequencies have different propagating velocities and ratios between 

the normal and the shear components. Therefore, they provide distinct diffraction behaviors when 

damage occurs on the plate. With an appropriate analysis and calibration procedure, we are able to 

locate the damage position and to quantify it. 

For our application, an excitation signal composed of 31 frequency components distributed from 

20 kHz to 100 kHz has been constructed with a sampling frequency of 2 MHz and duration of 

1 ms as depicted in Fig. 6. The number of the chosen frequencies is a tuning parameter selected to 

discriminate between features at numerous predefined damage positions. The reliability of this 

process depends highly on this choice. Following the approach developed in [48], we use the 

contrast value of the ADDP image as a criterion to validate a particular frequency excitation. In the 

sequel, we propose to use as damage features, the FFT (Fast Fourier Transform) of the signal 

received by each sensor 𝑅1 and 𝑅2.  

Given that each sensor perceives different parts of the information, we have concatenated the 

signals coming from both sensors, obtaining a vector containing 400 attributes. 

 

𝑥𝑖 = [ 𝑓1(𝑅1), 𝑓2(𝑅1),… , 𝑓200(𝑅1), 𝑓1(𝑅2),… , 𝑓200(𝑅2)]   𝑖 = {1,… , 𝑛} 
 

In terms of SVM (see Section. 2.1), the labels 𝑦𝑗 associated with the examples 𝑥𝑖 will be the 𝑄 

zones in which the plate is divided (𝑄 = 16 or 32), as shown in Fig. 5. 

3.3 SHM framework and SVM-GPDT classification architecture 

The damage detection, localization and quantification algorithm proposed here is a sequential 

process that can be described by three main steps: calibration, learning and identification (Fig. 7). 

In the proposed framework, the first step consists in training the system. Then, when damage is 

detected, we first quantify its severity and then locate it. The general architecture of the classifier 

is illustrated in Fig. 8. 

 
Fig. 7: The SHM classification based framework 



 

The detection test is a simple probabilistic SVM, where we have to choose between two classes 

damaged and undamaged. As the number of severity classes are smaller than the number of 

damaged location (here only 2 classes), we have decided to perform an SVM-PDT to select 

which severity class we are concerned with and then to locate the damage. Knowing that SVM 

performances are heavily dependent on the hyper-parameters (𝐶, 𝜎2)  being used, it is 

recommended to perform a model selection procedure on each database to be learned (severity, 

location). This has been done according to Lin’s algorithm [37] designed to choose the optimal 

hyper-parameters. The procedure for training is described in Fig. 8(b).  

 

 
Fig. 8: General Architecture. (𝒂) Severity-zone classification. (𝒃) Adaptation strategy 

3.4 Probabilistic damage localization 

To assess the performances of the proposed geometric classification approach, we have applied it 

first to locate damages on the plate partitioned into 16 zones. The idea in this subsection is to show 

how the posterior probability of a damage location is constructed. In these tests, only one type of 

damage (𝑚1 = 20 g) has been considered. The database is composed of 96 normalized measures 

made on the plate (6 repetitions for each position, 𝑛 = 6). In Fig. 9(a), an example of damaged 

features (from zone 1 and 16) used to train the classifier is shown. One can notice from these 

signals, that the difference is not obvious and thus that it is hard to distinguish between them. 



 

 
Fig. 9: Damage localization in zone 1: (𝒂) damage features, (𝒃) spatial probability distribution 

 

The SVM-PDT classifier has been trained using a k-fold Cross-Validation method [49], with 

𝑘 = 4. So the classifier is trained 4 times, using 75% of the data to train the classifier and the 

remaining 25% of the points for testing. Once trained, the probability associated with each 

damage position can be shown on a figure with a color amplitude scale. The algorithm had a 

performance of 88% of examples well classified (i.e. well localized here) using a Gaussian 

kernel and the optimal hyper-parameters found after the optimization mechanism, which are 

𝐶 = 106 and 𝜎 = 103.  

 

 
Fig. 10: GPDT decision boundaries for damage locate in zone 1 



 

As presented in Section 3, a geometric approach based on the recursive generation of decision 

boundaries following symmetries along affine hyperplanes is used to generate the GPDT. As 

results, we depict in Fig. 9(b) the damage posterior spatial distribution provided by our algorithm. 

For this damage location test, snapshots at different nodes of the tree are illustrated in Fig. 10. The 

upstream classes are divided in two groups by clustering symmetrical zones. If we analyze the 

decision boundaries generated to locate the damage in zone 1, one can see from Fig. 10 that the 

symmetry axes are alternatively chosen along 𝑌  axis and 𝑋  axis. This automatic way of 

subdividing the structure and constructing the tree is not mandatory and alternate splitting 

strategies can be chosen.  

 

In Fig. 11(a), the probability distribution over the plate is shown for a test that was made with a 

damage located in zone 13. This test shows one of the advantage of the proposed pattern 

recognition approach, which is that not only the most likely damaged zone is given but also zones 

with small damage probability. Indeed, we can notice from Fig. 11(a), that the neighbor's zones, 

have small probabilities of being the damaged zone. This information can be useful in the decision 

and prognostic steps as it can help improving the specification of robust bounds. The tree 

construction with the respective posterior probability at each node is illustrated in Fig. 11(b). To 

evaluate the posterior probability of a damaged zone, we use equation (9) by following the path 

generated to reach it. Note that there is only one way to get to a leaf (or equivalently a damaged 

zone). As depicted in Fig. 11, the algorithm detects and locates the damage in zone 13. The 

posterior probability associated with this diagnostic is 𝑝(𝑧𝑜𝑛𝑒 13|𝑢) = 0.5948 for zone 13 and 

𝑝(𝑧𝑜𝑛𝑒 9|𝑢) = 0.1301 for damage in zone 9.  

 

 
Fig. 11: (a) Probability of damage location. (b) Probability path for damage in zone 13. 

 

3.5 Probabilistic damage localization and quantification 

We present now the results of the SVM-GPDT for damage localization and severity 

quantification. The plate is now divided in 32 zones (Fig. 5(b)) and electromechanical tests with 

added masses, simulating damage, have been conducted. We performed 8 tests (𝑛 = 8) for each 

zone, using the two masses 𝑚1 = 20𝑔 and 𝑚2 = 10𝑔. and hence two severity (𝑆1 and   𝑆2) 
Therefore, our database has now 512 entries (32 𝑧𝑜𝑛𝑒𝑠 ×  2 𝑚𝑎𝑠𝑠𝑒𝑠 ×  8 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠).  



 

Following the architecture presented in Figure 12, our first concern was to determine the severity 

of the damage. To do so, all the examples from the tests performed with the mass 𝑚1 have been 

assigned to a class, and the tests performed with the mass 𝑚2 to another class. This way, we have 

a simple bi-class probabilistic SVM classifier to quantify severity. Again, we selected the Gaussian 

kernel and used Lin’s algorithm [50] to determine the optimal hyper-parameters. The algorithm 

had a performance of 99.42% of examples well classified in terms of severity with  𝐶 = 106 and 

𝜎 = 103.  

After the determination of the severity of the damage, we proceed to its localization. A second 

classifier is trained, using a procedure similar to the one shown in Fig. 8(b), the only difference 

being that we will only present the data for one type of severity to this classifier. This makes the 

task easier for the classifier, because different severities have different features and it will be very 

hard to the classifier to learn different signatures pointing to the same zone. So, it is better to only 

have a single signature for each zone, knowing the severity of the damage. 

 

 
Fig. 13: Normalized location probability for a damage with severity 𝑆1 

 

For severity 𝑆1, we had a localization performance of 65.62%, using 𝐶 = 106 and  𝜎 = 102. 

Using the test subset, normalized probability of several damage locations are depicted in Fig. 13 

showing the effectiveness of the proposed approach.  

 



 

 
Fig. 14: Normalized location probability for a damage with severity 𝑆2 

 

For severity 𝑆2 we obtained a performance of 62.5%, using 𝐶 = 105 and  𝜎 = 103. Results 

for some damage location are shown in Fig. 14. As expected, results for severity 𝑆1 are better 

than those for 𝑆2. This was expected as the damage effects on measured signals are less significant 

with a smaller mass. Moreover, for some damaged zones as shown in Fig. 14(b), the location 

results could be misclassified in a neighboring zone, which is not such a problem. This 

classification error is related to the accuracy of the ADPP process used to generate damage 

features. Better results can be obtained with more frequencies in the excitation signal in order to 

discriminate some spurious features that can appear with wave reflections. 

4 Discussion 

4.1 Availability of a learning database 

In the proposed approach, monitoring small zones facilitate the diagnostic but assume the 

availability of a damaged database for each zone. Moreover, good spatial resolutions suppose that 

several damaged structures are used in order to construct the precise database needed for the 

learning process. This is generally unrealistic unless the structures are cheap and easily available. 

To overcome this problem, one can simulate experimentally the damage effect instead of imposing 

a real one on the structure. For example, by changing locally in a reversible manner some of the 

characteristics of the structure (stiffness, natural frequencies …). The problem of acquiring data 

for each damage location can also be alleviated by using first, a high-fidelity physical model of the 

structure, usually by means of finite element analysis, that simulates the entire physical 



 

phenomenon: non linearity, degradation, and environmental operational conditions. And then, a 

surrogate model could be derived from the precise one to avoid a large number of heavy 

computations. This lower fidelity model will approximate the response of the complete one in an 

efficient manner and generate sufficient data for the learning process [51].  

4.2 Hierarchical or "flat" classification for damage monitoring? 

Notionally, one can substitute hierarchical classification with "flat" one (standard binary or 

multiclass classification). Indeed, if we overlook our geometric class structure and replace the 

hierarchy with a set of classes, we can perform a multi-class classification problem. This means 

that all the relevant information that we have introduced through our knowledge about the damage 

monitoring problem and the structure geometry are ignored. In order, to show how this geometric 

hierarchical class structure boosts the performance of the damage localization, we have performed 

new experiments by comparing the performance of our classifier against other known classifiers. A 

multiclass SVM, using the one against all (SVM-OAA) method was chosen. This flat classifier 

was trained with all the samples from the training base (16 zones and 𝑆1 severity), doing a k-fold 

cross-validation method with 𝑘 = 4. The classifier has good results when testing with training 

data (91%) but difficulty for generalization as shown in Fig. 15. In this figure the two classifiers 

had to classify new test points generated with slightly different environmental conditions. The 

damages have been introduced by the small weight that has been positioned at: (𝑎) the center of 

zone 9, (𝑏) the center of zone 11 and (𝑐) at the frontier between zones 12 and 16. As it can be 

seen, even the SVM-GPDT misclassified damage location, one could give credit to these partially 

correct results by checking the neighbor and the top-level zones given by the geometric hierarchy 

structure. Therefore, the maintenance procedure is facilitated and enhanced. 

 
Fig. 15: Predicted damaged zones for the SVM-OAA (white cross) and SVM-GPDT. 



 

4.3 Multi class or multi-label classification problem? 

The purpose of the present paper is to derive an original answer to the problem of damage 

detection, localization and quantification. A question that can be raised is whether a multi-class 

formulation of this problem is more appropriate than a multi-label formulation. The difference 

between the notions of class and label lies in the fact that an example can belong to only class, but 

can have multiple labels. Multi-label classification is thus an extension of multi-class classification 

where data can have one or more labels [52]. Due to its great potential applications, multi-label 

learning has now been receiving more and more attention from many fields [53, 54, 44]. 

According to [55, 30], in the context of hierarchical classification, most approaches could be called 

multi-label. Indeed, if we recall the tree class structure presented in Fig. 3b, and suppose that the 

output of the classifier is the class {1}. Then it's natural to say also that the classifier have 3 

outputs because class {1} belongs to classes {1  3} and {1 3 5 7} too. Therefore, with this 

simple definition, any hierarchical classification could be considered multi-label in this sense. 

Hierarchical multi-label classification algorithm is still a challenging problem and most 

approaches consider the case where it can be assigned more than one class at any level of the tree 

[56].  

Going back to the SHM problem, the output of SHM systems is a vector with 3 features: (i) 

damage zone, (ii) damage severity, (iii) damage type. The definition of each features is 

straightforward: several damage locations, several severity levels (BVID , VID) and different 

damage types (impact, debonding, delamination, …). With that in mind, it comes out that a class 

can be defined in a unique manner: one zone, one severity level and one type. With this class 

definition, the only overlapping examples are those lying along the frontier between two classes 

for a given feature. For example, damage could be located at the frontier between two zones or 

having a severity level between two pre-defined levels. These overlapping examples are thus a 

direct consequence of the a priori discretization of the features location and severity that are, in 

reality, continuous and not an intrinsic property of the problem under study. From the authors point 

of view, the SHM problem can therefore be naturally cast as a multiclass problem and not as a 

multi-label one. From that point of view, the proposed classification algorithm can be seen as an 

implicit probabilistic multi-label method where labels exist at the frontiers between classes. 

However, another point of view would be to define classes in relation to the different features. 

Following that idea, there will be one class for each damage location, one class for each damage 

type, and one class for each damage severity. Knowing this, there is a natural overlap between the 

different classes: for example, damages located in a given zone can be of distinct types and of 

severities. So with this definition of class, classes are indeed labels and the problem to face is a 

multi-label one. In Section 4.1, the consequence of spatial discretization is studied. It is shown that 

if the localization result has an ambiguity between neighborhood zones then by looking to the 

node just above in the decision tree, a macro-damaged zone can be defined. This is still a helpful 

guidance for the inspection task as afterwards the damage location can be refined by using 

traditional inspection techniques. 

4.4 Spatial resolution versus computational cost 

The performances of the classifier in term of spatial selectivity depend heavily on the method 

used to generate features and the availability of the damaged learning database. Increasing the 

spatial resolution will increase the training and testing times. The training time depends on the 



 

number of classes 𝑄 and the number of training samples. However, increasing the number of 

zones will enhance the detection process by reducing the rate of false damage localization. To 

illustrate this point, we have given to the two classifier (16 and 32 classes or zones), "unknown" 

damages to detect and locate. These damages are new experiences performed by introducing the 

mass 𝑚1 = 20𝑔 on the plate with 16 classes at positions located on the edge of the separation 

zones and then this damage is monitored with 32 zones. In Fig. 16, a result is presented. We can 

notice that as expected the ambiguity of localization has decreased with the increase of the number 

of zones and consequently an increase of computational cost. We can also notice that, in general, 

the output of both classifiers is inline with the actual damage location. Therefore, this should be a 

tradeoff that one have to deal with when the applying such approaches in practice. 

 

 
Fig. 16: Spatial selectivity, number of zones and damage localization 

4.5 Localization before quantification, or the opposite? 

In the literature, it is very often stated that the localization step should occur before the 

quantification phase [1]. However, in the present work the quantification step has been performed 

before the localization one and gave excellent discrimination results between the two damages of 

different severities (added mass of 20 𝑔 and the added mass of 10 𝑔). Moreover, getting one and 

only one signature for each zone makes easier the classification task. If the localization is done 

first, different signatures will be assigned for the same localization. Those signatures could be very 

different if the gap between the severities becomes higher. It may even happen that the classifier 

could not find similar attributes in these groups of mixed severities, which would lead to poor 

classification performances. Another solution could have been to perform first the localization, and 

then, at the end of the GPDT to add a bi-class classifier to each leaf to assess the severity of the 

damage. However, this approach suffers from the fact that instead of one classifier needed for the 

present approach, one needs now 32 classifiers. So, from a computational point of view, this 

approach does not seem to be justified here. It can nevertheless be interesting, as a perspective, to 

implement a “localization then quantification” version of the present algorithm to compare its 

results with the present results.  



 

5 Conclusion 

In this paper, an original process for damage detection, localization and quantification on smart 

mechanical structures instrumented with piezoelectric active elements has been presented and 

validated experimentally. The SVM Geometric Probabilistic Decision Trees (SVM-GPDT) 

constitutes an original approach to the multi-class probabilistic damage classification problem. 

This algorithm takes advantage of the decision tree architecture and of the posterior probability 

provided by PSVM. At each node of the PDT, SVM classification associated with a sigmoid 

function is performed to estimate the probability of membership to each sub-group. A probability 

function is then built for each leaf by following the path that the PDT has generated for it. For each 

branch the outputs of all the nodes composing the branch are combined to lead to a complete 

evaluation of the probability when reaching the final leaf (representing the class associated with 

the branch). Formally, we thus presented and validated an interesting solution to solve a multi-

class data classification problem in a manner that produces confidence probabilities associated 

with each damage feature. Moreover, the availability of the damage posterior probability will 

facilitate embedded damage monitoring. The SHM process will be trained offline and assessed 

online by calculating in real time the probabilities of having damages.  

The approach has been tested experimentally on a composite plate, giving reliable predictions in 

terms of detection, localization and quantification. For real, applications, this approach is 

interesting as the chosen damage-sensitive feature is not very sensitive to border conditions, and 

the excitation with non-resonance frequencies will not accentuate the damage progression and 

impact the durability of the monitored structure. 

Regarding the classification performances of the prosed method, it first advantage lies in the fact 

that it allows not just for classification, but for classification with an associated posterior 

probability. The second one is that the classification procedure proposed here is relatively fast as it 

is of logarithmic complexity. The third one is that the notion of geometry is introduced to the 

classifier. Because SHM is a problem in the real space, we can help the classifier by giving it some 

a-priori information that might discard data that is not relevant in a particular classification process, 

reducing the data to be treated, the time for treating it and the possibilities of mistakes. The last 

advantage is that as it relies on SVM, relatively few examples are needed for training. Regarding 

drawbacks, the first one is that the proposed method is based on discrete classes and thus imposes 

quantification of the different data features. The second one concerns the fact that in order to train 

the method example of damaged states are needed, and such examples are in practice not widely 

available. Actually, it is well known, that the main issue when applying pattern recognition 

approaches to damage monitoring is to construct a database of damage conditions. Indeed, the 

damage diagnostic system will not perform better than the data used to build it. As we need to 

avoid damaging the structure, two approaches can be used: multi-physical modeling and/or 

simulation of damage effects. It's this last approach that was used in this work. Another drawback 

is related to training set of data and the classifier generalization performances. Every classifier has 

its limits regarding the generalization capacity. Further tests should be performed in order to have 

a more precise idea about its capacities. We think that this drawback might be mitigated thanks to 

the probabilistic output. When the classifier is completely lost, he should provide a low probability 

associated to the uncertain prediction. The last drawback is linked to the training stage. Indeed, 

there is in reality, two training stage: the training of the SVMs of each node, and the training to get 

the probabilities out of each node. Thus, the previously mentioned advantage of the method (which 

is the need of few training points) has to be evaluated by considering that drawback. 



Suppose now that actual data related to damaging locations are available to train the machine 

learning diagnostics. Then, another problem rise which is how to elaborate features that could 

reliably discriminate between damage and undamaged states. The ADDP process has been used 

within this paper but maybe some other damage-sensitive features will perform better.  

Another useful issue in a data mining is to have access to posterior probability associated with 

each damage classification. The approach presented throughout this work proposes a solution to 

the multi-class data classification problem in a manner that produces confidence probabilities 

associated with each damage feature. Each damage feature is classified from the most probable 

one to the least probable one. This is very interesting because this information can be valuable in 

the decision and prognostic steps and can help in improving the specification of robust bounds. 

Moreover, this knowledge could help the maintenance procedure by crossing with expert data.  
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