Detection number of bipartite graphs and cubic graphs - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2014

Detection number of bipartite graphs and cubic graphs

Résumé

For a connected graph G of order |V(G)| ≥3 and a k-labelling c : E(G) →{1,2,…,k} of the edges of G, the code of a vertex v of G is the ordered k-tuple (ℓ1,ℓ2,…,ℓk), where ℓi is the number of edges incident with v that are labelled i. The k-labelling c is detectable if every two adjacent vertices of G have distinct codes. The minimum positive integer k for which G has a detectable k-labelling is the detection number det(G) of G. In this paper, we show that it is NP-complete to decide if the detection number of a cubic graph is 2. We also show that the detection number of every bipartite graph of minimum degree at least 3 is at most 2. Finally, we give some sufficient condition for a cubic graph to have detection number 3.
Fichier principal
Vignette du fichier
dmtcs-16-3-20.pdf (141.85 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01110978 , version 1 (04-11-2015)

Identifiants

Citer

Frédéric Havet, Nagarajan Paramaguru, Rathinaswamy Sampathkumar. Detection number of bipartite graphs and cubic graphs. Discrete Mathematics and Theoretical Computer Science, 2014, Vol. 16 no. 3 (3), pp.333-342. ⟨10.46298/dmtcs.642⟩. ⟨hal-01110978⟩
208 Consultations
1272 Téléchargements

Altmetric

Partager

More