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A NEW POINT OF VIEW ON THE SOLUTIONS TO THE EINSTEIN
CONSTRAINT EQUATIONS WITH ARBITRARY MEAN CURVATURE AND
SMALL TT-TENSOR

ROMAIN GICQUAUD AND QUOC ANH NGO

ABSTRACT. In this short note, we give a construction of solutions te Einstein con-
straint equations using the well known conformal methodr @ethod gives a result sim-
ilar to the one in [5, 16, 24], namely existence when the so called TT-tensas small
and the Yamabe invariant of the manifold is positive. Thehodtwe describe is how-
ever much simpler than the original method and allows eassnsions to several other
problems. Some non-existence results are also considered.
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1. INTRODUCTION

1.1. The Einstein constraint equations. Initial data for the Cauchy problem in general
relativity are usually given in terms of the geometry of th@uChy surfacé, g) in the
spacetimg M, g) of dimensionn + 1 with n > 3. Assuming that the spacetim®el is
globally hyperbolic andV/ is a spacelike Cauchy surface, one can define the mgtric
induced onM by the spacetime metrigand the second fundamental fodhof M in M.
It follows from the Einstein equations together with the &aand Codazzi equations that
g andK are related by the following equations
Scalg + (trg K)? — |K|2 = 2p, (1.1a)
divg K — d(tr; K) = j, (1.1b)
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Key words and phrase<instein constraint equations, non-CMC, conformal metliroglicit function theo-
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wherep andj are related to the other fields such as matter fields, eleetyostic field, etc.
that one wants to include into the universe under consiiberaglso in (1.1), Scal; is the
scalar curvature gj. To keep things simple, we will consider no field but the giaidnal
field, hence, forcing = 0 andj = 0.

A simple dimension counting argument shows that the systethi¢ under-determined,
thus, it is generally hard to solvé () in this form. To overcome this difficulty, we need
to decompose both and X into given data and unknowns that will have to be adjusted
so that Equationsl(1g and (L.1b are fulfilled. Several such splitting exist and we refer
the reader toZ] for a detailed review of some known results on the constreduations.

In the literature, the most commonly used method is the aomdb method which we
briefly describe now. We invite the reader to have a look atvég nice recent work of
Maxwell [20, 21, 25] for a deep understanding of this method and its connectiattier

widely used methods.

The given data in the conformal method consist of

e a Riemannian manifold)M, g),
e afunctiont : M — R,
e and a symmetrie—tensor on M which is traceless and transverse in the following
sense
trgo =0, divgo=0.
As a shorthand, we will cali a TT-tensor. The unknowns in the conformal method are

e a positive functionp : M — R*,
e and al-form V.

Combining all these elements, one can fd@nk) as follows:

g=¢""?yg,

A (1.2)
K= %g—}—(p_Q(a’—i—LgW),

whereN := 2n/(n — 2) andL, is the conformal Killing operator given by
2
LoWij =V, W; + V;W; — Evkwkgij,

with V the Levi—Civita connection associated to the backgrountlicng Here,r is the
mean curvature of/ as an hypersurface oM, g) given by

T = /g\”j%w
The choice forr andW in (1.2) is related to the York splitting, see the remark at the end
of Sectiord. 1L
Using the decompositiori (2), the constraint equation$.() become a system of PDEs
for (o, W) given as follows:
4(n —

1
f?Q)Aggo + Scalgp = 2z

ngaNfl + }U+L9W|§@7N71, (1.3a)

n—1

AL, W = oNdr, (1.3b)

where we denoté\ ;¢ = div,(V,¢) andAy, , W = divy(L,W). In the literature, Equa-
tion (1.39 is commonly known as the Lichnerowicz equation while Egra(1.3h is
usually called the vector equation.

The system X.3) is notoriously hard to solve except in the case whers a constant
function which is now well understood, see for instantd.[ Indeed, wherr is constant,
Equation (.30 only involvesW and generically implies thdd” = 0. Therefore, one is
left with solving the Lichnerowicz equatiori (3§ without anyWW. However, everything
dramatically changes whenis no longer constant. Perturbation arguments can be used
to address the case whén is small in some sense. But, until recently, very few results



SMALL TT-TENSOR SOLUTIONS TO THE CONSTRAINT EQUATIONS 3

were known for arbitrary-. Two major breakthroughs were obtained first by M. Holst,
G. Tsosgtgerel, and G. Nagy inf, 16], by D. Maxwell in [24], and then by M. Dahl, E.
Humbert, and the first author ir][

Usually, standard methods to solve elliptic PDEs require @niori knowledge of the
solutions, i.e. nice domains in which one can try to applydiy®int theorems, fixed
point arguments, etc. However, via a simple scaling arginodrangingy to Ap where
A > 1 shows that the two dominant terms in the Lichnerowicz equadre™—1 72N 1
and |LgW|§gp*N*1. These two terms have the same scaling behavior but comethp wi
opposite signs in the Lichnerowicz equatidn3g. Although the first term has the right
sign and in fact helps us in applying the maximum princigie,4econd one has the wrong
sign and eventually destroys any attempt to get an a prigreupound forp whendr is
not small.

1.2. The Holst—-Nagy—Tsogtgerel-Maxwell method Losing such an a priori estimate, a
very nice idea was proposed ind, 16]. The idea was pushed further in/]. It consists in
looking for solutions of the systeni (3) with o and¥ very close to zero to make the two
dominant terms irrelevant. To do this, they require the rfiadahi M, ¢) to be closed with a
positive Yamabe invariand/(g) > 0 (see Equationl(.4) below). Consequently, the scalar
curvatureScal, becomes in some sense the dominant term. In addition, tseyredjuire
thato is small to control the right hand side of Equatidn3g. The theorem they obtained
is the following.

Theorem 1.1(see P4]). Let M be a compact Riemannian manifold without boundary.
Givenp > n, letg € W2, r ¢ WP, ande € WP, ¢ # 0 be given data. Assume
that the Yamabe invarianif(g) is strictly positive and thay has no conformal Killing
vector fields. Then, ifo|| ;. is small enough, there exists at least one solutipri?’) €
W2P(M,R) x W%P(M,T*M) to the systen(l.3).

Assume thatM is a compact manifold without boundary, we recall that then&be
invariant)(g) of (M, g) is defined as
S (%W@@ + ScalggoQ) dvol,

inf
0ZpEWL2(M,R) ([ &N alvolg)N/2

V(g) =

(1.4)

The method of [ 5, 16] was recently adapted to other situation such as asymatigtic
Euclidean manifolds in7], asymptotically cylindrical manifolds in1[5], compact mani-
folds with boundary in', 14], and to asymptotically Euclidean manifolds with boundary
in [13]. As can be seen from the statement of Theofefrand as we have just mentioned
earlier, the smallness dliz| .~ was used. However, it is worth mentioning that such an
L*>—smallness assumption can be weakejitt, . small enough, se€’f].

1.3. The Dahl-Gicquaud—Humbert method. The idea of {]] goes in the opposite direc-
tion to the method in Subsectidn2 Intuitively, the idea of {] is to study what happens
if ¢ andWW can become very large, i.e. what prevents the existence apaiori estimate.
The answer to this question is heuristically thatiftan become very large, by setting
v = ||¢|| .~ and by renormalizing, W, ando as follows:

p=7"to, W=~y"W, 5c=7""0,

it turns out thaty andW satisfy the following system

1 4dn—1) , _ - n—1 5 yn_ - =2 N
— -1

A]Lng:n— Nd’]'.

n
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In the limit asy — +o0, one is left with
n—1

F2pN-1 = ‘Lg’m\;‘z@fol.

Therefore i’ becomes a non-trivial solution to the so-called limit edprat

~ n—1 —~ dr
AL, W =/ - |1ngg7. (1.5)

The rigorous argument leads to a similar limit equation witharametea € (0, 1] given

as follows:
—~ n—1 —~ dr
Ap, W =ay/ - L, W o (1.6)

The main theorem of/] can be stated as follows.

Theorem 1.2. Let M be a compact Riemannian manifold without boundary. Givenn,
letg € W2P, 7 ¢ WhP, ando € WP be given data. Assume thahas no conformal
Killing vector fields,r > 0 and thato # 0 if Y(g) > 0. If the limit equation(1.6) admits
no non-zero solutiofi” for all values of the parameter € (0, 1], then there exists at least
one solution(p, W) € W2P(M,R) x W2P(M, T*M) to the systengl.3).

It is worth noticing that the result in/] requires thatr is bounded away from zero,
however, it involves no assumption on the Yamabe invad&t). A simplified proof of
Theoreml.2appears in{4].

This method was adapted to several other contexts such egpasically hyperbolic
manifolds in [LZ] and asymptotically cylindrical manifolds ir2]. In particular, strong re-
sults are obtained for negatively curved manifolds, seg Proposition 6.2 and Remark
6.3]. The case of asymptotically Euclidean manifolds andgact manifolds with bound-
ary are currently work in progress,[11]. New difficulties show up in these cases.

1.4. Objective and outline of the paper. As we have already seen from Subsectibris
and1.3 both approaches we presented are dual in a certain sensérsitone constructs
solutions which are very close to zero while the second omenigans to ensure control
on the size of the solutions. In this note, we emphasize tladitdietween both methods
showing that the Holst et al. method can be rephrased asiageajument. This dual-
ity can potentially be deepen further, recasting both nmedhio a single framework, see
Remark2.3. This also sheds a light on the role of the assumptions of thi@ theorem
of [24].

Nevertheless, our new method leads to a result which is ngbas as the one oPf]
but it is much simpler than the original one and appears algte gersatile.

In Section2, we present in detail the simplest case of our method, namiegn the
manifold is closed. Also in this section, a non-existeneiltes presented. Then, we give
a quick look at the asymptotically Euclidean case in Seciiamd at compact manifolds
with boundary in Sectiod.

2. THE CLOSED CASE

In this section, we are interested in studying solutionslo®)(when the underlying
manifold M is compact without boundary. In the first part of this sectiwa prove a result
which basically says thafl.(3) is solvable whe(¢g) > 0 ando # 0 is small enough, see
Theorem2.1 below. Then, we improvel] Theorem 1.7] by showing that (3) admits no
solution provided/(g) > 0, ¢ = 0, anddr /7 is small in theL."—norm.
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2.1. Existence results for small but non-vanishing TT-tensor.The main result of this
subsection is the following.

Theorem 2.1. Let M be a compact manifold without boundary. Given> n, letg €
W2P(M,S?*(M)), 7 € WhP(M,R) ando € W'P(M,S?*(M)), o # 0 be given data.
Assume that the Yamabe invarigWg) is strictly positive and thay has no conformal
Killing vector fields. There existg > 0 such that for any) € (0, 7,) there exists at least
one solution(p, W) € W2P(M,R) x WP (M, T*M) to the systenil.3 with o = 7.

Note that this theorem is not as good as Theotein Indeedn, depends a priori on
o in an unknown way while Theorefh1 asserts that the systerh.g) with o = no has a
solution provided thafo ||, .. = |n|[|7|| .~ iS small enough (less than some- 0). So the
corresponding, would bee/ |7, .. Nevertheless, the proof appears to be constructive
since it relies on the sub- and super-solutions method arigeoimplicit function theorem.
For the sake of clarity, we divide the proof into severalmigii

Claim 1. Lets # 0 be a TT-tensor belonging t/1:7(M, S?(M)). Then there exists a
unique solutionp, € W27 (M, R) to the following equation
4n—1 - ~ ~2 ~_N_—
- %Agw + Scalyp = |a|§ N1, (2.1)
Proof. The proof is standard, se€4]. Note that this equation is nothing but the Lich-
nerowicz equation withr = 0 andW = 0. To prove existence, we rely on the classical
sub- and super-solutions method described, for examplg, inProposition 2]. Since
Y(g) > 0, there exists a positive’2? (M) functions so that the metrig = " ~2g has
positive constant scalar curvature. Settihg )~ '3, Equation 2.1) transforms into
4n—1) _ _ Lo~ 2__N_
To solve @.2) for i, we follows the method of sub- and super-solutions by cotirg
a sub-solutiori_ and a super-solutiop™ as follows. Letu € W?2P(M) denote the
solution to the following linear equation:
4(n—1 ~
*(an)Agﬂ =+ SCa,lgﬂ = |’l/)720'|;.

It follows from the strong maximum principle that> 0 in M. By setting

_N41
P_ = (maxu) Y27y

and
N4l
P, = (minw) V27,
one readily checks thas, andy_ are super- and sub-solutions fdt.2) respectively,
meaning that

4n—1 _ _ Co~12 — \_N_—
—%AW—%C&W— < |yv~%| (o)
and that
4(n—1 _ _ Coi2  \_N_—
7%A§¢++Sca1§¢+ > |y 2‘7|§(<P+) N

Hence, there exists (at least) one solufipio Equation 2.2) and it leads to a solution
po = Yp to Equation 2.1) as well.

Uniqueness is also easy to prove. Indeedgleandgy, be two solutions to Equations
(2.1) and denotes, = ¢ ~1py andp, = ¢ ~1p,. A simple calculation leads us to the
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following equality:

_4(n—1)

—5 A3(P0 —Pp) + Sealg (7 — %)

) 1 1
=1l ((%)NH - (%)NH)

1
2 dz
=—(N+1) w—%f/ (@0 —%0) 5
Vel o (2@ + (1 —aypy)Nt2 T T
=f
where the terny is obviously non-negative. This then implies
4n—1 _ _
O p o~ 7) + (Sealy + £) (B~ ) = 0.
SinceScalg + f > 0, we immediately conclude thgt, — 3, = 0. This proves the
unigueness of the solutigp, as claimed. O

Remark2.2. As can be seen, the existence of such a matiiicthe proof of Claiml does
not need the full strength of the Yamabe theorem, we couly @duire thaty has posi-
tive scalar curvature. However, this claim strongly rebesthe positivity of the Yamabe
invariant)’(¢). Indeed, assume that there exists a positive solgfitmEquation 2.1), the
scalar curvatur8calg of the metricg = ¢V g satisfies

4n—1 ~
Scaly = '™ < 7(1”_ 5 Agp + Scalggp) = p 2N |O’|§ .

Hence, the scalar curvature @fis non-negative and not identically zero. Thd¥g) =
Y(g) > 0. This partially explains why this method cannot be adapteasymptotically
hyperbolic manifolds.

Now, we introduce the following—deformed system ofl.(3):

4(n—1)
 n-—2

~ ~ n—1 N . ~2 __N_
Agp + Scalyp = — - 22N 1+’0+L9W’§<p N-1' (2.3a)

n—1

AL, W = &N pdr. (2.3b)

Note that this system is obtained froh g by changing the mean curvaturesimply by
U

Claim 2. There exists > 0 such that the systeif2.3) admits a solutior(gEH,Wu) €
W2P(M,R) x W2P(M,T*M) forall i € [0,¢).

Proof. The proof is based on the implicit function theorem. First,define the operator
F:Rx W2P(M,R) x W2P(M,T*M) — LP(M,R) x LP(M,T*M)
as follows:
74("—1)A 3+ Scal &+ 2=172,26N-1 _ |54 [, 72 ~—N-1
L~ n_z ~gp tocalgp+ TETI Y o+ 9W|g90
F(Ma 2 W) = N
Ap g W — "T*HZN,udT

It is readily checked thaF is aC''—mapping. Notice that

F(0,%0,0) = (8) ;
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whereg, is the solution found in Claini. All we need to do is to prove that the partial
derivative of F" with respect tqg, W) is an isomorphism &0, ¢y, 0). To this end, we first
observe that the differentid@F, 3, o) is given by

DE0,50,0) (0, 0.%)

—HSA + Sealy + (N +1) 5] 852 1 25V (G Ly ) (a)
= | .

Note thatDF g 3,.0) (0, 5, Z) is triangular, meaning that the second line of2Hay-2 block
matrix above does not depend @nThus, the invertibility ofDF 5, o) follows from the
fact that the diagonal terms
H: W2P(M,R) — LP(M,R)
0 — —2DA 0+ Scalyf + (N +1)[5]2 55 V20
and
V. W2P(M,T*M) — LP(M,T*M)
Z — ALQ Z
are invertible. Invertibility ofl” follows from [24, Proposition 5], while{ is a Fredholm
map of index0. Since)(g) > 0, the conformal Laplacian is positive definite. Hence, for
any givenu € W2?(M) with u # 0, we calculate to obtain

4(n—1
/ uH (u) dvoly :/ (LQ) |du|§ + Scalgu2) dvolg
M M

n —

>0

—|—/ (N+1) |5|§ ¢~ N2 dvol, > 0.
M

>0

Hence,H has atrivial kernel. Thus, we have shown it 3, o) is an isomorphism as
claimed. O

The last claim is just a straightforward calculation, tliere we omit its proof.
Claim 3. Set

2

P = KN Pp,
Ni2 =

W, = pu~v=—=2W,,

N+42
g"u‘ = ‘LLN—ZO—_

If (¢, WM) solveg(2.3), the(¢,, W,,) solveq1.3) witho = o,.

Finally, the proof of Theorerfd.1follows by setting;y = 5%, wheres is the constant
appearing in Clain2.

Remark2.3. It is quite appealing to use the deformati@ndj of the conformal constraint
equations to get a new proof of the limit equation criterisnra[4]. Indeed, the system
(2.3 could be studied using the Leray—Schauder fixed point #rapwhich would allow

1 to go up tol (hences would be set equal to the desiredl Assuming that the set of
(@,W,M) solutions to 2.3) with 0 < p < 1 is bounded, the Leray—Schauder theorem
would guarantee that the systefin3) has (at least) one solution. If this set is unbounded,
the argument presented in Sectib@would lead to the existence of a non-trivial solution
to Equation (.5. Hence, the main result of]] could be strengthened, getting rid of
the parametet (which appears because we introduce a different deform&drsythere).
Such a result would show that the methodsc, [L6] and [4] are two facets of a deeper
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method. However, one serious difficulty appears in attemgyitiis proof: one has to ensure
that if © (or W) divergesu stays away from O.

2.2. A non-existence result. The assumption o, namely that it has to be small but can-
not be zero, looks weird at first sight and one can wonder ihthpothesisr # 0 is purely
technical. As can be seen from [L8, 24], o is used to show that the functignsolving the
Lichnerowicz equationi(:39 is bounded away from zero. We give a slight improvement
of [18] and [4, Theorem 1.7] to the class of metrics with non-negative Yagnavariant
showing that the assumptienz 0 is needed.

As in [4], the manifoldA/ is still assumed to admit no conformal Killing vector fields.
Recall that the proof presented if] [depends on a Sobolev quotient for the operétpr
i.e. wheneve/ admits no non-zero conformal Killing vector fields, the éoling holds:

o . (far ILgV |2 dvoly,)
T 0zvew i 20n T ([ VIN dvoly)

1/2

>0 (2.4)

The main result in this subsection is the following.

Theorem 2.4. Assume thay € W?2P?(M,S?(M)) has non-negative Yamabe invariant
Y(g) and (M, g) has no conformal Killing vector fields. & = 0 andT € W?(M,R),
there exists a positive constafity) independent of € W1» (M, R) such that if

dr

T

<C,
Ln

then there is no solutiofy, W) to the systenfl.3) with ¢ > 0.

Note that this allows (a prior) to have isolated non degenerate zeros. Butcifianges
sign, it can be proven thaltr /7 does not belong to ang? space for any > 1. Hence,
such a case is out of reach from this theorem.

Proof. Let us first assume that the systein3 admits a solutiorfp, W) with ¢ > 0 and
o = 0. To prove the result, we denote hythe conformal metrie)™ —2g where a positive
functiony € W2P?(M,R) is chosen in such a way thdtal; > 0. Such a function)
exists since/(g) > 0. In terms of the metrig, Equation {.3) becomes
4(n —1) 4 1 n—1 o 1 \N-1
- A Scalg =—
o Ag(¥7 ) + Scalg(y™ ) — (Y ) 2.5)
FT LW )TV

Consequently, if we denote:= 1~ ¢, multiply both sides ofZ.5 by 2"V +! and integrate
both sides of the resulting equation with respect to theawonél metricg, we get

3n—2
" / ‘d@N/QH ‘3 dvolg + / Scalz " T2 dvoly
n—=2 Ju g M

1
+ = / 7272V dvoly = / |2y W |2 dvoly.
M M

n
(2.6)
Under our conformal change= "V —2¢, there holds
dvoly = ¢ dvol,,
7 =Y I (2.7)

(WL WG = 2N LW,
Therefore, in terms of the background meyyj¢2.6) implies

n—1

/ T2’L/J_N<,D2Ndvolg</ N LW dvol,. (2.8)
M M

n
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Sincey € W2P(M) is strictly positive, 2.8) immediately implies

N
/ 720*N dvol, < L(mf’“’w) / Ly W2 dvol,. (2.9)
M M

n— 1 \miny

We take the scalar product of the vector equatioBif) with 1/ and integrate ovel/ with
respect to the background metgi¢o get

1 —1
-3 / LW 2 dvoly = “— [ N (dr, W) dvol,,. (2.10)
M n M

Using the Holder inequality, we can estima®el( as follows:

1
5 /M ILyW |2 dvol,

n—1 1/2 /n 1/N
< < / 722N dvo1g) ( / ‘ " dvol > < / Wy dvolg)
n M M M

B 1/2
< 1< r maw /|]LW| dvol> x

n n—l min i

7-n 1/7’1 1/2
x(/ ’— dvolg) ot (/ |JLgW|§dvolg)
M T

1 N/2 1/n
o maxw ( / ‘ dvolg) / IL,W |2 dvol,.
n m1n1/) M

1 n min ¢\ N/2
6_5\/ nflcg(maxi/)) ’
/]@"dmlpc,

M T g

/M LW |2 dvoly = 0.

N

(2.11)
By setting

one gets that

unless

However, in the second case, we conclude from Inequali) that
/ T2~ NN dvol, = 0.
M

Hencep = 0 which contradicts the fact that > 0. Thus, we have proved thatdfr /7 is
small in theL™—sense, the constraint equatiofs3| with vanishings admit no solution.
O

Since our assumptions is weaker than those,iiTheorem 1.7], for a price we pay, the
constant appearing in Theorer.4is smaller than the constant appearingdniheorem
1.7].

3. THE ASYMPTOTICALLY EUCLIDEAN CASE

We now study the situation in the asymptotically Euclideasec For relevant results on
Sobolev spaces on asymptotically Euclidean manifolds,efer the reader tal] or [23].
See also the forthcoming articlg][

Let (M",g) be a complete non-compact Riemannian manifold. We say(thap)
is W(f"p—asymptotically Euclidean if there exist a compact BetC M, a real number
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R > 0, and a diffeomorphisn® : M \ K — R" \ Br(0) such that, denoting the flat
(background) metric ofR™ and setting: := ¥,.g — b, we have

3 / 9Def? (14 ]af2) "7 ol (@) < oo
R™

0<i<k

for somek > 2,p > nands > 0. Here, we denoted by") e theith order derivative (in the
sense of distributions) Qfand|(9(i)e|b its (pointwise) norm with respect to the Euclidean
metric.

Given an asymptotically Euclidean manifqlai/, g) we denote by the pullback of the
distance function from the origin R™: » = | - | o ¥ and extend it to a positive continuous
function onK. For any natural tensor bundlé — M and any sectio € I'(E), we
define the following weighted Sobolev norm:

1/q

I€llwsa(ar, ) = < / v 5‘ (1+r ~Orn/p=liarz dvolg) ,
and the associated Sobolev space

Wit (M, B) = {€ € Wisd, €l m) < o0

We also recall that the Yamabe invariant for an asymptdyiéaiclidean manifold M, g)
is given by (L.4) even if the solution to the Yamabe problem in this case doebe&long to
W12 since it tends to some positive constant at infinity.

We prove the following theorem.

0<i<s

Theorem 3.1. Let (M, g) be an”’—asymptotically Euclidean manifold for some> n
and somé& € (2 —n,0). Assume that the Yamabe invaridhty) of the manifold M, g) is
positive. Then given anye W, »(M,R), & € W, P(M,S*(M)), & # 0, and@. € R%,
there existsy, > 0 such that for anyy € (0,7) there exists at least one solution to
the systen(1.39—1.3b with ¢ = noo and (¢ — n* V=25 W) € WP (M,R) x
WP (M, T*M).

Note that the conditiop —np. € Wf”’(M, R) immediately implies thap — 1. at
infinity. The proof of this theorem mimics that of Theor@m replacing thdV *?—spaces
by thve’p ones. We only give the analogs of each of the four claims ambef pf the
significantly different steps.

Claim 1'. There exists a unique solutig#, to the equatior(2.1) such thatpy — ¢ €
W2P(M,R).
Proof. To simplify the proof, we assume that the maniféld, g) has zero scalar curva-
ture. This assumption is harmless since it is known that aggnatotically Euclidean met-
ric g with positive Yamabe invarian¥(g) is conformally related to a metrig = ¢V —2g
with zero scalar curvature with—1 € W(?’p(M, R) (for instance, see’[3, Proposition 3]).
Hence, one can proceed as in the proof of Clajmvorking with metricg and replacing
~12 _9~2
|O’|g by |1/) 20|g.
To prove the existence part, we first decomppse ¢, + v and wish to look fow in
W2P(M,R) solving the following PDE:
~ 2
An—1) , _ o],
- AU = 3.1
n—9 gV (Boo + )N+1 (3.1)
Note thatv_ = 0 is always a subsolution t@(1). To construct a super-solution t8.(),
letv, € Wéz’p(M, R) denote the solution to the following Poisson equation:

~2
5y
(o)™ H!

dn—-1) , _
T
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From the strong maximum principle it follows that > 0. As a consequence, there holds

~12

dn—1) , - lo]|

A > ———
(‘poo + U+)

this is to say that is a supersolution to3(1). The standard sub- and super-solutions
method applies giving rise to the existence of a solufigrsolving (2.1) and satisfying
o = Poo € W (M, R).

The proof of the uniqueness property is then entirely sinbldahe compact case, there-
fore we omit it. O

n—2

Claim 2. There exists > 0 such that the syste(2.3) admits a solutior(¢,,, W#) such
that@, — Poo € W P(M,R) andW,, € WP (M, T*M) forall ju € [0, ¢).

Proof. The proof of Claim2 translates mutatis mutandis, the only difference being tha
we need to work on the affine spag..,0) + W;*(M,R) x W.P(M,T*M). The
relevant properties for the operatdy, , on asymptotically Euclidean manifolds can be

foundin [23, Theorem 5.4]. O
Claim 3. Set

P =1V,

W, = u~2W,,

o, = puNig

If (¢, W#) solveq2.3) with ¢,, — ¢ atinfinity, then(y,,, W,,) solveq1.3) witho = o,
andy,, — p?/N=25 atinfinity.

4., THE COMPACT WITH BOUNDARY CASE

4.1. Boundary conditions. A natural issue in the study of the Einstein constraint equa-
tions is the construction of initial data modeling black éml While the definition of a
black hole requires knowledge of the whole solutiovt, g) of the Einstein equations, it

is natural to construct initial data containing apparentaoms. For an overview, we refer
the reader toJ]. A natural way to construct such solutions is to excise tigédie of the
apparent horizon and thus construct solutions to the cainstequations on the outside.
As a consequence, we fix a manifdid with boundary M, solve the constraint equations
on M in such a way tha® M becomes an apparent horizon.

The first articles where such solutions to the constrainagquos were constructed dealt
with the constant mean curvature case, see &(y2[J]. Very recently, people have turned
their attention to compact manifolds with boundary with ayireg 7, see for example
[5, 14].

To go further, let us roughly reformulate this problem. Fetailed explanation and
calculations, we refer the reader fq [L1, 14]. Let 7 be the (spacelike) unit normal vector
field tooM in M pointing towards the outside @ff (hence to the “inside” of the apparent
horizon) and let: be the future directed unit normal spacetime vector fieldfo Then,
by means of apparent horizon boundaries, in addition todinstcaint equationsi(1), we

further require
O_ <0,
N (4.2)
@+ = 05

where(:)i, known as the null expansion with respect to the null norfpal= n F v, are
given as follows:

Os=try K — K(,0) F H;
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whereHy is the (unnormalized) mean curvatured¥/ in M/ evaluated with respect @,
that is to say

Hy = §"V,v;,
where we denote by the Levi-Civita connection for the metrig. Since we require

o~

©4 = 0ondM, the conditions can be rewritten as

;R — R(5,7) = L;@* - %,
0.-6, 6.
Hy=—%—=%"

On the other hand, recalling that= ¢V =2¢, one has the following formula relatind;
andH,:
2(n—1)
n—2
wherer = ¢N/2-17 is the unit vector field normal t& calculated with respect to the
metricg. Hence, we get the following condition far.

By + Hyp = Hyp™'?,

~

o_
oot faw =5

2(n—-1)

oV, (4.2)
n—2

~

Next, thanks tar; K = 7 and the fact that
S T _
K@w,v)= - + (0 +L,W) (v, v)p™ N,
we obtain the following identity:

O -1
_92 _n T— (0 +L,W)(v, V)N, (4.3)
n
Contrary to ¢.2), this does not give a boundary condition that complemeisakon

(1.3D. In this context, it is natural to prescrilfe + L,1W)(v, -) as follows:

n—1

(c+L,W)(v, ) = ( T — %)@Nyb +¢£ (4.4)

n
where¢ is al-form ondM which we extend to the restriction @fM to M by setting
¢(v) = 0 so that Condition4.3) is satisfied. Also in4.4), we use/” to denote thé—form

dual to the normal vector fieldwhich is given by’ (X) = g(v, X) for any vector fieldX

ondM . Having all discussion above, we are now in a position toendiwn the following
system of PDEs:

A(n -1 1
—%Agtp + Scalyp = —nTTQ(pN_l +|o+ LgWE(p_N_l,
—1
AL W = L oNdr,
- 4.5)
2(n—1 O_ (
A e+ Hyp =
-1 6.
(0 +LW)(v,) = (nn T—T)“"N”b“’

where the given data are ndW/, g) a compact Riemannian manifold with boundadi/,
7 a function onM, ¢ a TT-tensor,©_ a nonpositive function ol = M and¢ €
T'(OM,T*M) a 1-form.
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In the presence of the boundaty/, instead of using the sign 9f(g), we use the sign
of the Yamabe invariany (g, 0M ) introduced by Escobafl:

Ju (4(n_1) |d<P|§ + Scalyp?) dvolg + Jor Hyp? dsq

n—2

Oq‘étpev%/qﬂ(]\/f,R) (fM N dvolg)N/2

We also comment on the York splitting on compact manifoldghveioundary. While on
closed manifolds we have that the set of (S&¥)y>—TT-tensors id.?>—orthogonal to the set
{L,W,W € W22(M, T*M)}, this is no longer true for compact manifolds with bound-
ary. Indeed, let be a TT-tensor an@l’ be an arbitraryl—form, then if we denote bji’*

the vector field dual to the—form W, then by a direct calculation together with the Stokes
theorem, we have

/ (0, LyW) dvol, = 2/ (0, VW) dvol,
M M
= 2/ div (O’(Wﬁ, -)) dvoly — 2/ (div o) (W¥) dvol,,
M M

:2/ o(W¥ v)ds,,
oM

wheretr, o = 0 anddiv, ¢ = 0 were also used to obtain the first and last lines respectively
Since the restriction ofl” to M can be arbitraryy belongs to the orthogonal of the set
of L,W’s if and only if we also impose that(v,-) = 0 on 9M. We will make this
assumption from now on.

y(g,aM) =

4.2. Existence result. The main result of this subsection is the following.

Theorem 4.1. Let M be a compact manifold with boundary. Given> n, letg €
W?2P(M,S*(M)),r € WHP(M,R), ande € WP (M, S%(M)), O_¢ Wi=1/rr(9M,R),
€ € Wi=1/p»(9M, T* M) be given data, wher& is a TT-tensor such that(v, -) = 0 on
OM . Assume that the Escobar invariayitg, 0M ) is strictly positive, thay has no con-

formal Killing vector fields and eithe# £ 0 or E,ﬂé 0. There existg)y, > 0 such that for
anyn € (0, n) there exists at least one solutiép, W) € W2P(M,R) x WP (M, T* M)
to the systenf4.5) with o = no and§ = né.

We initiate the proof of Theorem.1 by proving that the right hand side of the analog
of Equation @.1) (see Equatior4.6) below) is actually non-zero.

Claim 0”. LetWO € W2P(M,T*M) be the unique solution of
AL Wo =0,
{ Ly(v,-) = &.
Then under the assumptions of Theoref) we have
|5+ LgWo|” # 0.
Proof. The existence, the uniqueness, and the regularW(pare provedin]4, Theorem

4.5]. See also43, Proposition 5.1] andl[0, Theorem 8.6] for earlier references. From the
remark at the end of Subsectidri, we have

/\5+L9W012dvolg=/ Eik dvolg—i—/ Ly Wol? dvol,.
M g M M g

Hence if5 % 0, the claim follows. Otherwise if % 0, W, is a non-trivial element of
W2P(M,T*M). Since(M, g) has no non-zero conformal Killing vector field, it follows
that

/M Ly Wo|? dvol, > 0,
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which proves the claim. O

Claim 1”. Under the assumptions of Theorel, there exists a unique solutiap, €
W?2P(M,R) to the following system:

4(n —1 - - - —~— 2 -_N_
_4n—1) )Ag¢0+scalg<p0:]a+LgW0\ PN,
n—2 ! (4.6)
2(n —1 - _ '
51_2>8U500+H9900:0-

Proof. The proof of this claim is similar to the proof of Claiin From the work of Escobar
[9, Lemma 1.1], there exists a conformal factoe W27 (M, R) such that the metrig =
1N ~2g hasScal; > 0 and the mean curvature of the boundary vanishes identically:
Hg = 0. The equation fop, := 1»~'3, reads

dn—-1), _ _ o/~ SN2 N—
~ g BaPo t SealgPo = [ (7 4Ly Wo) |72 ", 4.7)
aﬁ@o =0,

wherew = !'~N/2y is the unit normal t&)M for the metricg. There exists a unique
functionu € WP (M, R) solving

4(n—1 ~ —~

—%Q)Agﬂ + Scalgu = |¢72(5 + Ly W) \2,

Optip = 0.

(4.8)

Further, the functiom is positive. By setting

_N41
P_ = (maxu) Y27y

and
N4l
P, = (minw) V27,
one readily checks that, and_ are super- and sub-solutions far.7). Hence, by the
sub- and super-solution method, we conclude that therésexisolutiorp, to (4.7). The
functiony, = g, is then a solution to4.6). The proof of uniqueness is a rephrasing of
that in Claim1 with a Neumann boundary condition. O

Similar to 2.3 for the closed case, in view ofL.(5) we now introduce the following
u—deformed system for the compact with boundary case:

4(n—1 - - -1 - - ~ 5.
—%Ag@ + Scal,p = _n - 2PN 45+ L9W|§@_N_1,
— -1
A]L,gVV = t @Nudﬁ
2An—1) . _ 6. _ (4.9)
g(’)ytp—i— H,p = —/MPN/Q,
n—2 2

This system is obtained from §) by replacingr by 7 and©_ by ;L(:),.

Claim 2". There exists > 0 such tha{4.9) admits a solutior{y,,, WM) forall u € [0,¢).

Ias pointed out by one of the referees, Lemma 1.1] is only stated for smooth metrics. However, ttaop
works for W 2:P-metrics without any change.
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Proof. We define the following operator:

F: R x W2P(M,R) x W2P(M,T*M)
!
LP(M,R) x W' 5P(OM,R) x LP(M,T*M) x W'~ »?(OM, T*M)
given by
— A AG + Scalyp o+ BT EN T — o+ LW G5V
. 200,54+ Hyf — S ppN/?
F(Ma 2 W) =

AL g w— "T_lﬁNudT

LW (v, ) — ("T’lf - 67’) PNV - €
It is not hard to see that the mappiAgs of classC! and

0
F(0, §o, Wo) =

o O

0

where, andW, are given in Claim®” and1”. Again, all we need to do is to prove that
the derivative off” with respect td g, ) is an isomorphism &0, o, WO) To do so, we
need to study the following mapping:

DF o 5 i) W2P(M,R) x W2P(M, T*M)
!

LP(M,R) x W'"5P(OM,R) x LP(M,T*M) x W'~ 5P (OM, T*M).
A direct computation shows that this derivative is given by

DF(vaﬁo Wo)(e’ Z)
74(7:1—21)Ag + Scaly + (N + 1) +L W0|2 5-N-2 —2(5 + ILgWo,]Lg -
____________________________ U
2(7:1*21) 8V + Hg : 0 (
= |l--——-——-—"—-"—- - - - - - - - — — ——- - - = = - = = - - - - - - - -
0 I Ar,
____________________________ '_____________
|
0 I Lg ’ (V7 )
Clearly, DF( 0. T0) is continuous. To prove théPF( 0. 170) is invertible, we observe
thatDF( _ |s block upper-triangular, where the dlagonal blocks are
A= DA+ Scaly + (N + 1)o7 ¥ 2 AL,
and
o, + Hy Ly« ()
which are invertible. Hence, the derivatiYDd?(0 o, Wo) is an isomorphism ai, o, Wo)
as claimed. 0
Claim 3”. Set
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—~ N42

If (¢, W,) solves(4.9), then(p,,, W,) solves(4.5 witho = 0, = p~¥—20 and¢ =
N42 ~
§u == pN2¢.

Finally, the proof of Theorem.1follows by setting;, = 5%, wheres is the constant
appearing in Clain2”.

Remark4.2. It is tempting to prove an analog of the non-existence rdsulthe case of
a compact manifold with boundary as in Theor@m. The natural assumptions in this
theorem would then be = 0, £ = 0 and) (g, 9M) > 0. The proof is however not just an
extension of that of Theoreth4, it relies on techniques developed irl] so we choose to
defer it to that article.
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