N

N

Limit equation for vacuum Einstein constraints with a
translational Killing vector field in the compact
hyperbolic case

Romain Gicquaud, Cecile Huneau

» To cite this version:

Romain Gicquaud, Cecile Huneau. Limit equation for vacuum Einstein constraints with a translational
Killing vector field in the compact hyperbolic case. Journal of Geometry and Physics, 2016, 107, pp.175
- 186. 10.1016/j.geomphys.2016.05.015 . hal-01110901

HAL Id: hal-01110901
https://hal.science/hal-01110901v1

Submitted on 27 Jan 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01110901v1
https://hal.archives-ouvertes.fr

arXiv:1409.3477v1 [gr-qc] 11 Sep 2014

LIMIT EQUATION FOR VACUUM EINSTEIN CONSTRAINTSWITH A
TRANSLATIONAL KILLING VECTOR FIELD IN THE COMPACT
HYPERBOLIC CASE

ROMAIN GICQUAUD AND CECILE HUNEAU

ABSTRACT. We construct solutions to the constraint equations in ggmelativity using
the limit equation criterion introduced ifl[4]. We focus ooligions over compact 3-
manifolds admitting &' -symmetry group. When the quotient manifold has genus great
than 2, we obtain strong far from CMC results.
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1. INTRODUCTION

General relativity describes the universe #8-# 1)-dimensional manifold\{ endowed
with a Lorentzian metrig. The Einstein equations describe how non-gravitationkldie
influence the curvature @f:

Scal
Ric,, — %gw = 8n'T,,,

whereRic andScal are respectively the Ricci tensor and the scalar curvafiheanetric
g andT,,, is the sum of the energy-momentum tensors of all the nonitgtanal fields.
Einstein equations can be formulated as a Cauchy problemimiital data given by a
set(M, g, IA(), whereM is a 3-dimensional manifold, is a Riemannian metric o/ and
Kisa symmetri@-tensor onM . g andK correspond to the first and second fundamental
forms of M seen as an embedded space-like hypersurface in the unfvetse) solving
the Einstein equations.
Itturns out that the Einstein equations imply compatipitionditions ory andK known
as the constraint equations:

Date 14™ October, 2018.
2010Mathematics Subject ClassificatioB3C21 (Primary), 35Q75, 53C80, 83C05 (Secondary).
Key words and phrase<Einstein constraint equations, non-constant mean cugjatonformal method.

1


http://arxiv.org/abs/1409.3477v1

2 ROMAIN GICQUAUD AND CECILE HUNEAU

Scalg + (trg K)? — |K|2 = 2p, (1.1a)
)

divg K — d(tr; K) = j, (1.1b)

where, denoting by the unit future-pointing normal td/ in M, one has
p=8rT,, N'NY, j; =8rT;,N".

We assume here thatandr go from0 to 3 and denote spacetime coordinates while
Latin indices go fromi to 3 and correspond to coordinates bh

In this article, to keep things simple, we will consider nddibut the gravitational
one (vacuum case). As a consequence, we imfdose 0. We will also assume that
the spacetime possesse$'asymmetry generated by a spacelike Killing vector field.SThi
allows for a reduction of thé3+-1)-dimensional study of the Einstein equations {@#1)-
dimensional problem. This symmetry assumption has beeoduted and studied by Y.
Choquet-Bruhat and V. Moncrief in][3] (see also [2]) in theeaf a spacetime of the form
¥ x S! xR, whereX is a compact 2-dimensional manifold of ger@is> 2, S corresponds
to the orbit of theS!-action andR is the time axis. They proved the existence of global
solutions corresponding to perturbations of a particukpaading spacetime. 101[3], they
use solutions of the constraint equations with constantmaavature (CMC, i.e. constant
trg K) on the spacelike hypersurfagex S x {0} as initial data. The construction of
such solutions is fairly direct. In this article we shall gealize their construction to more
general initial data allowing for non-constant mean curket

The method which is generally used to construct initial detdhe Einstein equations
is the conformal method which consists in decomposing thigicngand the second fun-
damental formi into given data and unknowns that have to be adjusted s@tﬂaﬂf(
solve the constraint equations, see Sedfion 2. The eqsdtoithe unknowns, namely a
positive function playing the role of a conformal factor amd-form, are usually called
the conformal constraint equations. Extended discusditimeoconformal method can be
found in a series of very nice articles by D. Maxwell[L2-H14].1

These equations have been extensively studied in the casmsfant mean curvature
(CMC) since the system greatly simplifies in this case. Werrttfe reader to the excellent
review article [1] for an overview of known results in thisrpeular case. The non-CMC
case remained open for a couple of decades. Only the casamyf nenstant mean curva-
ture was studied. Two major breakthroughs were obtainetilh [16] and[4] concerning
the far from CMC case. A comparison of these methods is givd8]i

In this article, we follow the method described in [4]. Nagete give the following
criterion: if a certain limit equation admits no non-zerdusion, the conformal constraint
equations admit at least one solution. The other methodlf@lwould require thak is
S? so that it carries a metric with positive scalar curvature has no conformal Killing
vector field, which is impossible.

This approach has been generalized to the asymptoticgtigrbylic case in]9] and to
the asymptotically cylindrical case inl[6]. The asymptalig Euclidean case [5] and the
case of compact manifolds with boundalry [7] are currentlyknia progress since new
ideas have to be found to get the criterion.

The outline of the paper is as follows. In Secfidn 2, we show tiee Einstein equations
reduce to a2 + 1)-dimensional problem in the case ofSad-symmetry and exhibit the
analog of the conformal constraint equations in this casealb state Theordm 2.1 which
is the main result of this article and Corollary2.3 whicheg\an example of application of
Theoreni ZIl. Sectidd 3 is devoted to the proof of ThedreimFrklly, Sectiof # contains
the proof of Corollar{ 2]3.
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2. PRELIMINARIES

2.1. Reduction of the Einstein equations. Before discussing the constraint equations, we
briefly recall the form of the Einstein equations in the preeseof a spacelike translational
Killing vector field. We follow here the exposition inl[2, Samn XVI.3].

We recall that we want to write the Einstein equations on thaifold M = ¥ xS xR,
whereX is a Riemannian surface aftddenotes the time direction, for some megiwhich
is invariant under translation along tB&-direction. We let:? denote the coordinate along
the S!- direction (seen aR/Z), choose local coordinates, 2 on 3 and denote by’
the time coordinate.

A metricg on M admittingds as a Killing vector field has the form

g=g+e7 (dx3+x4)2,
whereg is a Lorentzian metric ol x R, A is a 1-form onX x R and~ is a function on
¥ x R. Sinceds is a Killing vector field,g, A and~y do not depend om?®. We setF’ = dA

the field strength ofi. The Ricci tensoRic of g can be computed in terms ¢f A and~y.
In the basigdx?, dzt, dz?, dx® + A), the vacuum Einstein equatiorRic = 0) become

. = 1 =
0 = Ricap = Ricap — ieQVFa /\Fﬂ,\ — Vi”@’y — Va1V, (2.1a)
1 ~
0= Ricas = ;¢ Vs (e2E, ), (2.1b)
H - 1 « ~Qx ~Qx o
0= R1C33 = —e 2y (—Z€2VF(X,@F p +g BVQ’YVB')/ +g Bvi,ﬁ’y) 5 (21C)
where the indices, § andA go from0 to 2, and are raised with respect to the merid he
equation[(Z.1b) is equivalent ti{xe>7 F') = 0. So we are going to assume that’ F is

an exact 1-form. Therefore, there exists a potential x R — R such thae?' F = dw.
Definingg = €27, we obtain the following system f@f, v andw:

Ogw — AV AV qw = 0, (2.2a)

1 gp—a —
Ogy — 56747V wVaw =0, (2.2b)

_ _ 1 -
Ricas — 2VaVay — 56*47vawvgw =0, (2.2¢c)

wherell; = _“ﬂVi,B is the d’Alembertian associated to the megidic is its Ricci
tensor and the indices are raised with respegt ¥/e introduce the following notation

ui= (7,w),
together with the scalar product

1
Oatt - Ot '= 20,y087y + 567478(,&)850\).

We are going to consider the Cauchy problem for the sysie#).(2s for the general
Einstein equations, the initial data for this system hawatisfy some constraint equations.

2.2. Theconstraint equations. We write the metrig; under the following form:
g=—N2dt* + Gij (dxi + ﬂidt) (dxi + ﬂjdt)

The coefficientNV is called the lapse, while the vectgris called the shift. g is the
Riemannian metric induced ljyon the slices of constamt We consider the initial data
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for the spacelike surfacg which is the constant = 0 hypersurface ok x R. We also
use the notation
0y = 0o — L3,
where L3 is the Lie derivative associated to the vector figld With this notation, the
second fundamental form &f C ¥ x R reads
1
Kij = _ﬁatgij-

We denote by the mean curvature af:
T = ginij-

The constraint equations are obtained by takingkhe 9, and thed, — 9; components
of the Einstein equations:

——  Scal_

Ricy; — Tgtl- =N (817' — DlK”) = atu . &-u, (233)
——  Scal N? N?
RiCtt — %ytt = 7 (SC&I — |I(|2 + T2) = ﬁtu . atu + 7§a58au . aﬁu, (23b)

(2.3¢)

whereScal is the scalar curvature of the metgand D is its Levi-Civita connection.
Equation[[2.3a) is called thmomentum constrainthile Equation[(2.3b) is known as the
Hamiltonian constraint

2.3. The conformal method. In order to construct solutions to the systdm((2.3), we are
going to use the well-known conformal method which we explaw.

Given a Riemann surface of genusG > 2, we letgy be a metric ort with constant
scalar curvatur8caly = —1 and look for a metrig in the conformal class af:

g=¢e*go
for some functiory : 3 — R. We also decomposE into a pure trace part and a traceless

part,
-

Kij = 59i + Hij,
and, following [3], we set
2u
U= %8,511/
The system[(2]3) then becomes
. e2¥
V'Hij =~ Oju+ —=0;, (2.4a)
1 1 21
Ap + e~ (§a2 +35 |H|2) - 62«’% -5 (1 + |Vu|2) , (2.4b)

whereV denotes the Levi-Civita connection of the metjic A is the Laplace-Beltrami
operator ofgy and from now on, unless stated otherwise, all norms are takérrespect
to the metricgo.

In order to solve Equatiof (Z1a), we splitaccording to the York decomposition (see
Propositiod 3R for more details):

H=oc+LW,

whereo is a transverse traceless (TT) tensor, te,, o = 0 andV'o;; = 0, andLW
denotes the conformal Killing operator acting on a 1-faém

LWij = VW, + V,;W; — VWi g0i;.
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The system[(2]4) finally becomes

1 I
fiL*LW = —u-du+ TdT, (2.5a)
1., 1 2
Ap + 2% (5112 +3 1o+ LW|2> - 62@% -5 (1 + |Vu|2) , (2.5b)

whereL* is the formalL?-adjoint of L:

—%L*LWJ- = V'LW;;.

The equations of this system are commonly known as the coraforonstraint equa-
tions. Equation[(Z.3a) is called thector equatiorand Equation[{Z.3b) is named the
Lichnerowicz equation

Givenu, u, 7 ando we are going to construct solutions to the systéml] (2.5) fer th
unknownsy and W without any smallness assumption en We follow the approach
of [4]. The main theorem we prove is the following:

Theorem 2.1. Givenu € C°(Z,R), u € C'(Z,R) 7 € WIP(X,R) ando € WP a
TT-tensor, where > 2, and assuming that vanishes nowhere on, then at least one of
the following assertions is true:

1. The set of solutiorng, W) to the syster2.8)is non-empty and compactifi 27 (3, R) x

W2P(3, T*%)
2. There exists a non-trivial solutiori € W2 (¥, T*¥) of the following limit equa-
tion
1 2 d
o Y2 iLw| & (2.6)
2 2 7]

for somex € [0, 1].

Remark2.2. Since the surfac® is of genusz > 2, there is no conformal Killing vector
fields onX. ThereforeLWW = 0 imply W = 0. In particular, there cannot be any non-zero
solution to [2.6) witha: = 0, since in this case we would have

1 1
0:/ <W,—L*LW>du9“—/ |LW|* dpse,
s 2 2Js

which immediately implies thdt” is a conformal Killing vector field.
The proof of this theorem is the subject of Secfibn 3.

Corollary 2.3. Assume that the mean curvaturés such that

dr
.

<1
Lo (S, T*5)

then there exists a solution to the conformal constrainttigns(2.4).

See Sectiohl4 for the proof of this corollary.

3. PROOF OFTHEOREM[Z. ]

Before tackling the full system of equations in Subsedtidh ®e first study the prop-
erties of each equation individually, in Subsecfiod 3. 1tfer vector equation and in Sub-
sectior 3. for the Lichnerowicz equation.
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3.1. Thevector equation. The main result about Equatidn (2.4a) is the following:

Proposition 3.1. Given a 1-fornt” € LP(%, T*Y), there exists a uniqué’ € W2 (X, T*%)
such that
1
——L*LW =Y.
2
Moreover, IV satisfies

IWllweow sy SN o res) -

Proof. We can write

1 )
—§L*LW]- =V’ (Vin + V,;W; — VkaQOij)
= AW, + V'V;W; — V,;V'W;
= AWJ + RiCijWi
1 1
(31) —§L*LWj = AWJ — §WJ

where we used the fact that in dimensiorR2; = Sgalgol-j. This Bochner formula will be

useful in Sectiof}4.
OnWh2(x, T*%), we introduce the following bilinear form

a(V,W) = / (LV,LW) dp°.
>
We have

a(V, W) = / (V, L*LW) dpso
>

1
= 72/ <v, AW — —W> dps
E 2

_ / (2 (VV, VW) + (V, W) dpu®
P

It follows immediately that the bilinear form satisfies the assumptions of the Lax-
Milgram theorem: itis continuous and coercive. So givea L?(X,7*%) C (W12(X,T*%))"
there exists a unique” € W'2(2, 7*%) such that-1 L* LW =Y. It follows from ellip-
tic regularity that” € W>?(2, 7°%) and that|W || 2.0 (s rosy S 1Y [l pospesy- O

In particular, we get the following result:

Proposition 3.2. Given a symmetric traceless tenslr ¢ WP, there exist a unique
TT-tensorr and a unique 1-fornil” such that

H=0c+LW.
Proof. From the previous proposition, there exists a unique sl € W?2» of
1, .
—iL LW = divgy, H.
Settinge = H — LW, we have
1
divg, 0 = divg, H — divg, LW = divy, H + §L*LW = 0.

Thereforeg is a TT-tensor. O
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3.2. TheLichnerowicz equation. The aim of this section is to prove the following propo-
sition :

Proposition 3.3. Let, u and 7 be given as in Theorem 2.1. For any given symmetric
traceless 2-tensofl € L*°, there exists a unique positive functign e W?2?(3, R)
solving Equatiorf2.4B) Furthery depends continuously difi € C° and is bounded from
below by a positive constant) which is independent dff .

Before proving the proposition, we need to recall a generahha on semilinear elliptic
equations. This is a simple version of the so-called sub apdrssolution method we took
from [19, Chapter 14].

Lemma 3.4. Given an open interval C R, we consider the following equation fgron
DI

Ap = f(z, 0, ), (3.2)
where\ € A is a parameter belonging td, an open subset of Banach space, gnd a
function belonging t&° (X, R) ® C1(I x A,R), i.e. f decomposes as a finite sum

F =Y a@file.).

wherea; € C°(2,R) and f; € C*(I x A,R). We assume further that
° % >0,
e there exist constantsy,a; € I (that may depend continuously o), ay < aq,
such that, for alle € X, f(x,a0,A\) < 0and f(x, a1, A) > 0.

Then the equatio@.2) admits a unique solutiop € W2P(X R), 2 < p < oo, for all
A € A. Further,¢ depends continuously on

Proof. We first prove the existence of a solution for ale A. We denote by the closed
subset of (M, R) defined by
Q={pecC'M,R),a0 < p<ai}.
We choose a constadt= A(X) > 0 such that
of
A > sup == (2,0, M)
(z,p)eXX[ap,a1] a(p

and define amap : QO — C°(M,R) as follows. Givenp, € 2, we defineF' (¢g) = ¢1,
wherep; € W2P(3, R) is the (unique) solution to the following linear equation:

—Ap1 + Ap1 = Apo — f(x, 00, ).
We argue thap; € () as follows. We have
—Ap1 + Apr = Apo(z) — f(2, 00, )
wo(x) of
:/ (A—(ZE,QO,)\)) d§0+Aa07f(IE,a(),>\)
a0 dp
>0
Z AaO - f(‘r7a/07)‘)
> Aao;
—A(p1 —ag) + A(e1(z) —ag) > 0.
We set((p1 —ap) - := min{0, ¢1 —ao }. Multiplying the previous inequality bitp; —ag)—
and integrating over, we get

[ [~ = a0)-2 o1 = a0) + A r () — a0 <0

/z: “V(% —a0)_ >+ A(p1(x) — aO)Q_} duf <0,
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from which we immediately conclude thép; (z) —ag)_ = 0, i.e. thatys > ag. A
similar argument proves that < a;. HenceF' maps2 into itself.

We note that for fixed\, F' maps{? into a bounded subset &F 27 (X, R). This comes
from the fact thatt x [ag,a1] IS @ compact set over whicfi(-, -, A) is continuous so
f(x,p,\) is bounded independently gf € Q andx € X. Hence, by elliptic regularity

IE @) ey S I @@ ML s r)
<1

Denoting by’ the closure of the convex hull df'(Q2), it follows from the Rellich
theorem that)’ is a compact convex subset 6f (3, R). By the Schauder fixed point
theorem " admits a fixed poing. ¢ then satisfies

—Ap+ Ap = Ap — f(z,0,\)
& Ap = f(z,0,N).

Hencey is a solution to[(312) and by elliptic regularity,c W27 (3, R).
We next prove that the solution tb (8.2) is unique givere A. It follows then that
ap < ¢ < aj. Assume givenpy, s two solutions to[(312). We have

0=—A(p2 — 1) + f(x, 02, A) = f(z, 01, )

1
0
= —Alp2— 1) + (92— 1) /0 é@c, o1+ ylp2 — o1))dy,

>0

from which we immediately conclude that = ¢-.
We follow a similar strategy to prove that depends continuously ok. We fix an
arbitrary\y € A. There existsx > 0 such that

0
a_i(zawvAO) >«

for all (z,¢) € ¥ x [ap(Xo),a1(No)]. There exist amy > 0 anday,a) € I such that
B, (M) C A, af < ap(A), @) > ai(AN) forall A € By, (A\o) and

af Q@

L A =

95 (@0, 7) > 5

onX x [ag, a}] x By, (Xo). We denote byp, the solution to[(3]2) with\ = .
For anye > 0, there existg) > 0, n < ny such that

€

|f($79005 >‘1) - f(xvcp()a >‘0)| < 7

forallz € ¥ and all\ € B,(\o). We denote byp; the solution to[(312) with\ = \; for
an arbitrary\; € B, (\o):

—Apo + f(z,00,A0) =0
_A(pl + f(ZE, ®1, )‘1) =0
Subtracting both equations, we get
0=—A(p1—¢o) + f(z,01,\1) = f(z, 90, No)
= 7A(901 - 500) + f(za L1, )\1) - f(za $05 )\1) + f(za $05 )\1) - f(za 5007>\0)
(3.3)

1
0
0=—A(p1 — o) + /0 %(l’ﬂpo +y(e1 — wo0); A)dy(p1 — o) + f(, 00, \1) — f(, 00, Xo)-
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From our assumptions, we have

Lo a
/O 8—£($,500 +y(p1 — @o), A1)dy > 5

Multiplying Equation [3:B) by(¢1 — ¢o — €)+ = max{0,¢p1 — @9 — ¢} > 0, and
integrating ovel:, we get

/Z (90, 30) — (s 90, M) (91 — 90 — €)du®
= /z: {<V(801 — 00— €)1, V(o1 — o —€)4)

Lo
+ / a—i(% wo + y(p1 — @o), M)dy(p1 — @o)(p1 — po — E)Jr] dp®,
0

€Q
/ — (o1 = o — €)dp®
D)

«

> [ (19601 = 00— 0 + S~ au)or = o0 — 1] e

«

0> [ [I96e1 = 0= 4+ 5 (o1 = 0 = 4] du®

Hencep; — pg < e. Similarly, o1 — pg > —e. This proves that the functiolh mapping\
to o solving [3.2) is continuous from to C°(3, I). It then follows at once from elliptic
regularity that¥ is continuous as a mapping frainto W27 (3, R). O

We refer the reader to [15, Section 6] for much stronger vessof the sub and super-
solution method. We can now give the proof of Propositioh 3.3

Proof of Propositiof 313.The Lichnerowicz equatioh (2.¥b) can be rewritten in therfor
G.2):

1 1 21
Ap=—e2¢ (—112 +3 |H|2) - 629”% -3 (1 + |Vu|2) .

2

=f(z,p)

Sincer? is bounded away from zero, the assumptg%n> 0 is readily checked. Choosing
ap ‘= —maxIn |7|, we have

620407-_2<1
4~ 4
So
2 1 1 1 1
<2a0———(1 V2)<___<——.
fla,a) < ™0 = o (1 [Vul") < g =5 <=

Sincef is increasing withp, we immediately get that ip < ao, thenf(z,¢) < 0. Let
nowa; > 0 be such that

a HliIl’TQ 1 2 1 2 1 2
e o > = (14 | Vulfe ) + 5 il + 5 IH

Using the fact that we choosg > 0, it is a simple matter to check that

f(zya1) >0

and hence ifp > a1, f(z,¢) > 0.
As a consequence, the Lichnerowicz equation satisfies thargions of Lemma3.4.
This completes the proof of Proposition13.3. O
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3.3. Thecoupled system. Following [18], we use Schaefer’s fixed point theorem to gtud
the coupled system (s€e |10, Chapter 11]):

Theorem 3.5. Let X be a Banach space arll: X — X a continuous compact mapping.
Assume that the set
Fi={ze X, 3pel0,1],z=pP(z)}
is bounded. Thef® has a fixed point:
Jr e X,z = ®(x),
and the set of fixed points is compact.

We chooseX = C°(X, R) as a Banach space and construct the mappiag follows:
Givenv € X,

e From PropositioR-3]1 there exists a unidiie:= W (v) € W2 solving

1, . v?
— §L LW = —4 - du + ?dr, (3.4)

which is Equatiofi_.2.5a with¥ = v. Furtheri¥ depends continuously ane C°
for the W2:P-norm.

e W € WP can then be continuously mappedio:= o + LW € Wi»

e and, in turn,H can be compactly embedded ir@8.

e Propositiol 3.3 yields a unique< W2 solving the Lichnerowicz equation (214b)
with the H we previously found.

Setting®(v) = e¥ € C°(%,R), we loop the loop providing a continuous compact map
® : X — X. Thus, we are almost under the assumptions of Thebrem 3l Bvetheed to
check is that the sdf is bounded. This is the content of the next proposition:

Proposition 3.6. Assume that the set
Fi={veL>(E,R),Ip€[0,1],v=pP(v)}
is unbounded. Then there exists a constant [0, 1] and a non-zerdV € W2 such that

1 P d
—CLLW = £po LW =
2 2 7]

Proof. Assuming thatF" is unbounded, we can find sequen¢es;>o and(v;);>o such
that0 < p; < 1, v; = p;®(v;) and ||v;|| ;e — 0. Settingy; = log(®(v;)) (i.e.
v; = p;e?i), and definingV; as the solution td{3l4) with = v;, we get the following
equations:

1 e2®i
—§L*LWi = —0-du+ prdr, (3.5a)
1 1 S|
Api+e 2 (=2 + = lo+LW;|* ) = 2ol (1 + |Vu|2) ) (3.5b)
2 2 4 2
Following [4,[9,[18], we set;; := |le¥| ;.. and we introduce the following rescaled

objects:

—~ 1
’Lpi = — 10g(’yi), W; = ?Wz
%
Note that since we assumed thiat ||, .. = pivi — oo, with 0 < p; < 1, we also
have thaty; — oo. We will assume without loss of generality thgt> 1. The following

equations forp; andWZ- follow from the definition:
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1, = 1. o €2V
1 1 1o 2 21
—24); -2 1774 _ 24y 2
A+ ¥ <2—74u +g |5+ EW ) = 2 1—2—%2(1+|Vu| )
(3.6a)
(3.6b)
It follows from the definition ofy; that ||e L = %e%‘ = 1. Hence, from
k3 Loo
Propositiod 311 applied td (36a), we have
— 1 24
HWH SH——Qu-du—f—pfe dr
W2.p Vi 2 p

L.
S oz lle-dull g + [ldr]l

K2

N
=R

Consequently¥; is bounded if¥/2?. Since the embedding’2? — C* is compact,
we can assume, up to extraction, thE} converges to som#/,, € W?2? for the C'*-
norm. We can also assume that— p.. € [0, 1]. All we need to do is to prove that¥:

convergesinL> to f., := \/§|LW°°|

7]

Indeed, passing to the limit in Equatidn{3.6a), we get that satisfies

1 7 foo
——L* LWy, = p2 —=2d
5 W, Pao > T
2 — |d
3.7) - ipio ‘LWOO’ a
2 |7

Hence, W, satisfies the limit equation with = p2_. Sincee?¥: hasL>-norm 1 and
converges inL> to f.., we have| f|; = 1. In particular, LW, # 0 which proves

thatWae % 0.
To prove convergence ef?: to f.., we show that for any > 0, there exists ai, such
that
‘62% — foo‘ <e

forall i > ig. We do it in two steps:
e We first show the upper bound

e < foote
by selecting a smooth functigf. such that
€

and proving that fof, large enoughy . := £ log( f+) is a super-solution t¢(3.6b):

2 |y 27

K2

2 2
1 1 1 — 1
Ay e (i S| G LW ) < e Do (14 Vuf) . (3.8)
' 2v; i 4
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Sincefoo > 0, fy > 5 SO 1/)+ is a smooth function. In particulafAy | is
bounded. Moreover, smdé’ — VVOO in C* andy; — oo, we have

— 2
— ‘LWoo’

i

asi tends to infinity. So the conditiofi (3.8) can be rephrased as
1), = |2 2
o(1) + 3 ‘LWC,O’ _ Tzfi <0,

whereo(1) denotes a sequence of functions tending uniformly to 0 whenoo.

We have
2 2
2 5 NS 2 L &
B2 (fets) 22+5
This yields, fori big enough,

2 2 2 2
b L] f—f+ o)+ f (f;+%>go(1>7046 <0,

wherer? = infy, 72 is positive by assumption. Therefore. is a super-solution
to Equation[(3.6b) and we obtain, fbbig enough

: 2

2 7_2
) + T (€204 — ¢2¥1)

i

IN

72 oy ! o
562% (1/1_"_ _1/]7()/ 62/\(¢+ 1/1)d)\
0
2 1
) e~ 2¥i (g — wz)/ e 2M W =vi) g\
0

2 1
) e~ 2 / €2>\(¢+¢i)d)\] (Vg — ;).
0

.2

U 1 —~ o

LW =
+<2%4+2‘ Wit 23

%

IN

2 1
1
7__62¢i/ 62/\(¢+ )d)\ + — + LW + —
2 0 2’7 ok

3

>0
The maximum principle implies that; < ¢, for i big enough, so
Vi < fo+e
e Second, we show the lower bound
e2¥i > foo —

We have to be more careful than for the super-solution, sfacean vanish some-
where. Letf_ be a smooth function such that

max(f2, —€,0) < f- < [max(f2, - 5,0).

We will work on the open domaisl defined by
A={z e, f_(z)> 0}

On A, we can definey)_ = 1In(f-). We want to show that the following
inequality is satisfied ont:

? 2 72 1 2
; > eV — — —(1 . .
2 e 2%2( + |[Vul?). (3.9)
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Sincee?¥- > 0 on A, that is equivalent to showing

2 2
1 5y 1 9 1 5, 1o —~ a T
e Ay +=(1 — — S+ LW | —e-—>0.
7iQe (1/1+2(+|Vu|))+<2%4u +2%2+ e 2
We calculate
1 _2
ewaAw_ — 3 Af_ — |va| .

We can assume that4 is the disjoint union of smooth curves and denote-by
the signed distance function &4 which is positive wherg,, > ¢. We choose
such thatf_ = 0 whenever < 0 andf_ = ee~ /" if r > 0 is sufficiently small
for some positive. For such a choice of_, e?¥~ A _ is bounded om.

Therefore, as for the upper bound, the conditionl(3.9) canriteen

7.2

4
On.A we havee¥- < f2 < f2 — £ This yields fori big enough

1
o(1) + §|LWOO|2 —et-— >0

2 26

2 2
T T 2 T 9 € T
—> —f2 - — ——) > ——>0.
7 2o+ Tl 4(f°° 2)—0(1)+42—0
Sincey_ () —;(z) = —oo whenz — 0A, ¥_(x) —1;(x) attains its maximum
on A. Therefore, since_ is a subsolution, we can apply the maximum principle
on A, to deduce that_ < ;. This yields

1
o(1) + §|LWOO|2 — et

max(f2 —¢,0) < e*¥i

This concludes the proof of the convergencé i of 2% towardsf.. O

4. PROOF OFCOROLLARY 2.3

To prove CorollaryZ]3, all we need to do is to prove that thétlequation[(Z16) admits
no non-zero solution under the assumption

dr

T

< 1.
Lo (S, T*%)

We take the scalar product of the limit equation withand integrate over. From the
Bochner formula[(3]1), we get:

1 2 d
__/ |LW |? dp9 :ai/ |LW| <W _T>d,ugo
2)s 2 Js

7]

1 d
/|VW|2dug° +—/ |W|? dp ga\/i/ V| ‘—T‘ |W |dpo
by 2 /s by T

ga/ |VW|2du9°+9/
b)) 2 b))
1 dr ||?

5 [weaem <11 [ widee,
2 b3} 2 Lo JY

where we used the well-known inequality < A % with a = /2 |VIW| andb =

dr |? 21 g
—| Wl

-
2

|<Z| |W|. The last inequality immediately yields thét = 0 since we assumed that

|4 . < 1anda € [0,1].
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