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A NEW POINT OF VIEW ON THE SOLUTIONS TO THE EINSTEIN
CONSTRAINT EQUATIONS WITH ARBITRARY MEAN CURVATURE AND

SMALL TT-TENSOR

ROMAIN GICQUAUD AND QUÓ̂C ANH NGÔ

ABSTRACT. In this short note, we give a construction of solutions to the Einstein con-
straint equations using the well known conformal method. Our method gives a result sim-
ilar to the one in [15, 16, 24], namely existence when the so called TT-tensorσ is small
and the Yamabe invariant of the manifold is positive. The method we describe is how-
ever much simpler than the original method and allows easy extensions to several other
problems. Some non-existence results are also considered.
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1. INTRODUCTION

1.1. The Einstein constraint equations. Initial data for the Cauchy problem in general
relativity are usually given in terms of the geometry of the Cauchy surface(M, ĝ) in the
spacetime(M, g) of dimensionn + 1 with n > 3. Assuming that the spacetimeM is
globally hyperbolic andM is a spacelike Cauchy surface, one can define the metricĝ

induced onM by the spacetime metricg and the second fundamental form̂K ofM in M.
It follows from the Einstein equations together with the Gauss and Codazzi equations that
ĝ andK̂ are related by the following equations




Scalĝ + (trĝ K̂)2 − |K̂|2ĝ = 2ρ,

divĝ K̂ − d(trĝ K̂) = j,

(1.1a)

(1.1b)
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whereρ andj are related to the other fields such as matter fields, electromagnetic field, etc.
that one wants to include into the universe under consideration. Also in (1.1), Scalĝ is the
scalar curvature of̂g. To keep things simple, we will consider no field but the gravitational
field, hence, forcingρ ≡ 0 andj ≡ 0.

A simple dimension counting argument shows that the system (1.1) is under-determined,
thus, it is generally hard to solve (1.1) in this form. To overcome this difficulty, we need
to decompose botĥg andK̂ into given data and unknowns that will have to be adjusted
so that Equations (1.1a) and (1.1b) are fulfilled. Several such splitting exist and we refer
the reader to [2] for a detailed review of some known results on the constraint equations.
In the literature, the most commonly used method is the conformal method which we
briefly describe now. We invite the reader to have a look at thevery nice recent work of
Maxwell [20, 21, 25] for a deep understanding of this method and its connection to other
widely used methods.

The given data in the conformal method consist of

• a Riemannian manifold(M, g),
• a functionτ :M → R,
• and a symmetric2–tensorσ onM which is traceless and transverse in the following

sense
trg σ ≡ 0, divg σ ≡ 0.

As a shorthand, we will callσ a TT-tensor. The unknowns in the conformal method are

• a positive functionϕ :M → R
∗
+,

• and a1–formW .

Combining all these elements, one can form(ĝ, K̂) as follows:

ĝ = ϕN−2g,

K̂ =
τ

n
ĝ + ϕ−2 (σ + LgW ) ,

(1.2)

whereN := 2n/(n− 2) andLg is the conformal Killing operator given by

LgWij := ∇iWj +∇jWi −
2

n
∇kWkgij ,

with ∇ the Levi–Civita connection associated to the background metric g. Here,τ is the
mean curvature ofM as an hypersurface of(M, g) given by

τ = ĝijK̂ij .

The choice forσ andW in (1.2) is related to the York splitting, see the remark at the end
of Section4.1.

Using the decomposition (1.2), the constraint equations (1.1) become a system of PDEs
for (ϕ,W ) given as follows:





−
4(n− 1)

n− 2
∆gϕ+ Scalgϕ = −

n− 1

n
τ2ϕN−1 +

∣∣σ + LgW
∣∣2
g
ϕ−N−1,

∆L,g W =
n− 1

n
ϕNdτ,

(1.3a)

(1.3b)

where we denote∆gϕ = divg(∇gϕ) and∆L,g W = divg(LgW ). In the literature, Equa-
tion (1.3a) is commonly known as the Lichnerowicz equation while Equation (1.3b) is
usually called the vector equation.

The system (1.3) is notoriously hard to solve except in the case whenτ is a constant
function which is now well understood, see for instance [17]. Indeed, whenτ is constant,
Equation (1.3b) only involvesW and generically implies thatW ≡ 0. Therefore, one is
left with solving the Lichnerowicz equation (1.3a) without anyW . However, everything
dramatically changes whenτ is no longer constant. Perturbation arguments can be used
to address the case whendτ is small in some sense. But, until recently, very few results
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were known for arbitraryτ . Two major breakthroughs were obtained first by M. Holst,
G. Tsosgtgerel, and G. Nagy in [15, 16], by D. Maxwell in [24], and then by M. Dahl, E.
Humbert, and the first author in [4].

Usually, standard methods to solve elliptic PDEs require ana priori knowledge of the
solutions, i.e. nice domains in which one can try to apply fixed point theorems, fixed
point arguments, etc. However, via a simple scaling argument, changingϕ to λϕ where
λ ≫ 1 shows that the two dominant terms in the Lichnerowicz equation aren−1

n τ2ϕN−1

and|LgW |2gϕ
−N−1. These two terms have the same scaling behavior but come up with

opposite signs in the Lichnerowicz equation (1.3a). Although the first term has the right
sign and in fact helps us in applying the maximum principle, the second one has the wrong
sign and eventually destroys any attempt to get an a priori upper bound forϕ whendτ is
not small.

1.2. The Holst–Nagy–Tsogtgerel–Maxwell method.Losing such an a priori estimate, a
very nice idea was proposed in [15, 16]. The idea was pushed further in [24]. It consists in
looking for solutions of the system (1.3) with ϕ andW very close to zero to make the two
dominant terms irrelevant. To do this, they require the manifold (M, g) to be closed with a
positive Yamabe invariant,Y(g) > 0 (see Equation (1.4) below). Consequently, the scalar
curvatureScalg becomes in some sense the dominant term. In addition, they also require
thatσ is small to control the right hand side of Equation (1.3a). The theorem they obtained
is the following.

Theorem 1.1(see [24]). Let M be a compact Riemannian manifold without boundary.
Givenp > n, let g ∈ W 2,p, τ ∈ W 1,p, andσ ∈ W 1,p, σ 6≡ 0 be given data. Assume
that the Yamabe invariantY(g) is strictly positive and thatg has no conformal Killing
vector fields. Then, if‖σ‖L∞ is small enough, there exists at least one solution(ϕ,W ) ∈
W 2,p(M,R)×W 2,p(M,T ∗M) to the system(1.3).

Assume thatM is a compact manifold without boundary, we recall that the Yamabe
invariantY(g) of (M, g) is defined as

Y(g) = inf
06≡ϕ∈W 1,2(M,R)

∫
M

( 4(n−1)
n−2 |dϕ|2g + Scalgϕ

2
)
dvolg

(∫
M ϕN dvolg

)N/2
(1.4)

The method of [15, 16] was recently adapted to other situation such as asymptotically
Euclidean manifolds in [7], asymptotically cylindrical manifolds in [19], compact mani-
folds with boundary in [5, 14], and to asymptotically Euclidean manifolds with boundary
in [13]. As can be seen from the statement of Theorem1.1and as we have just mentioned
earlier, the smallness of‖σ‖L∞ was used. However, it is worth mentioning that such an
L∞–smallness assumption can be weaken to‖σ‖L2 small enough, see [26].

1.3. The Dahl–Gicquaud–Humbert method. The idea of [4] goes in the opposite direc-
tion to the method in Subsection1.2. Intuitively, the idea of [4] is to study what happens
if ϕ andW can become very large, i.e. what prevents the existence of ana priori estimate.
The answer to this question is heuristically that ifϕ can become very large, by setting
γ = ‖ϕ‖L∞ and by renormalizingϕ,W , andσ as follows:

ϕ̃ = γ−1ϕ, W̃ = γ−NW, σ̃ = γ−Nσ,

it turns out that̃ϕ andW̃ satisfy the following system




1

γN−2

(
−
4(n− 1)

n− 2
∆gϕ̃+ Scalgϕ̃

)
= −

n− 1

n
τ2ϕ̃N−1 +

∣∣σ̃ + LgW̃
∣∣2
g
ϕ̃−N−1,

∆L,g W̃ =
n− 1

n
ϕ̃Ndτ.
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In the limit asγ → +∞, one is left with

n− 1

n
τ2ϕ̃N−1 =

∣∣LgW̃
∣∣2
g
ϕ̃−N−1.

Therefore,̃W becomes a non-trivial solution to the so-called limit equation

∆L,g W̃ =

√
n− 1

n

∣∣LgW̃
∣∣
g

dτ

τ
. (1.5)

The rigorous argument leads to a similar limit equation witha parameterα ∈ (0, 1] given
as follows:

∆L,g W̃ = α

√
n− 1

n

∣∣LgW̃
∣∣
g

dτ

τ
. (1.6)

The main theorem of [4] can be stated as follows.

Theorem 1.2. LetM be a compact Riemannian manifold without boundary. Givenp > n,
let g ∈ W 2,p, τ ∈ W 1,p, andσ ∈ W 1,p be given data. Assume thatg has no conformal
Killing vector fields,τ > 0 and thatσ 6≡ 0 if Y(g) > 0. If the limit equation(1.6) admits
no non-zero solutioñW for all values of the parameterα ∈ (0, 1], then there exists at least
one solution(ϕ,W ) ∈W 2,p(M,R)×W 2,p(M,T ∗M) to the system(1.3).

It is worth noticing that the result in [4] requires thatτ is bounded away from zero,
however, it involves no assumption on the Yamabe invariantY(g). A simplified proof of
Theorem1.2appears in [26].

This method was adapted to several other contexts such as asymptotically hyperbolic
manifolds in [12] and asymptotically cylindrical manifolds in [8]. In particular, strong re-
sults are obtained for negatively curved manifolds, see [12, Proposition 6.2 and Remark
6.3]. The case of asymptotically Euclidean manifolds and compact manifolds with bound-
ary are currently work in progress [6, 11]. New difficulties show up in these cases.

1.4. Objective and outline of the paper. As we have already seen from Subsections1.2
and1.3, both approaches we presented are dual in a certain sense. The first one constructs
solutions which are very close to zero while the second one isa means to ensure control
on the size of the solutions. In this note, we emphasize the duality between both methods
showing that the Holst et al. method can be rephrased as a scaling argument. This dual-
ity can potentially be deepen further, recasting both methods in a single framework, see
Remark2.3. This also sheds a light on the role of the assumptions of the main theorem
of [24].

Nevertheless, our new method leads to a result which is not asgood as the one of [24]
but it is much simpler than the original one and appears also quite versatile.

In Section2, we present in detail the simplest case of our method, namelywhen the
manifold is closed. Also in this section, a non-existence result is presented. Then, we give
a quick look at the asymptotically Euclidean case in Section3 and at compact manifolds
with boundary in Section4.

2. THE CLOSED CASE

In this section, we are interested in studying solutions of (1.3) when the underlying
manifoldM is compact without boundary. In the first part of this section, we prove a result
which basically says that (1.3) is solvable whenY(g) > 0 andσ 6≡ 0 is small enough, see
Theorem2.1below. Then, we improve [4, Theorem 1.7] by showing that (1.3) admits no
solution providedY(g) > 0, σ ≡ 0, anddτ/τ is small in theLn–norm.
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2.1. Existence results for small but non-vanishing TT-tensor.The main result of this
subsection is the following.

Theorem 2.1. LetM be a compact manifold without boundary. Givenp > n, let g ∈
W 2,p(M,S2(M)), τ ∈ W 1,p(M,R) and σ̃ ∈ W 1,p(M,S2(M)), σ̃ 6≡ 0 be given data.
Assume that the Yamabe invariantY(g) is strictly positive and thatg has no conformal
Killing vector fields. There existsη0 > 0 such that for anyη ∈ (0, η0) there exists at least
one solution(ϕ,W ) ∈W 2,p(M,R)×W 2,p(M,T ∗M) to the system(1.3) with σ = ησ̃.

Note that this theorem is not as good as Theorem1.1. Indeed,η0 depends a priori on
σ̃ in an unknown way while Theorem1.1asserts that the system (1.3) with σ = ησ̃ has a
solution provided that‖σ‖L∞ = |η| ‖σ̃‖L∞ is small enough (less than someǫ > 0). So the
correspondingη0 would beǫ/ ‖σ̃‖L∞ . Nevertheless, the proof appears to be constructive
since it relies on the sub- and super-solutions method and onthe implicit function theorem.
For the sake of clarity, we divide the proof into several claims.

Claim 1. Let σ̃ 6≡ 0 be a TT-tensor belonging toW 1,p(M,S2(M)). Then there exists a
unique solutioñϕ0 ∈W 2,p(M,R) to the following equation

−
4(n− 1)

n− 2
∆gϕ̃+ Scalgϕ̃ = |σ̃|

2
g ϕ̃

−N−1, (2.1)

Proof. The proof is standard, see [22]. Note that this equation is nothing but the Lich-
nerowicz equation withτ ≡ 0 andW ≡ 0. To prove existence, we rely on the classical
sub- and super-solutions method described, for example, in[17, Proposition 2]. Since
Y(g) > 0, there exists a positiveW 2,p(M) functionψ so that the metricg = ψN−2g has
positive constant scalar curvature. Settingϕ = ψ−1ϕ̃, Equation (2.1) transforms into

−
4(n− 1)

n− 2
∆gϕ+ Scalgϕ =

∣∣ψ−2σ̃
∣∣2
g
ϕ−N−1. (2.2)

To solve (2.2) for ϕ, we follows the method of sub- and super-solutions by constructing
a sub-solutionϕ− and a super-solutionϕ+ as follows. Letu ∈ W 2,p(M) denote the
solution to the following linear equation:

−
4(n− 1)

n− 2
∆gu+ Scalgu =

∣∣ψ−2σ̃
∣∣2
g
.

It follows from the strong maximum principle thatu > 0 in M . By setting

ϕ− = (maxu)
−N+1

N+2 u

and

ϕ+ = (minu)
−N+1

N+2 u,

one readily checks thatϕ+ andϕ− are super- and sub-solutions for (2.2) respectively,
meaning that

−
4(n− 1)

n− 2
∆gϕ− + Scalgϕ− 6

∣∣ψ−2σ̃
∣∣2
g
(ϕ−)

−N−1

and that

−
4(n− 1)

n− 2
∆gϕ+ + Scalgϕ+ >

∣∣ψ−2σ̃
∣∣2
g
(ϕ+)

−N−1.

Hence, there exists (at least) one solutionϕ to Equation (2.2) and it leads to a solution
ϕ̃0 = ψϕ to Equation (2.1) as well.

Uniqueness is also easy to prove. Indeed, letϕ̃0 andϕ̃′
0 be two solutions to Equations

(2.1) and denoteϕ0 = ψ−1ϕ̃0 andϕ′
0 = ψ−1ϕ̃′

0. A simple calculation leads us to the
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following equality:

−
4(n− 1)

n− 2
∆g

(
ϕ0 − ϕ′

0

)
+ Scalg (ϕ0 − ϕ′

0)

=
∣∣ψ−2σ̃

∣∣2
g

(
1

(ϕ0)
N+1

−
1

(ϕ′
0)

N+1

)

=− (N + 1)
∣∣ψ−2σ̃

∣∣2
g

∫ 1

0

dx

(xϕ0 + (1− x)ϕ′
0)

N+2

︸ ︷︷ ︸
:=f

(ϕ0 − ϕ′
0) ,

where the termf is obviously non-negative. This then implies

−
4(n− 1)

n− 2
∆g (ϕ0 − ϕ′

0) + (Scalg + f) (ϕ0 − ϕ′
0) = 0.

SinceScalg + f > 0, we immediately conclude thatϕ0 − ϕ′
0 ≡ 0. This proves the

uniqueness of the solutioñϕ0 as claimed. �

Remark2.2. As can be seen, the existence of such a metricg in the proof of Claim1 does
not need the full strength of the Yamabe theorem, we could only require thatg has posi-
tive scalar curvature. However, this claim strongly relieson the positivity of the Yamabe
invariantY(g). Indeed, assume that there exists a positive solutionϕ̃ to Equation (2.1), the
scalar curvatureScalĝ of the metriĉg = ϕN−1g satisfies

Scalĝ = ϕ1−N

(
−
4(n− 1

n− 2
∆gϕ+ Scalgϕ

)
= ϕ−2N |σ̃|2g .

Hence, the scalar curvature ofĝ is non-negative and not identically zero. Thus,Y(g) =
Y(ĝ) > 0. This partially explains why this method cannot be adapted to asymptotically
hyperbolic manifolds.

Now, we introduce the followingµ–deformed system of (1.3):




−
4(n− 1)

n− 2
∆gϕ̃+ Scalgϕ̃ = −

n− 1

n
τ2µ2ϕ̃N−1 +

∣∣σ̃ + LgW̃
∣∣2
g
ϕ̃−N−1,

∆L,g W̃ =
n− 1

n
ϕ̃Nµdτ.

(2.3a)

(2.3b)

Note that this system is obtained from (1.3) by changing the mean curvatureτ simply by
µτ .

Claim 2. There existsε > 0 such that the system(2.3) admits a solution(ϕ̃µ, W̃µ) ∈
W 2,p(M,R)×W 2,p(M,T ∗M) for all µ ∈ [0, ε).

Proof. The proof is based on the implicit function theorem. First, we define the operator

F : R×W 2,p
+ (M,R)×W 2,p(M,T ∗M) → Lp(M,R)× Lp(M,T ∗M)

as follows:

F (µ, ϕ̃, W̃ ) =



− 4(n−1)

n−2 ∆gϕ̃+ Scalgϕ̃+ n−1
n τ2µ2ϕ̃N−1 −

∣∣σ̃ + LgW̃
∣∣2
g
ϕ̃−N−1

∆L,g W̃ − n−1
n ϕ̃Nµdτ


 .

It is readily checked thatF is aC1–mapping. Notice that

F (0, ϕ̃0, 0) =

(
0
0

)
,
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whereϕ̃0 is the solution found in Claim1. All we need to do is to prove that the partial
derivative ofF with respect to(ϕ̃, W̃ ) is an isomorphism at(0, ϕ̃0, 0). To this end, we first
observe that the differentialDF(0,ϕ̃0,0) is given by

DF(0,ϕ̃0,0)(0, θ̃, Z̃)

=




− 4(n−1)
n−2 ∆g + Scalg + (N + 1) |σ̃|

2
g ϕ̃

−N−2
0 −2ϕ̃−N−1

0

〈
σ̃,Lg ·

〉

0 ∆L,g




(
θ̃

Z̃

)
.

Note thatDF(0,ϕ̃0,0)(0, θ̃, Z̃) is triangular, meaning that the second line of the2-by-2 block

matrix above does not depend onθ̃. Thus, the invertibility ofDF(0,ϕ̃0,0) follows from the
fact that the diagonal terms

H : W 2,p(M,R) → Lp(M,R)

θ̃ 7→ − 4(n−1)
n−2 ∆g θ̃ + Scalg θ̃ + (N + 1) |σ̃|2g ϕ̃

−N−2
0 θ̃

and
V : W 2,p(M,T ∗M) → Lp(M,T ∗M)

Z̃ 7→ ∆L,g Z̃

are invertible. Invertibility ofV follows from [24, Proposition 5], whileH is a Fredholm
map of index0. SinceY(g) > 0, the conformal Laplacian is positive definite. Hence, for
any givenu ∈W 2,p(M) with u 6≡ 0, we calculate to obtain

∫

M

uH(u) dvolg =

∫

M

(
4(n− 1)

n− 2
|du|

2
g + Scalgu

2

)
dvolg

︸ ︷︷ ︸
>0

+

∫

M

(N + 1) |σ̃|
2
g ϕ̃

−N−2u2 dvolg
︸ ︷︷ ︸

>0

> 0.

Hence,H has a trivial kernel. Thus, we have shown thatDF(0,ϕ̃0,0) is an isomorphism as
claimed. �

The last claim is just a straightforward calculation, therefore we omit its proof.

Claim 3. Set 



ϕµ = µ
2

N−2 ϕ̃µ,

Wµ = µ
N+2

N−2 W̃µ,

σµ = µ
N+2

N−2 σ̃.

If (ϕ̃µ, W̃µ) solves(2.3), the(ϕµ,Wµ) solves(1.3) with σ = σµ.

Finally, the proof of Theorem2.1follows by settingη0 = ε
N+2

N−2 , whereε is the constant
appearing in Claim2.

Remark2.3. It is quite appealing to use the deformation (2.3) of the conformal constraint
equations to get a new proof of the limit equation criterion as in [4]. Indeed, the system
(2.3) could be studied using the Leray–Schauder fixed point theorem, which would allow
µ to go up to1 (henceσ̃ would be set equal to the desiredσ). Assuming that the set of
(ϕ̃, W̃ , µ) solutions to (2.3) with 0 6 µ 6 1 is bounded, the Leray–Schauder theorem
would guarantee that the system (1.3) has (at least) one solution. If this set is unbounded,
the argument presented in Section1.3would lead to the existence of a non-trivial solution
to Equation (1.5). Hence, the main result of [4] could be strengthened, getting rid of
the parameterα (which appears because we introduce a different deformed system there).
Such a result would show that the methods of [15, 16] and [4] are two facets of a deeper
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method. However, one serious difficulty appears in attempting this proof: one has to ensure
that if ϕ̃ (or W̃ ) diverges,µ stays away from 0.

2.2. A non-existence result.The assumption onσ, namely that it has to be small but can-
not be zero, looks weird at first sight and one can wonder if thehypothesisσ 6≡ 0 is purely
technical. As can be seen from [4, 18, 24], σ is used to show that the functionϕ solving the
Lichnerowicz equation (1.3a) is bounded away from zero. We give a slight improvement
of [18] and [4, Theorem 1.7] to the class of metrics with non-negative Yamabe invariant
showing that the assumptionσ 6≡ 0 is needed.

As in [4], the manifoldM is still assumed to admit no conformal Killing vector fields.
Recall that the proof presented in [4] depends on a Sobolev quotient for the operatorLg,
i.e. wheneverM admits no non-zero conformal Killing vector fields, the following holds:

Cg = inf
06≡V ∈W 1,2(M,T∗M)

(∫
M

|LgV |2g dvolg
)1/2

(∫
M |V |Ng dvolg

)1/N > 0 (2.4)

The main result in this subsection is the following.

Theorem 2.4. Assume thatg ∈ W 2,p(M,S2(M)) has non-negative Yamabe invariant
Y(g) and(M, g) has no conformal Killing vector fields. Ifσ ≡ 0 andτ ∈ W 1,p(M,R),
there exists a positive constantC(g) independent ofτ ∈ W 1,p(M,R) such that if

∥∥∥∥
dτ

τ

∥∥∥∥
Ln

< C,

then there is no solution(ϕ,W ) to the system(1.3) with ϕ > 0.

Note that this allows (a priori)τ to have isolated non degenerate zeros. But, ifτ changes
sign, it can be proven thatdτ/τ does not belong to anyLp space for anyp > 1. Hence,
such a case is out of reach from this theorem.

Proof. Let us first assume that the system (1.3) admits a solution(ϕ,W ) with ϕ > 0 and
σ ≡ 0. To prove the result, we denote byg the conformal metricψN−2g where a positive
functionψ ∈ W 2,p(M,R) is chosen in such a way thatScalg > 0. Such a functionψ
exists sinceY(g) > 0. In terms of the metricg, Equation (1.3) becomes

−
4(n− 1)

n− 2
∆g(ψ

−1ϕ) + Scalg(ψ
−1ϕ) =−

n− 1

n
τ2(ψ−1ϕ)N−1

+ |ψ−2
LgW |2g(ψ

−1ϕ)−N−1.

(2.5)

Consequently, if we denoteϕ := ψ−1ϕ, multiply both sides of (2.5) byϕN+1 and integrate
both sides of the resulting equation with respect to the conformal metricg, we get

3n− 2

n− 2

∫

M

∣∣dϕN/2+1
∣∣2
g
dvolg +

∫

M

Scalgϕ
N+2 dvolg

+
n− 1

n

∫

M

τ2ϕ2N dvolg =

∫

M

|ψ−2
LgW |2g dvolg.

(2.6)
Under our conformal changeg = ψN−2g, there holds

dvolg = ψN dvolg,

|ψ−2
LgW |2g = ψ−2N |LgW |2g.

(2.7)

Therefore, in terms of the background metricg, (2.6) implies

n− 1

n

∫

M

τ2ψ−Nϕ2N dvolg 6

∫

M

ψ−N |LgW |2g dvolg. (2.8)
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Sinceψ ∈ W 2,p(M) is strictly positive, (2.8) immediately implies
∫

M

τ2ϕ2N dvolg 6
n

n− 1

(maxψ

minψ

)N ∫

M

|LgW |2g dvolg. (2.9)

We take the scalar product of the vector equation (1.3b) withW and integrate overM with
respect to the background metricg to get

−
1

2

∫

M

|LgW |2g dvolg =
n− 1

n

∫

M

ϕN 〈dτ,W 〉 dvolg. (2.10)

Using the Hölder inequality, we can estimate (2.10) as follows:

1

2

∫

M

|LgW |2g dvolg

6
n− 1

n

(∫

M

τ2ϕ2N dvolg

)1/2(∫

M

∣∣∣dτ
τ

∣∣∣
n

g
dvolg

)1/n(∫

M

|W |Ng dvolg

)1/N

6
n− 1

n

(
n

n− 1

(maxψ

minψ

)N ∫

M

|LgW |2g dvolg

)1/2

×

×

(∫

M

∣∣∣dτ
τ

∣∣∣
n

g
dvolg

)1/n

C−1
g

(∫

M

|LgW |2g dvolg

)1/2

6

√
n− 1

n
C−1

g

(maxψ

minψ

)N/2
(∫

M

∣∣∣dτ
τ

∣∣∣
n

g
dvolg

)1/n ∫

M

|LgW |2 dvolg.

(2.11)
By setting

C =
1

2

√
n

n− 1
Cg

(minψ

maxψ

)N/2

,

one gets that ∫

M

∣∣∣dτ
τ

∣∣∣
n

g
dvolg > C,

unless ∫

M

|LgW |2g dvolg = 0.

However, in the second case, we conclude from Inequality (2.8) that
∫

M

τ2ψ−Nϕ2N dvolg = 0.

Henceϕ ≡ 0 which contradicts the fact thatϕ > 0. Thus, we have proved that ifdτ/τ is
small in theLn–sense, the constraint equations (1.3) with vanishingσ admit no solution.

�

Since our assumptions is weaker than those in [4, Theorem 1.7], for a price we pay, the
constantC appearing in Theorem2.4is smaller than the constant appearing in [4, Theorem
1.7].

3. THE ASYMPTOTICALLY EUCLIDEAN CASE

We now study the situation in the asymptotically Euclidean case. For relevant results on
Sobolev spaces on asymptotically Euclidean manifolds, we refer the reader to [1] or [23].
See also the forthcoming article [6].

Let (Mn, g) be a complete non-compact Riemannian manifold. We say that(M, g)

is W k,p
δ –asymptotically Euclidean if there exist a compact setK ⊂ M , a real number
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R > 0, and a diffeomorphismΨ : M \ K → R
n \ BR(0) such that, denotingb the flat

(background) metric onRn and settinge := Ψ∗g − b, we have
∑

06i6k

∫

Rn\BR

∣∣∂(i)e
∣∣p
b

(
1 + |x|2

)−(δ+n/p−|i|)p/2
dvolb(x) <∞

for somek > 2, p > n andδ > 0. Here, we denoted by∂(i)e theith order derivative (in the
sense of distributions) ofe and

∣∣∂(i)e
∣∣
b

its (pointwise) norm with respect to the Euclidean
metric.

Given an asymptotically Euclidean manifold(M, g) we denote byr the pullback of the
distance function from the origin inRn: r = | · | ◦Ψ and extend it to a positive continuous
function onK. For any natural tensor bundleE → M and any sectionξ ∈ Γ(E), we
define the following weighted Sobolev norm:

‖ξ‖W s,q
γ (M,E) :=

( ∑

06i6s

∫

M

∣∣∇(i)ξ
∣∣q
g

(
1 + r2

)−(γ+n/p−|i|)q/2
dvolg

)1/q

,

and the associated Sobolev space

W s,q
δ (M,E) :=

{
ξ ∈W s,q

loc , ‖ξ‖W s,q

δ
(M,E) <∞

}
.

We also recall that the Yamabe invariant for an asymptotically Euclidean manifold(M, g)
is given by (1.4) even if the solution to the Yamabe problem in this case does not belong to
W 1,2 since it tends to some positive constant at infinity.

We prove the following theorem.

Theorem 3.1. Let (M, g) be aW 2,p
δ –asymptotically Euclidean manifold for somep > n

and someδ ∈ (2−n, 0). Assume that the Yamabe invariantY(g) of the manifold(M, g) is
positive. Then given anyτ ∈W 1,p

δ (M,R), σ̃ ∈W 1,p
δ (M,S2(M)), σ̃ 6≡ 0, andϕ̃∞ ∈ R

∗
+,

there existsη0 > 0 such that for anyη ∈ (0, η0) there exists at least one solution to
the system(1.3a)–(1.3b) with σ = ησ0 and (ϕ − η2/(N−2)ϕ̃∞,W ) ∈ W 2,p

δ (M,R) ×

W 2,p
δ (M,T ∗M).

Note that the conditionϕ−ηϕ̃∞ ∈ W 2,p
δ (M,R) immediately implies thatϕ→ ηϕ̃∞ at

infinity. The proof of this theorem mimics that of Theorem2.1replacing theW k,p–spaces
by theW k,p

δ ones. We only give the analogs of each of the four claims and a proof of the
significantly different steps.

Claim 1’. There exists a unique solutioñϕ0 to the equation(2.1) such thatϕ̃0 − ϕ̃∞ ∈
W 2,p

δ (M,R).

Proof. To simplify the proof, we assume that the manifold(M, g) has zero scalar curva-
ture. This assumption is harmless since it is known that any asymptotically Euclidean met-
ric g with positive Yamabe invariantY(g) is conformally related to a metricg = ψN−2g

with zero scalar curvature withψ−1 ∈ W 2,p
δ (M,R) (for instance, see [23, Proposition 3]).

Hence, one can proceed as in the proof of Claim1, working with metricg and replacing
|σ̃|

2
g by

∣∣ψ−2σ̃
∣∣2
g
.

To prove the existence part, we first decomposeϕ̃ = ϕ̃∞ + ṽ and wish to look for̃v in
W 2,p

δ (M,R) solving the following PDE:

−
4(n− 1)

n− 2
∆gṽ =

|σ̃|
2
g

(ϕ̃∞ + ṽ)
N+1

. (3.1)

Note thatṽ− ≡ 0 is always a subsolution to (3.1). To construct a super-solution to (3.1),
let ṽ+ ∈ W 2,p

δ (M,R) denote the solution to the following Poisson equation:

−
4(n− 1)

n− 2
∆g ṽ+ =

|σ̃|
2
g

(ϕ̃∞)
N+1

.
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From the strong maximum principle it follows thatṽ+ > 0. As a consequence, there holds

−
4(n− 1)

n− 2
∆g ṽ+ >

|σ̃|
2
g

(ϕ̃∞ + ṽ+)
N+1

,

this is to say that̃v+ is a supersolution to (3.1). The standard sub- and super-solutions
method applies giving rise to the existence of a solutionϕ̃0 solving (2.1) and satisfying
ϕ̃0 − ϕ̃∞ ∈W 2,p

δ (M,R).
The proof of the uniqueness property is then entirely similar to the compact case, there-

fore we omit it. �

Claim 2’. There existsε > 0 such that the system(2.3) admits a solution(ϕ̃µ, W̃µ) such

that ϕ̃µ − ϕ̃∞ ∈W 2,p
δ (M,R) andW̃µ ∈W 2,p

δ (M,T ∗M) for all µ ∈ [0, ε).

Proof. The proof of Claim2 translates mutatis mutandis, the only difference being that
we need to work on the affine space(ϕ̃∞, 0) + W 2,p

δ (M,R) × W 2,p
δ (M,T ∗M). The

relevant properties for the operator∆L,g on asymptotically Euclidean manifolds can be
found in [23, Theorem 5.4]. �

Claim 3’. Set 



ϕµ = µ
2

N−2 ϕ̃µ,

Wµ = µ
N+2

N−2 W̃µ,

σµ = µ
N+2

N−2 σ̃.

If (ϕ̃µ, W̃µ) solves(2.3) with ϕ̃µ → ϕ̃∞ at infinity, then(ϕµ,Wµ) solves(1.3) withσ = σµ
andϕµ → µ2/(N−2)ϕ̃∞ at infinity.

4. THE COMPACT WITH BOUNDARY CASE

4.1. Boundary conditions. A natural issue in the study of the Einstein constraint equa-
tions is the construction of initial data modeling black holes. While the definition of a
black hole requires knowledge of the whole solution(M, g) of the Einstein equations, it
is natural to construct initial data containing apparent horizons. For an overview, we refer
the reader to [3]. A natural way to construct such solutions is to excise the inside of the
apparent horizon and thus construct solutions to the constraint equations on the outside.
As a consequence, we fix a manifoldM with boundary∂M , solve the constraint equations
onM in such a way that∂M becomes an apparent horizon.

The first articles where such solutions to the constraint equations were constructed dealt
with the constant mean curvature case, see e.g. [10, 23]. Very recently, people have turned
their attention to compact manifolds with boundary with a varying τ , see for example
[5, 14].

To go further, let us roughly reformulate this problem. For detailed explanation and
calculations, we refer the reader to [5, 11, 14]. Let ν̂ be the (spacelike) unit normal vector
field to∂M in M pointing towards the outside ofM (hence to the “inside” of the apparent
horizon) and let̂n be the future directed unit normal spacetime vector field toM . Then,
by means of apparent horizon boundaries, in addition to the constraint equations (1.1), we
further require {

Θ̂− 6 0,

Θ̂+ = 0,
(4.1)

whereΘ̂±, known as the null expansion with respect to the null normalℓ± := n̂ ∓ ν̂, are
given as follows:

Θ̂± = trĝ K̂ − K̂(ν̂, ν̂)∓Hĝ
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whereHĝ is the (unnormalized) mean curvature of∂M in M evaluated with respect tôν,
that is to say

Hĝ = ĝij∇̂iν̂j ,

where we denote bŷ∇ the Levi-Civita connection for the metriĉg. Since we require
Θ̂+ ≡ 0 on∂M , the conditions can be rewritten as





trĝ K̂ − K̂(ν̂, ν̂) =
Θ̂+ + Θ̂−

2
=

Θ̂−

2
,

Hĝ =
Θ̂− − Θ̂+

2
=

Θ̂−

2
.

On the other hand, recalling thatĝ = ϕN−2g, one has the following formula relating:Hĝ

andHg:

2(n− 1)

n− 2
∂νϕ+Hgϕ = Hĝϕ

N/2,

whereν = ϕN/2−1ν̂ is the unit vector field normal toΣ calculated with respect to the
metricg. Hence, we get the following condition forϕ:

2(n− 1)

n− 2
∂νϕ+Hgϕ =

Θ̂−

2
ϕN/2. (4.2)

Next, thanks totrĝ K̂ = τ and the fact that

K̂(ν̂, ν̂) =
τ

n
+ (σ + LgW )(ν, ν)ϕ−N ,

we obtain the following identity:

Θ̂−

2
=
n− 1

n
τ − (σ + LgW )(ν, ν)ϕ−N . (4.3)

Contrary to (4.2), this does not give a boundary condition that complements Equation
(1.3b). In this context, it is natural to prescribe(σ + LgW )(ν, ·) as follows:

(σ + LgW )(ν, ·) =

(
n− 1

n
τ −

Θ̂−

2

)
ϕNν♭ + ξ (4.4)

whereξ is a1–form on∂M which we extend to the restriction ofTM to ∂M by setting
ξ(ν) = 0 so that Condition (4.3) is satisfied. Also in (4.4), we useν♭ to denote the1–form
dual to the normal vector fieldν which is given byν♭(X) = g(ν,X) for any vector fieldX
on∂M . Having all discussion above, we are now in a position to write down the following
system of PDEs:





−
4(n− 1)

n− 2
∆gϕ+ Scalgϕ = −

n− 1

n
τ2ϕN−1 +

∣∣σ + LgW
∣∣2
g
ϕ−N−1,

∆L,g W =
n− 1

n
ϕNdτ,

2(n− 1)

n− 2
∂νϕ+Hgϕ =

Θ̂−

2
ϕN/2,

(σ + LW )(ν, ·) =

(
n− 1

n
τ −

Θ̂−

2

)
ϕNν♭ + ξ,

(4.5)

where the given data are now(M, g) a compact Riemannian manifold with boundary∂M ,
τ a function onM , σ a TT-tensor,Θ̂− a nonpositive function onΣ = ∂M and ξ ∈
Γ(∂M, T ∗M) a 1–form.
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In the presence of the boundary∂M , instead of using the sign ofY(g), we use the sign
of the Yamabe invariantY(g, ∂M) introduced by Escobar [9]:

Y(g, ∂M) := inf
06≡ϕ∈W 1,2(M,R)

∫
M

( 4(n−1)
n−2 |dϕ|2g + Scalgϕ

2
)
dvolg +

∫
∂M

Hgϕ
2 dsg

(∫
M ϕN dvolg

)N/2
.

We also comment on the York splitting on compact manifolds with boundary. While on
closed manifolds we have that the set of (say)W 1,2–TT-tensors isL2–orthogonal to the set
{LgW,W ∈ W 2,2(M,T ∗M)}, this is no longer true for compact manifolds with bound-
ary. Indeed, letσ be a TT-tensor andW be an arbitrary1–form, then if we denote byW ♯

the vector field dual to the1–formW , then by a direct calculation together with the Stokes
theorem, we have∫

M

〈σ,LgW 〉 dvolg = 2

∫

M

〈σ,∇W 〉 dvolg

= 2

∫

M

div
(
σ(W ♯, ·)

)
dvolg − 2

∫

M

(div σ)(W ♯) dvolg

= 2

∫

∂M

σ(W ♯, ν) dsg,

wheretrg σ = 0 anddivg σ = 0were also used to obtain the first and last lines respectively.
Since the restriction ofW to ∂M can be arbitrary,σ belongs to the orthogonal of the set
of LgW ’s if and only if we also impose thatσ(ν, ·) ≡ 0 on ∂M . We will make this
assumption from now on.

4.2. Existence result. The main result of this subsection is the following.

Theorem 4.1. Let M be a compact manifold with boundary. Givenp > n, let g ∈

W 2,p(M,S2(M)), τ ∈W 1,p(M,R), andσ̃ ∈ W 1,p(M,S2(M)), Θ̂− ∈ W 1−1/p,p(∂M,R),
ξ̃ ∈ W 1−1/p,p(∂M, T ∗M) be given data, wherẽσ is a TT-tensor such that̃σ(ν, ·) ≡ 0 on
∂M . Assume that the Escobar invariantY(g, ∂M) is strictly positive, thatg has no con-
formal Killing vector fields and either̃σ 6≡ 0 or ξ̃ 6≡ 0. There existsη0 > 0 such that for
anyη ∈ (0, η0) there exists at least one solution(ϕ,W ) ∈ W 2,p(M,R)×W 2,p(M,T ∗M)

to the system(4.5) with σ = ησ̃ andξ = ηξ̃.

We initiate the proof of Theorem4.1 by proving that the right hand side of the analog
of Equation (2.1) (see Equation (4.6) below) is actually non-zero.

Claim 0”. LetW̃0 ∈ W 2,p(M,T ∗M) be the unique solution of
{
∆L,g W̃0 = 0,

Lg(ν, ·) = ξ̃.

Then under the assumptions of Theorem4.1, we have
∣∣σ̃ + LgW̃0

∣∣2
g
6≡ 0.

Proof. The existence, the uniqueness, and the regularity ofW̃0 are proved in [14, Theorem
4.5]. See also [23, Proposition 5.1] and [10, Theorem 8.6] for earlier references. From the
remark at the end of Subsection4.1, we have∫

M

∣∣σ̃ + LgW̃0

∣∣2
g
dvolg =

∫

M

|σ̃|
2
g dvolg +

∫

M

∣∣LgW̃0

∣∣2
g
dvolg.

Hence if σ̃ 6≡ 0, the claim follows. Otherwise if̃ξ 6≡ 0, W̃0 is a non-trivial element of
W 2,p(M,T ∗M). Since(M, g) has no non-zero conformal Killing vector field, it follows
that ∫

M

∣∣LgW̃0

∣∣2
g
dvolg > 0,
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which proves the claim. �

Claim 1”. Under the assumptions of Theorem4.1, there exists a unique solutioñϕ0 ∈
W 2,p(M,R) to the following system:





−
4(n− 1)

n− 2
∆gϕ̃0 + Scalgϕ̃0 =

∣∣σ̃ + LgW̃0

∣∣2
g
ϕ̃−N−1
0 ,

2(n− 1)

n− 2
∂νϕ̃0 +Hgϕ̃0 = 0.

(4.6)

Proof. The proof of this claim is similar to the proof of Claim1. From the work of Escobar
[9, Lemma 1.1], there exists a conformal factorψ ∈W 2,p(M,R) such that the metricg =
ψN−2g hasScalg > 0 and the mean curvature of the boundary∂M vanishes identically:
Hg ≡ 0 1. The equation forϕ0 := ψ−1ϕ̃0 reads





−
4(n− 1)

n− 2
∆gϕ0 + Scalgϕ0 =

∣∣ψ−2
(
σ̃ + LgW̃0

)∣∣2
g
ϕ−N−1
0 ,

∂νϕ0 = 0,
(4.7)

whereν = ψ1−N/2ν is the unit normal to∂M for the metricg. There exists a unique
functionu ∈W 2,p(M,R) solving





−
4(n− 1)

n− 2
∆gu+ Scalgu =

∣∣ψ−2
(
σ̃ + LgW̃0

)∣∣2
g
,

∂νu0 = 0.
(4.8)

Further, the functionu is positive. By setting

ϕ− = (maxu)
−N+1

N+2 u

and

ϕ+ = (minu)
−N+1

N+2 u,

one readily checks thatϕ+ andϕ− are super- and sub-solutions for (4.7). Hence, by the
sub- and super-solution method, we conclude that there exists a solutionϕ0 to (4.7). The
functionϕ̃0 := ψϕ0 is then a solution to (4.6). The proof of uniqueness is a rephrasing of
that in Claim1 with a Neumann boundary condition. �

Similar to (2.3) for the closed case, in view of (4.5) we now introduce the following
µ–deformed system for the compact with boundary case:





−
4(n− 1)

n− 2
∆gϕ̃+ Scalgϕ̃ = −

n− 1

n
τ2µ2ϕ̃N−1 + |σ̃ + LgW̃ |2gϕ̃

−N−1,

∆L,g W̃ =
n− 1

n
ϕ̃Nµdτ,

2(n− 1)

n− 2
∂ν ϕ̃+Hgϕ̃ =

Θ̂−

2
µϕ̃N/2,

LgW̃ (ν, ·) = µ

(
n− 1

n
τ −

Θ̂−

2

)
ϕ̃Nν♭ + ξ̃.

(4.9)

This system is obtained from (4.5) by replacingτ by µτ andΘ̂− by µΘ̂−.

Claim 2”. There existsε > 0 such that(4.9) admits a solution(ϕ̃µ, W̃µ) for all µ ∈ [0, ε).

1As pointed out by one of the referees, [9, Lemma 1.1] is only stated for smooth metrics. However, the proof
works forW 2,p-metrics without any change.
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Proof. We define the following operator:

F : R×W 2,p
+ (M,R)×W 2,p(M,T ∗M)

↓

Lp(M,R)×W 1− 1
p
,p(∂M,R)× Lp(M,T ∗M)×W 1− 1

p
,p(∂M, T ∗M)

given by

F (µ, ϕ̃, W̃ ) =




− 4(n−1)
n−2 ∆gϕ̃+ Scalgϕ̃+ n−1

n τ2µ2ϕ̃N−1 − |σ + LgW̃ |2gϕ̃
−N−1

2(n−1)
n−2 ∂νϕ̃+Hgϕ̃− Θ̂−

2 µϕ̃N/2

∆L,g W̃ − n−1
n ϕ̃Nµdτ

LgW̃ (ν, ·)− µ
(

n−1
n τ − Θ̂−

2

)
ϕ̃Nν♭ − ξ̃




.

It is not hard to see that the mappingF is of classC1 and

F (0, ϕ̃0, W̃0) =




0
0
0
0


 ,

whereϕ̃0 andW̃0 are given in Claims0” and1”. Again, all we need to do is to prove that
the derivative ofF with respect to(ϕ̃, W̃ ) is an isomorphism at(0, ϕ̃0, W̃0). To do so, we
need to study the following mapping:

DF(0,ϕ̃0,W̃0)
: W 2,p(M,R)×W 2,p(M,T ∗M)

↓

Lp(M,R)×W 1− 1
p
,p(∂M,R)× Lp(M,T ∗M)×W 1− 1

p
,p(∂M, T ∗M).

A direct computation shows that this derivative is given by

DF(0,ϕ̃0,W̃0)
(θ̃, Z̃)

=




− 4(n−1)
n−2 ∆g + Scalg + (N + 1)|σ̃ + LgW̃0|

2
gϕ̃

−N−2
0 −2

〈
σ̃ + LgW̃0,Lg ·

〉

2(n−1)
n−2 ∂ν +Hg 0

0 ∆L,g

0 Lg · (ν, ·)




(
θ̃

Z̃

)
.

Clearly,DF
(0,ϕ̃0,W̃0)

is continuous. To prove thatDF
(0,ϕ̃0,W̃0)

is invertible, we observe
thatDF

(0,ϕ̃0,W̃0)
is block upper-triangular, where the diagonal blocks are



− 4(n−1)

n−2 ∆g + Scalg + (N + 1)|σ|2gϕ̃
−N−2
0

2(n−1)
n−2 ∂ν +Hg


 and




∆L,g

Lg · (ν, ·)




which are invertible. Hence, the derivativeDF
(0,ϕ̃0,W̃0)

is an isomorphism at(0, ϕ̃0, W̃0)

as claimed. �

Claim 3”. Set {
ϕµ = µ

2
N−2 ϕ̃µ,

Wµ = µ
N+2

N−2 W̃µ.
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If (ϕ̃µ, W̃µ) solves(4.9), then(ϕµ,Wµ) solves(4.5) with σ = σµ := µ
N+2

N−2 σ̃ and ξ =

ξµ := µ
N+2

N−2 ξ̃.

Finally, the proof of Theorem4.1follows by settingη0 = ε
N+2

N−2 , whereε is the constant
appearing in Claim2”.

Remark4.2. It is tempting to prove an analog of the non-existence resultfor the case of
a compact manifold with boundary as in Theorem2.4. The natural assumptions in this
theorem would then beσ ≡ 0, ξ ≡ 0 andY(g, ∂M) > 0. The proof is however not just an
extension of that of Theorem2.4, it relies on techniques developed in [11] so we choose to
defer it to that article.
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