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Nonlinear operators on graphs via stacks

Santiago Velasco-Forero Jesis Angulo

MINES ParisTech
PSL-Research University
Centre de Morphologie Mathématique

Abstract. We consider a framework for nonlinear operators on func-
tions evaluated on graphs via stacks of level sets. We investigate family
of transformations which includes adaptive flat and non-flat erosions and
dilations. Additionally, we note the connection to mean motion curvature
on graphs. Proposed operators are illustrated in the cases of functions
on graphs, textured meshes and graphs of images.

1 Introduction

Recent years have witnessed an enormous growth of interest in the description
and analysis of problems via similarities or dependencies between data elements.
A common way to represent this structure is to use graphs, so that data ele-
ments are indexed by graph nodes, and the strength of dependences between
pairs of elements is represented by corresponding weighted graph edges. In this
paper, we analyse nonlinear (morphological) operators in the context of discrete
signal processing on graphs [1]. Our framework is used to extend the traditional
adaptive (non-flat) morphology on images to more complex structures as sets
of images, meshes, point clouds [2] and so on. In graph-based modelling, digital
images are a particular case, where the pixel information is represented by the
two-dimensional rectangular grid, and pixels correspond to graph nodes related
by links according to the four or eight adjacent neighbourhood.

On the one hand, we note that in the literature, one can find some works
about nonlinear filters on graphs and hypergraphs, particularly mathematical
morphology operators in the algebraic sense [SJ4U5J6I7IR9], where the couple of
nonlinear operator (dilation/erosion) are maps from two different lattices, i.e.,
they are maps “from nodes to edges” or “edges to nodes”. On the other hand,
some regularisation techniques and nonlinear operators have been introduced on
function evaluated on graph via directional derivative [10] [I1] [12] or discrete
version of the p-Laplacian [13]. We adopt a different viewpoint, our approach is
inspired from the signal processing approach on graphs [T4/I5I6I17]. Thus, we
firstly review graph signal decomposition by upper-level sets, convolution and
diffusion on graphs, and then we present a general formulation of flat and non-flat
morphology on graphs, a family of nonlinear transformations and its connection
to mean curvature motion on graphs [I8T7IT9]. Finally, the experimental section
includes some examples to illustrate the interest of our method.



2 Convolution and morphology by stacks on graphs

2.1 Notation

We start by introducing the notation used throughout this paper. The ob-
jects under study are consider as the nodes of the graph G. A simple, con-
nected, undirected, and weighted graph G = (V, F) consists of a set of nodes
V ={1,2,...,N} and edges E = {(n,m,wnm)},n,m € V, where (n,m, wnm)
denoted an edge of weight w,,, between node n and m. The degree d,, of a
node n is the sum of the edge-weights connected to node n, and the degree
matrix of the graph consists of degrees of all nodes arranged in a diagonal ma-
trix D = diag{dy,ds,...,dy}. Denote the maximal and minimal degrees by
dy = max;ecy d; and d_ = min;eyp d;. The adjacency matrix W of the graph is
an N x N matrix with W(n, m) = wy,, the combinatorial Laplacian matrix is
L = D—W and the graph Laplacian £ = I1—D~/?WD~!/2 is a generalisations
of the Laplacian on the grid, where frequency and smoothness are relative to W
and interrelated though these operators [20]. A graph signal is defined as a scalar
valued discrete mapping f : V — R, such that f(n) is the value of the signal on
node n. Thus a graph signal can also be represented as a vector f in the space
of functions from V to R, denoted by V, with indices corresponding to the nodes
in the graph. Additionally, we often analyse operators transforming signals eval-
uated on graphs, for instance ¢ : f — ¢(f), in this case we say that ¢ € V x V.
Finally, the graph Fourier transform f of a function f € V is the expansion
of f in terms of the eigenvectors of the graph Laplacian, denoted by A;, with
l=1,---,N. More precisely, it is defined by (1) := (f, A)) = 25:1 Af(n)f(n),
where according to [14] adopts the conjugate-linear in the definition

Definition 1. The upper level set (ULS) of £ € V with level A € R is defined
by
x(E,A) ={veV:f(v) > A}

The set of ULS constitutes a family of decreasing sets: A > pu = x (£, A) C x(f, p)
and x(f,A) = N{x(f,x),n < A}. Any graph signal f € V can be viewed as
a unique stack of its cross-sections, which leads to the following superposition
description.

Definition 2. The threshold-max superposition of £ € V is defined by:
f(n) = \/ {n € x(f, )} (1)
AER

Similar to the image description as a topographic surface in [21I22123], we
consider here the alternative stacking reconstruction using a numerical sum of
the characteristic function of upper level sets.

! For a given matrix W = [W (i, j)], the conjugate of W to be W* = [-W(4,1)], i.e.,
W™ is derived from W by transposing and negating.



Definition 3. The threshold-linear superposition of f € V is defined by:

+o00o
f(n) = / X(E A)(m)dA (2)

In the particular case of discrete range, 7 = {ci,c2,...,¢/7|}, the signal f
can be reconstructed from the discrete stack x(f,\) via addition, i.e., f(n) =

2ner X(E;A)(n).

Definition 4. We shall say that an operator ¢ € V x V commutes with thresh-
olding if
¢ (x(£, 1) = x (o(f), A) (3)

for any signal £ € V and any value A € R.

In other words, if an operator ¢ commutes with thresholding, processing by ¢
the upper level set at A gives the same result as processing first by ¢ the signal
f and then thresholding ¢(f) at level .

Definition 5. We shall say that an operator ¢ obeys the threshold-linear super-
position provided that

+oo
o(f) = / 6 (x(£, \)) dA (4)

for any signal f € V x RT. Respectively, 3, 1+ ¢ (x(f,\)) for positive discrete
signals.

As it was pointed out in [23], for grey scale images, the threshold-max superpo-
sition in is more general than the thresholded-sum superposition in since
the latter applies only to nonnegative input signals, while the former applies to
any real-valued input signal. But alternatively, the max-superposition restricts
the class of operators since it requires the result of ¢ (x(f,\)) that are binary
signals, an assumption not needed by the sum-superposition. In fact, the thresh-
old sum/integral ties well also with linear systems. In our case, we assume that
f ¢ V x RT is continuous and nonnegative so we will consider the reconstruction
formula given by .

Proposition 1. The class of operators ¢ € V x V that obey the threshold-linear
superposition: a) is closed under minimum, mazimum and composition. b) It
forms a vector space over the field of real numbers under vector addition (¢1 +
d2)(f) := 1 (£) + ¢ (f) and the scalar multiplication (co)(f) := co(f) with ¢ € R.

2.2 Convolution on graphs

For signals f, g € L?(R), the convolution product h = f * g satisfies

h=(frg) = / h(¢) exp{2mict}de = / B©)a(e) expl2mictyds.  (5)



By replacing the complex exponentials in with the graph Fourier transform,
i.e., the graph Laplacian eigenvectors A;, in [I4] has defined a generalised con-
volution of signals f,g € V by

(F *g) :Z[? &) = il(imwm) (ivjAWg(k)) Al]

=1 =1

N N N
DA (Afg) A =) [4i (fg) Al =) £()g(D).
=1 =1

=1

Proposition 2. The linear operator associated to the convolution signal func-
tion g commutes with the stacking of cross-sections according to the threshold-
linear superposition,i.e.,

+oo
(Exg)= / (x(£, A) * ) dA (6)

2.3 Diffusion on graphs

Consider an arbitrary graph G = (V, E, W) with Laplacian matrix L and a
signal f € V — R". For a given constant o > 0, define the time-varying vector
for € RY as the solution of the linear differential equation:

0f; 1
ot

= —oLf,,, fo=Ff, (7)

where o is the thermal conductivity [I6] and controls the heat diffusion rate. The
differential equation in @ represents the heat diffusion process on the graph G
due to the fact that —L can be shown to be the discrete approximation of
the continuous Laplacian operator used to characterise the heat diffusion in
physics [16124]. The general solution of the heat equation on R¥ is obtained by
convolution [25]. However, the solution of denoted by f;:t €V xV, is given
by the matrix exponential as follows

f;t :=exp (—oLt) f (8)
which can be verified by direct substitution in . It is important to note that
for a given time ¢, the n-th element of £, ;(n) is

af[,gt(n): > oW(n, k)(£r, (k) — £5,(n))

keEN (n)

where N (n) is the neighbourhood of n, i.e., the k such that W (i, k) > 0. Thus,
the heat flow on an edge grows proportionally with both the “temperature dif-
ferential” ¥, (k) — £L,(n) and the weight W (n, k). Now in Prop. [3| we see the
behaviour of the graph diffusion in the stack of cross-sections.



Proposition 3. The operator fg:t n eq. associated to the diffusion of a
graph signal £, commutes with the stacking of cross-sections according to the
threshold-linear superposition, i.e.,

L o Hoe L
2, (n) = / (e(E, \)E, (m)dA (9)

Note that the right part of the equality means that the graph diffusion is applied
in each upper level set of the graph signal function f. The proof of Prop. [3 is
straightforward by means of Taylor series expansion of the graph heat equation
and interchanging summation and integration.

Proof.

L B . (—oLt)*f B oo X (—oLt)F Dk = Feo L
) =3 =5 = / > AR i = | e man

At this point, we should highlight that the behaviour of the diffusion in is
controlled by the choice of the Laplacian matrix, i.e, therefore expression
includes isotropic and anisotropic diffusion.

2.4 Morphological operators in graphs

In the case of a graph value function f € V, we can have the following coun-
terparts of dilation and erosion of numerical functions [26)2728] viewed as a
convolution in max-plus algebra (and its adjoint/dual algebra).

Definition 6. The matriz W is a morphological weight matriz if —oo < W (n,m) <
0, for all n,m.

It is important to note, that it is a really simple characterisation of the weight
matrix because we do not require symmetry (W(n,m) # W{(m,n)) neither
zero-diagonal (W (3,7) # 0).

Definition 7. The dilation of a signal function £ on a graph G = (V,E) is

defined by
N

dw(f)(n) = \/ (f(m) + W(n,m) := W @ f(n) (10)

m=1

and the dual adjoint erosion is given by

(£(m) +W*(n,m)) =

(£(m) — W (m, n)) :== W* o f(n) (11)

ewf(n) :=

>
>

We remark that, ew, dw are both in V x V and include morphological transfor-
mations by flat, non-flat [26/27], adaptive [28] and nonlocal structuring elements
[29]. The following proposition list include some properties easy to check.



Proposition 4. Let f; € V,i = 1,...,k be signal on graph and let W;,j =
1,...m be morphological weights matrices:

Wo@...oWia ()=, Wy)af
W (Vi £) = Vi (W e )

Wi o...oWief=_L, Wiof
W e (A, £) = ALy (W* e f,)
Forf<gthen WoHf<Wog

Forf <gthen W"ef< Wrog
Wes(Waf)>f>Wa (W af)

NS O e =~

A crucial point is the existence of a Galois adjunction theorem [30/31] for graph
valued signals.

Theorem 1. Given a W morphological weight matrixz and, the pair of operators
(ew,0w), defines an Galois adjunction, i.e., for all f,g € V, we have W @ f <
g <— f<W*og.

Proof.
N

Waf<g < Vn, \/ (f(m) + W(n,m)) < g(n)

m=1

<~ VYn,Ym,f(m) + W(n,m) < g(n), < VYn,vm,f(m) < g(n) — W(n,m),

3

N N
< VYm,f(m /\g W(n,m), < Vm,f(m /\g )+ W*(m,n),

n=

=

n=1
— VYm,f <W*og.

However, we do not have an order between the original signal f and its dilation
or erosion, i.e., we have W* 5 f < W @ f, but f £ W @ f neither Wo £ £.

Definition 8. A morphological weight matriz W is called conservative if W (i,7) =
0 foralliel...,N.

Proposition 5. If W is an extensive morphological weight matriz then W* &
fF<Ef<WooT for every f.

Thanks to theorem [T} we can have a large set of morphological filters such as
openings, closings, alternate sequential filters, levelling and so on, because they
are are defined by combination of dilations and erosions [32133].

Definition 9. A morphological weight matriz B is called flat if it is morpho-
logical weight matriz and B(i,j) =0 or B(4,j) = —oo for alli,j € 1..., N.



Proposition 6. The flat dilation and erosion obey both the threshold-maz su-
perposition and the threshold linear superposition, i.e.,

+oo

+oo
() =V on (((E.0) =1} = [ dp(x(t.)ax

A=0

+oo +o00
en(®) = \/ {en (\(£, 1) = 1} = / e (x(F, \))dA
A=0 0

Since by Props. [I] and [6] we can directly have that the class of operators
¢ € V x V that obey the threshold-linear superposition also contain morpho-
logical gradients (difference between dilation and erosion), opening and closing
(composition of dilation and erosion), top-hat transformation, granulometries,
reconstruction operators, levelling, additive morphological decompositions [34]
and skeleton transformation (based on generalised Lantuejoul formula) [35].

2.5 Morphological operators via convolution on graph

Definition 10. For a graph signal value f € V, the convolution-thresholding
nonlinear operator associated to the heat diffusion W of conductivity o at scale
t, and the threshold T, with T € [0, 1], is the mapping F(V,R) — F(V,R) defined
by

+o00
b, () = / [(((E, )T, > 7] dA (12)

The next proposition is easy to proof.

Proposition 7. For all f € V: a) Y1, (f) satisfies the threshold-linear super-
position in Def. . b) Yr, - (f) is monotonous with respect to the choice of T, i.e,
T <72 = Y, 4 () < Yr, ().

We can also prove that (12 is increasing.

Proposition 8. If f; <fy, then 91, -(f1) < ¢Yr, - (f2) for all o,t > 0.

Proof. We note that follows the called comparison principle, (Lemma 2.6,
property (d) in [17]), ie. if f; < £, then (fi)}, < (f2)%, for all o,¢ > 0. The
proposition is proved by applying this result in each upper level set and inte-
grating in .

Proposition 9. For the case of a flat morphological weight matriz B, the mor-

phological flat operators in Prop. [6] correspond to the convolution-thresholding

nonlinear operator in (12) with particular values of T as follows: g (f) = lim+ vB, +(f)
T—0

and eg(f) = lim ¢g, -(f).
T—1"



Proposition 10. For a binary signal S € Vx{0, 1}, the set of measures Vol(S) =
Y icsdi- Let p(L) be the spectral radius of the graph Laplacian, L, then itera-
tions in Prop.[9 on the graph with initial set S are stationary if either of the two
conditions are satisfied:

T
X (S)v,00

The proof is direct by using Lemma 2.2 and Theorem 4.2 in [I7].

o < p(L) " log (1 n Tdr_/z(Vol(S))_l/2> oro <

iy

| S

(a) Original (b) Diffusion with (c) Non-flat erosion (d) Non-flat dilation
(t =10, o = .02)

(g) 7=0.8

Fig. 1. Family of linear (b) and nonlinear transformations via thresholding of diffusion
process. Second row: (o = .1,¢ = 10). Third row: (o = .01,¢ = 10)

Now, we point out a link of the operator in with motion by mean cur-
vature on a graph.

Proposition 11. The operator in in the case of T = .5 is an iteration with
of the approzimate motion by mean curvature on a graph.

Firstly, the 91, 5 is an iteration of the well-known Merriman, Bence and Osher
(MBO) [37][38] threshold dynamics algorithms on graphs. The MBO algorithm
is obtained by time splitting the Allen-Cahn phase-field equation for motion
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(a) Original (b) Dilation (c) Erosion (d) Curvature mo-
tion

Fig. 2. [llustration of nonlinear filters on textured mesh. The textured mesh is obtained
from [36]. Note that both colours and mesh coordinates change in the processing. (d)
Curvature motion is obtained by iterating 1., 5.

by mean curvatureﬂ The resulting scheme alternated two steps, diffusion, and
simple thresholding [I7]. Secondly, several papers use the MBO algorithm on
a graph to approximate motion by mean curvature [I7/40]. It is important to
note that the curvature is defined by means of the isotropic total variation [17]
instead of the one-Laplacian as it is the case in [TO/TTIT2IT3].

3 Experimental section

The family of filters proposed can be used to analyse any function defined on
the vertices of a graph. We provide some illustrations of the results in grey scale
functions on graph in Fig. [T} colour data on mesh in Fig[2]and images on a graph
of images in Fig. [3] We first constructed a graph from these datasets by treating
the nodes in the graph to be the sample points in the dataset and the edges
weight to be the similarity between the features of the different samples. Edge
weights were determined via the Radial Bases Function (RBF) kernel with o2

set to the variance in the respective dataset W (i, j) = exp(—%). Finally,
in Fig. |3| we have considered a subset of the USPS handwritten digit database
for illustration. Each image is a digit in a 28 x 28 grey scale image which is
considered in our approach as a multivariate vector in R7®*. This random weight

2 The semilinear heat equation called the Allen-Cahn equation is a reaction-diffusion
equation of mathematical physics of the form:
ou W' (u)
— =90
ot ut €2
which was introduced by S.M. Allen and J.W. Can (1979) [39)] to describe the process
of phase separation in iron alloys, including order-disorder transitions. Here W is a

=0eRY x (0,00) (13)

2 2
function that has only two equal minima; its typical form is W(v) = %, w’
denotes the derivative and € is a positive parameter.



graph has nodes on images and weights in the 5-KNN graph considering the
Euclidean distance. We only use 200 images of two digits (0,9) to illustrated the
merits of our approach and its potential applications.

(c)r=1 (d) 7 = .5 after 10 iterations.

Fig. 3. G is the 5 nearest neighbours with W the Euclidean distance between pairs of
images. Lines are linking images that where W (4, j) is not zero. The parameter in the
diffusion are t = 20 and o = .03. Note that digits in the same class tend to be similar
in (d).
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Conclusion and perspectives

We have analysed nonlinear operators on stack of graphs as a discrete adapta-
tion of non-flat morphological transformation. This approach is based on connec-
tion between diffusion+ thresholding operators and morphological operators. We
have proved adjunction of pair dilation and erosion in signal graphs in a general
case. Finally, we have illustrated the interest and behaviour of such operators in
some problems of image processing and pattern recognition.
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